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Abstract

Vector control programs based on population reduction by matings with mass-released sterile insects require the
release of only male mosquitoes, as the release of females, even if sterile, would increase the number of biting and
potentially disease-transmitting individuals. While small-scale releases demonstrated the applicability of sterile males
releases to control the yellow fever mosquito Aedes aegypti, large-scale programs for mosquitoes are currently
prevented by the lack of efficient sexing systems in any of the vector species.
Different approaches of sexing are pursued, including classical genetic and mechanical methods of sex separation.
Another strategy is the development of transgenic sexing systems. Such systems already exist in other insect pests.
Genome modification tools could be used to apply similar strategies to mosquitoes. Three major tools to modify
mosquito genomes are currently used: transposable elements, site-specific recombination systems, and genome
editing via TALEN or CRISPR/Cas. All three can serve the purpose of developing sexing systems and vector control
strains in mosquitoes in two ways: first, via their use in basic research. A better understanding of mosquito biology,
including the sex-determining pathways and the involved genes can greatly facilitate the development of sexing
strains. Moreover, basic research can help to identify other regulatory elements and genes potentially useful for the
construction of transgenic sexing systems. Second, these genome modification tools can be used to apply the
gained knowledge to build and test mosquito sexing strains for vector control.
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Background
The control of pest insects via the sterile Insect tech-
nique (SIT) has been performed successfully for several
decades. The most prominent examples are the eradica-
tion of the tsetse fly Glossina austeni in Zanzibar [1], of
the screwworm Cochliomyia hominivorax from Mexico,
the US, and Central America [2], and the successful sup-
pressive or preventive control programs for the Mediter-
ranean fruit fly Ceratitis capitata in North and Central
America [3–7]. The SIT offers a highly species-specific
and therefore environment-friendly approach for insect
pest control. The SIT is based on the mass release of males
of the target species sterilized by irradiation. Matings of
these sterile males with wild type females in the field will
not produce offspring, thereby decreasing the population
size of the next generation. Via repeated releases, the

population can be reduced to a manageable size. The re-
lease of only male insects is beneficial for the SIT as well
as similar control strategies based on male sterility. It in-
creases the efficacy of the program and thereby reduces
the costs [8]. First trials to establish control programs
based on transgenic sterility have also been implemented
for the yellow fever mosquito Aedes aegypti. Several
small-scale releases were performed with a self-limiting
strain of Ae. aegypti in Grand Cayman [9, 10] and Brazil
[11, 12]. The strain carries a transgenic construct that
kills most of the offspring of the released males during
late larval or pupal development [13]. All releases
showed a significant reduction of the Ae. aegypti popula-
tions in the release areas.
While male-only releases are desirable for agricultural

pests, they are a prerequisite for all control programs in-
volving the mass release of insect vectors. In insect vec-
tors, only the females bite and can thereby transmit
diseases. Thus, the release of females, even if sterile,
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would increase the number of biting and potentially
disease-transmitting individuals. Elimination of female
mosquitoes for the small-scale releases of Ae. aegypti
(0.5 to 1.5 million males per week) was performed
mechanically, making use of the size difference between
male and female pupae for separation. Mechanical sex-
ing as it is currently performed, however, is not only
labor intensive, time consuming and costly. It is also not
100% efficient, with a female contamination of 0.02% or
more [11, 14]. Moreover, this strategy is not applicable
to anophelines as the pupal size difference is mostly not
pronounced enough for successful separation [15].
Therefore, efficient sexing systems are urgently needed
for the major vector species. Only then large-scale con-
trol programs based on the release of sterile males,
where up to one billion males per week are produced,
can be developed. Such sexing systems would be desir-
able for Ae. aegypti, Ae. albopictus, and Ae. polynesiensis,
which are the major vectors of yellow fever, dengue, chi-
kungunya and Zika virus, and for the malaria vectors of
the Anopheles gambiae complex and An. stephensi.
Several approaches exist besides mechanical or phys-

ical sex separation in mosquitoes [16]. One strategy is
classical genetic mutagenesis using chemicals or irradi-
ation and screening for the desired phenotype. An
example of such a genetic sexing strain (GSS) in mosqui-
toes is the An. arabiensis, ANO IPCL1 strain, where a
mutation confers dieldrin resistance to males, and kills
the susceptible females when eggs or larvae are treated
with the insecticide [17]. GSS also exist for An. gambiae
[18] and An. albimanus [19]. The development of a GSS
using classical genetic approaches can take a long time,
however, and cannot be easily transferred to another
species, as the induction of mutations via chemicals or
irradiation results in random mutagenesis. Therefore,
the underlying molecular basis of the mutant phenotype
is often not known.
Transgenic strategies offer multiple approaches to cre-

ate sexing systems in mosquitoes. Besides their useful-
ness in the construction of sexing strains, transgenic
technologies have become an important factor in basic
research, e.g. by using transposable elements to uncover
gene function in insertional mutagenesis studies or to
identify regulatory elements in enhancer trap experi-
ments. Furthermore, genome editing technologies have
recently been used to help elucidate the sex-determining
pathway in Ae. aegypti [20]. This basic research on mos-
quito biology creates a strong basis for the development
of sexing strains, as it uncovers potential candidate
genes and regulatory elements that can be used to con-
struct a transgenic sexing system (TSS). TSSs already
exist in several insect pests, relying on different strat-
egies. In Anopheles and Aedes mosquitoes, fluorescent
protein marker expression was linked to the sex.

Mechanical sorting of the male from female larvae was
then achieved based on the absence or presence of fluor-
escence by using a flow cytometer, the Complex Object
Parametric Analyzer and Sorter (COPAS) [21–23]. In a
different approach, transgenic embryonic sexing systems
(TESS) were built for several agricultural pests like the
Mediterranean fruit fly Ceratitis capitata [24], the Carib-
bean fruit fly Anastrepha suspensa [25], and the Austra-
lian Sheep Blow fly Lucilia cuprina [26]. They are based
on the conditional elimination of female insects during
early embryonic development to obtain only male
insects for release. Genome modification tools offer the
possibility to transfer such successful sexing strategies to
important vectors and adapt them for each species.
Three major tools to modify mosquito genomes are
available at the moment and are functional in four im-
portant vectors from the genera Aedes and Anopheles:
transposable elements, site-specific recombination
systems, and genome editing via TALEN or CRISPR/
Cas. Here, we review these three major technologies for
genome modification in insects, specifically focusing on
their application and achievements in mosquitoes with
respect to their potential to create sexing strains for vec-
tor control.

Germline transformation of mosquitoes using
class II transposable elements
Transposons are mobile genetic elements found in al-
most all life forms and can make up a large fraction of
an organism’s genome. The first transposon used to
transform an insect genome was the P element in Dros-
ophila melanogaster in the 1980s [27]. Expectations to
have found a universal tool for insect transgenesis were
not confirmed, however, when researchers essentially
failed to apply it to other insects. The positive effect of
this failure was an intense search for other transposons
suitable for germline transformation of insects since the
late 1990s. This led to the discovery of nine different
transposable elements, Hermes, Herves, Hobo, Hopper,
Minos, Mos1, the P element, piggyBac, and Tn5.
Four of them are regularly used for insect transform-

ation: the hAT-related element Hermes from the house-
fly Musca domestica, the Minos element from
Drosophila hydei, the mariner family transposon Mos1
from D. mauritiana, and the piggyBac transposon from
the cabbage looper Trichoplusia ni. With their help,
many different insects have been transformed, including
lepidopteran, dipteran, and coleopteran species. Due to
its precise cut-and paste mechanism and high mobility
in many insect genomes, piggyBac has become the most
widely and most frequently used transposable element
with more than 30 different species on the transform-
ation list. All four transposons have also been success-
fully applied for mosquito transformation (Table 1).
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Mobility of transposable elements in the mosquito
genome
The mobility of transposable elements is an important
feature to uncover the function of genetic elements in
enhancer-trapping and gene-tagging experiments as well
as in genome-wide mutagenesis studies. In the Ae.
aegypti genome, however, transposable elements show a
very limited mobility or are completely immobile.
Although the piggyBac transposase in Aedes integrates
in a precise transposition event, leading to the canonical
duplication of the TTAA recognition sequence [28], it
does not remobilize [29, 30]. The results obtained from
a variety of experiments indicates the involvement of
species-specific effects in Ae. aegypti. While piggyBac
remobilizes in plasmid-based assays in the Ae. aegypti
cell line Aag2, it is immobile when it is stably integrated
in that cell line [29]. Esnault et al. discovered that local
context effects involving the surrounding 500-1000 bp of
the genomic integration site influence the mobility of
the piggyBac transposon in D. melanogaster [31]. This
led to the reasoning that such context effects might also
be responsible for the immobility of piggyBac in Aedes.
However, a piggyBac transposon transferred from the
Ae. aegypti genome into D. melanogaster together with
the flanking 1000 bp of the Ae. aegypti genomic integra-
tion site remobilizes with high efficiency in the D. mela-
nogaster genome [29]. This result contradicts the local
context hypothesis. As the piggyBac construct and flank-
ing sequences were isolated from the Ae. aegypti genome
by PCR, essentially blank DNA (lacking all chromatin in-
formation) was transformed into D. melanogaster.
Therefore, the more likely candidates for the silencing
effect of transposable elements in Ae. aegypti would be
genetic or epigenetic effects.
To our knowledge, the mobility of genetic elements

has not been thoroughly tested in any other mosquito of
the genus Aedes. The only other experiment addressing
piggyBac mobility in Aedes is based on inter plasmid

assays in Ae. albopictus embryos [32], where the element
was mobile. However, taking into account the results in
Ae. aegypti, inter plasmid assays do not necessarily allow
conclusions on the behavior of genomic piggyBac
integrations.
Germline remobilization experiments with other insect

class II transposons such as Hermes and Mos1 display
similar behavior within the Ae. aegypti germline. Hermes
shows a very limited remobilization in Ae. aegypti under
different experimental conditions. This includes the
embryonic microinjection of a helper plasmid encoding
the transposase under the control of the D. melanogaster
hsp70 promoter [33], as well as crossing the transgenic
line carrying the Hermes construct to a jumpstarter line
[34]. The jumpstarter line permanently expresses the
transposase in the testis. Also, the remobilization of a
Mos1-based gene vector in Ae. aegypti was extremely
rare (1 in 14,000 G1) [35]. The reduced Hermes mobility
seemed to be an Aedes-specific phenomenon, as it remo-
bilizes within the D. melanogaster germline at a rate of
approximately 0.03 jumps per element per generation
[36]. In contrast, low Mos1 mobility was also observed
in D. melanogaster with a remobilization rate of less
than 1% [37].
Within other mosquito genera, the inability of trans-

posons to remobilize has been observed for the Minos
element in Anopheles stephensi. Here, germline remobili-
zation assays did not yield any positive events in more
than 35,000 screened G1, although evidence of somatic
mobility was recovered. These somatic events, however,
occurred to a large extent with a non-canonical mechan-
ism [38].
In contrast to the general immobility of class II trans-

posable elements in Ae. aegypti, and of Minos in An. ste-
phensi, the piggyBac transposon vector system is highly
mobile in An. stephensi and An. gambiae, where it is
exploited as a tool for enhancer trap studies [39, 40].

Hyperactive versions of transposases
Transformation efficiency with transposable elements in
general is low, reaching rarely more than 10 to 15% and
being often much lower. Their broad applicability in in-
sects and mammalian cells, nevertheless turns them into
important tools for transgenesis. It would therefore be
desirable to increase transposition efficiency. This lead
to different efforts to enhance the activity of transpo-
sases, starting by codon-optimizing the insect piggyBac
transposase for mammalian usage [41, 42].
By screening for hyperactive mutants of the insect pig-

gyBac transposase in yeast, a hyperactive version (IPB7)
was created. To further increase expression of the trans-
posase for use in mammalian cells, the combination of
the best hyperactive mutations was transferred into the
mammalian codon-optimized enzyme, which was named

Table 1 Transposon vector systems used in mosquitoes

Transposon Species First publication

Hermes Aedes aegypti Jasinskiene et al. 1998 [151]

Culex quinquefasciatus Allen et al. 2001 [152]

Minos Anopheles stephensi Catteruccia et al. 2000 [153]

Mos1/mariner Aedes aegypti Coates et al. 1998 [154]

piggyBac Aedes aegypti Kokoza et al. 2001 [28]

Anopheles gambiae Grossman et al. 2001 [155]

Anopheles stephensi Nolan et al. 2002 [156]

Anopheles albimanus Perera et al. 2002 [157]

Aedes fluviatilis Rodrigues et al. 2006 [158]

Aedes albopictus Labbe et al. 2010 [80]

TN5 Aedes aegypti Rowan et al. 2004 [159]
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hyPBase [43]. Wright et al. tested the insect codon mu-
tant IPB7 in Ae. aegypti. Despite a 9-fold increased activ-
ity of the mutant in mammalian cells [43], IPB7 had no
effect in Ae. aegypti inter-plasmid assays compared to
the wild type T. ni piggyBac transposase [44]. Moreover,
the enzyme caused a high degree of sterility in trans-
formed individuals, that was also observed in a parallel
experiment in D. melanogaster. Investigation of sterile
Drosophila and Aedes females showed that sterility was
caused by a severe atrophy in the ovaries of females
injected with the mutant helper plasmid alone or in
combination with a donor [44]. Interestingly, the same
hyPBase tested again in D. melanogaster, C. capitata,
and T. castaneum, did not cause such high sterility rates
[45]. Thus, hyperactive piggyBac versions could be eval-
uated again for effective genetic engineering and
enhanced mosquito transformation.
Additionally, mutated versions of Mos1 were tested in

Ae. aegypti. These mutants were based on the mutations
generated in a related transposon Himar1 [46]. In com-
bination with perfectly matched 5’ and 3’ ITRs, two of
the Mos1 mutants showed a more than 3-fold increase
in transposition activity, while at the same time signifi-
cantly improving the integrity of the transposition
process [47].

Advantages and disadvantages of mosquito transgenesis
with transposons
Commonly used transposable elements use short gen-
omic recognition sequences for integration, such as TA
for mariner or TTAA for the piggyBac transposase. Due
to the high frequency of such short recognition
sequences in the genome, the integration is essentially
random, which can lead to insertional mutagenesis
effects. Scientists make use of the random integration to
uncover new regulatory elements within genomic re-
gions and to identify gene function in enhancer trap and
insertional mutagenesis experiments, respectively. For
this purpose, scientists favor transposons with strong re-
mobilization properties to be able to hit many different
genomic locations in one experiment. Due to the nearly
complete immobility of transposable elements in the Ae.
aegypti genome, this important tool for genome wide
functional studies is not available in the yellow fever
mosquito. In contrast, it has been successfully applied to
the Asian and African malaria mosquito [39, 40].
If the purpose of the transformation is the creation of

transgenic mosquitoes, e.g. sexing strains, then inser-
tional mutagenesis is an unwanted side effect, as it can
be deleterious for the fitness of the transgenic insects.
Depending on the affected gene, the consequences may
range from mild phenotypic effects to lethality [48]. Ex-
tensive fitness tests are necessary to assess the biological
quality and mating competitiveness of transgenic strains

first at a laboratory scale, and then in (semi-) field cages
and in a mass rearing setup and small-scale releases. In
some cases, the created transgenic strains do not show
obvious defects in biological quality under normal lab
rearing conditions [48, 49]. It has been shown, however,
that small negative effects on strain fitness based on the
transgene integration can remain hidden under optimal
rearing conditions, but become measurable when the
strains are put under stress, such as limited food
resources [50]. Thus, even if transgenic strains show
suitable fitness in the lab, they might not perform well
enough under mass rearing conditions, which can in-
volve a certain level of stress, such as density stress and
limited food resources. Moreover, fitness loads might
only be noticeable in the homozygous state, while they
remain obscured as long as one intact allele is present
(compare [51, 52] and [48, 49, 53]). Besides these direct
effects of insertional mutagenesis, an indirect fitness
effect can result from deleterious genes located close the
integration site. Due to selection for the transgene in
each generation and low frequency of recombination be-
tween the transgene locus and a deleterious gene located
nearby, the latter enriches in the population, thus de-
creasing fitness. Together, these effects will affect the
suitability of the strains for pest control applications.
The random integration into the genome can also lead

to genomic position effects caused by regulatory ele-
ments like enhancers and silencers, or to position effect
variegation due to nearby heterochromatic regions.
There are several examples where the same transgene
construct integrated at different genomic positions
shows varying degrees of expression [54–58]. Therefore,
it is impossible to perform an unbiased comparison of
the function and efficacy of different transgene con-
structs located at different genomic positions.
With the overall low transformation frequency achieved

with transposable elements, it can be time-consuming to
obtain a transgenic strain with the appropriate transgenic
characteristics and sufficient biological quality.

Use of transposable elements to create sexing strains in
mosquitoes
Fluorescent proteins are commonly used in insects as
markers to identify transgenic individuals. The male-
(or sex-) specific expression of fluorescent markers
can be exploited for sex separation. This strategy has
been pursued for Aedes and Anopheles species. Sex
separation is e.g. achieved by mechanical sorting with
the COPAS. Using the beta2-tubulin (β2-tub) pro-
moter to express the fluorescent marker protein al-
lows reliable sorting for marked males from
non-marked females in Ae. aegypti [23] and Anoph-
eles stephensi [21]. Using the An. gambiae dsx pro-
moter to drive EGFP permits early larval separation
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due to the higher expression of EGFP in the midgut
in male L1 larvae compared to females [22]. Import-
antly, the mechanical sorting by COPAS does not sig-
nificantly affect the viability and competitiveness of
sorted males [21, 23]. Transgenic strains with inser-
tions of the marker on the Y chromosome can replace
the use of sex-specific promoters. Including a recom-
bination sequence such as attP, lox, or FRT for
site-specific integration, allows additional modification
of the Y chromosome. Such strains are available for
An. gambiae [59] and Ae. aegypti (Haecker et al, un-
published data).
A different strategy for sexing is pursued by the

so-called X shredder. It makes use of an endonuclease,
I-PpoI, that specifically cuts X-chromosomal ribosomal
DNA sequences. Tissue-specific expression of I-PpoI in
the testes of An. gambiae under the control of β2-tub 5’
and 3’ regulatory sequences results in a strong bias for Y
gametes, as X-chromosomes are shredded during gam-
etogenesis. However, it also resulted in male sterility in
crosses of heterozygous males with wild-type females
due to the transfer of the stable I-PpoI protein into gam-
etes where it shreds the X chromosome of the oocyte
upon fertilization [60]. Reducing the half-life time of the
I-PpoI protein abolished the sterility effect [61].

Site-specific modification of the Ae. aegypti
genome
Site-specific modification of the genome can circumvent
the drawbacks of random genomic integration by target-
ing genomic regions that have previously been shown to
have no adverse effects on transgenic strains with regard
to transgene function and biological quality. Two main
strategies are currently used to site-specifically modify
the mosquito genome, site-specific recombination sys-
tems and genome editing.

Site-specific recombination and recombinase-mediated
cassette exchange (RMCE)
Three different naturally occurring site-specific recom-
bination systems have been turned into molecular tools
to modify genomes in mammals and insects: the Cre/lox
system from the Escherichia coli phage P1 [62, 63], the
Flp/FRT system from the two-micron plasmid of Saccha-
romyces cerevisiae [64] as well as the phiC31/att system
derived from the Streptomyces phage phiC31 [65]. They
are all based on a recombinase enzyme that induces
double-strand breaks at specific recombination se-
quences, followed by strand exchange and re-ligation
[66]. Cre and Flp belong to the family of Serine recombi-
nases, which recognize rather short recombination se-
quences, lox and FRT, respectively. These sequences
have a strictly palindromic architecture with a central 8
bp core, where the strand cleavage and re-ligation occurs

[67, 68]. For site-specific recombination experiments,
identical recombination sequences are placed at a
so-called genomic acceptor site and in a donor plasmid.
Recombination leads to the integration of the donor
plasmid into the genome. Due to their inverted repeat
symmetry, the lox and FRT recombination sequences are
preserved and can be reused for future recombination
reactions. In contrast, the donor and acceptor sequences
recognized by the Tyrosine recombinase phiC31 are lon-
ger and have a very limited repeat symmetry. Moreover,
the donor (attB) and acceptor (attP) sequences share
very little sequence identity [68, 69]. Therefore, the
recombination between donor and acceptor site leads to
new and incompatible attR and attL sites. attR and attL
cannot recombine anymore without the presence of add-
itional factors, thus making the reaction irreversible.
Recombination between a single donor and acceptor

site leads to the integration of the complete donor plas-
mid at the genomic target site [70]. The concomitant in-
tegration of bacterial resistance genes and regulatory
elements in the best case adds unnecessary sequence in-
formation. In the worst case it may interfere with trans-
gene expression. To avoid this, a more sophisticated
targeting strategy, the recombinase-mediated cassette ex-
change (RMCE), was developed. The idea for RMCE origi-
nates from the discovery that the mutation of certain
bases in the central crossover region of lox or FRT sites
does not abolish cleavage by the recombinase [71–73]. In-
stead, these mutant sites recombine with an identical
(homospecific) mutant site with equal efficiency as two
wild-type sites, while interaction between sites with
non-identical core sequences (heterospecific sites) is pre-
vented. For RMCE, the transgene cassette at the genomic
acceptor site as well as the transgene construct in the
donor plasmid is flanked by identical pairs of such hetero-
specific sites [68, 74]. A double recombination between
the recombination sequences on both sides of the trans-
gene constructs then leads to the exchange of the genomic
landing site cassette for the gene-of-interest cassette from
the donor plasmid [70, 75].
RMCE is also possible with the phiC31/att system.

However, due to the different architecture of the recom-
bination sites, it follows a different strategy. The gen-
omic acceptor cassette is flanked by attP sites in
inverted orientation, and the donor cassette is flanked by
inverted attB sites. Double recombination between attP
and attB on either side of the cassettes leads to a cas-
sette exchange, that, again, is irreversible. It has been
shown that also the opposite setup, i.e. placing the attB
sites at the genomic landing site, and the attP sites in
the donor plasmid, is functional [76].
Site-specific integration via a genomic attP docking

site is the most frequently used strategy to date to
site-specifically target the mosquito genome. Several
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attP docking site strains exist for the major vector
species Ae. aegypti [77–79], Ae. albopictus [80], An.
gambiae [59, 81–83], and An. stephensi [49]. Most attP
docking site strains have been created by
transposon-mediated transformation, resulting in ran-
dom integration with the potential negative effects on
line quality. In contrast, Bernardini et al. specifically
placed an attP docking site on the An. gambiae
Y-chromosome using meganuclease-induced homolo-
gous repair [59]. Amenya et al. tested a set of docking
site strains created by transposition in An. stephensi.
These strains carry the same construct, an attP docking
site and marker gene. They could not detect a significant
effect on mosquito fitness, suggesting that attP docking
sites in combination with a marker gene per se do not
have an inherent negative effect, as long as no inser-
tional mutagenesis effects occur.
Site specific integration via a single FRT site in mos-

quitoes to our knowledge has been reported only in
plasmid-based assays [84], and via single lox sites only as
part of a two-step RMCE [50]. In contrast, site-specific
excision via lox sites has been shown first by Jasinskiene
et al. [85], and is commonly applied in Ae. aegypti [50,
79].
Successful RMCE in mosquitoes has been reported for

Ae. aegypti, using either the Cre/lox or the phiC31/
att system. Cre-RMCE was achieved in a two-step
process, where the first step is comprised of the
integration of the complete donor plasmid via the
recombination of only one of the homospecific lox pairs.
Injecting the resulting strain with Cre recombinase in
the 2nd step leads to the highly efficient excision of the
plasmid backbone via recombination of the second
homospecific lox pair, and thus to a complete cassette
exchange [50].
phiC31-mediated cassette exchange was accomplished

with two strategies, first with a true RMCE approach ac-
cording to Bateman et al. [86], with an efficiency of four
to five percent in two independent experiments [79].
The second strategy only indirectly leads to a cassette
exchange in two steps by combining attP-mediated inte-
gration with lox excision. In the first step the whole
donor plasmid with the cassette of interest is incorpo-
rated via single attP recombination, followed by loxP ex-
cision of the vector backbone such that only the cassette
of interest remains. This strategy was termed iRMCE
[79]. For Anopheles mosquitoes, only phiC31-RMCE in
An. gambiae has been reported so far [87].

Genome editing via TALEN and CRISPR
A different concept than site-specific recombination
systems is site-specific targeting via genome editing
tools. Two genome editing methods that were success-
fully applied to different mosquito genomes are TALEN

and CRISPR. TALEs are a class of transcription activa-
tor-like effector proteins from Xanthomona [88, 89]. For
genome editing purposes, the TAL DNA binding domain
is fused to a non-specific DNA cutting enzyme, the re-
striction endonuclease Fokl [90, 91], to form the TALE
nuclease (TALEN). The resulting fusion protein then
specifically cuts genomic DNA at the natural binding se-
quence of the TAL subunit. Although the number of
naturally occurring TAL binding sequences is limited,
the TAL domain can theoretically be engineered to
bind nearly any desired DNA sequence with relative
ease [92, 93]. The method has been applied to several
insect genomes [94–100] with satisfying precision and
efficiency. In mosquitoes, TALEN was successfully
performed in Ae. aegypti [99] and An. gambiae [100].
In both cases, the targeted gene could be knocked
down due to mutations (INDELs) caused by the
non-homologous end joining (NHEJ) repair mechan-
ism at the induced double strand breaks. However,
the widespread use of TALEN has been and will likely
be prevented for two reasons. First, despite its relative
ease, engineering TAL binding specificity for a large
number of target sites still is quite work intense and
costly. Second, a novel and very efficient genome
editing tool based on the so-called clustered regularly
interspaced short palindromic repeats (CRISPR) was
developed. Using CRISPR, target site specificity is de-
termined by the sequence of a small RNA molecule
that is much easier to modify and at low cost.
CRISPR/Cas was discovered in 2007 as the prokary-

otic equivalent of the eukaryotic adaptive immune
system [101]. As part of their immune response to an
infection, bacteria and archaea acquire short DNA se-
quences that originate from foreign DNA, e.g. the in-
fecting virus or plasmid. These acquired foreign DNA
sequences are incorporated into the bacterial or ar-
chaeal genome and separated by short repeat se-
quences, thereby forming the CRISPR. Such
repeat-spacer sequences are found to date in approxi-
mately 40% and 90% of the sequenced bacterial and
archaea genomes, respectively. CRISPR arrays are
transcribed and processed into short CRISPR RNAs
(crRNA) by nucleases of the Cas (CRISPR associated)
family of proteins. Small clusters of Cas genes are lo-
cated next to the CRISPR arrays. The crRNAs are in-
corporated into ribonucleoprotein (RNP) complexes
with another class of Cas proteins. The CRISPR RNPs
recognize foreign DNA by sequence complementarity
with the crRNA. The foreign DNA is then cut by a
Cas nuclease activity similar to RNA interference in
eukaryotic organisms [102], thus conferring immunity
against infection with previously encountered infective
agents (see [102, 103] or [104] for comprehensive ex-
planations and illustrations).
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Of the three different CRISPR/Cas systems known so
far, the multifunctional Cas9 protein from the type II
system is the most used nuclease for genome editing in
insects. Cas9 requires two types of RNA to function, the
crRNA and a transactivating CRISPR RNA (tracrRNA).
For more convenient use, scientists engineered the
crRNA and tracrRNA into one single-guide RNA
(sgRNA) [105]. Moreover, Cas9 activity depends on the
presence of a so-called protospacer adjacent motif
(PAM) next to the target site. Since its discovery, the
CRISPR genome editing system has seen a rapid develop-
ment and constant improvement of efficiency and specifi-
city by engineering the existing Cas protein [106–110],
characterizing and adapting new Cas proteins like Cpf1
[111] or C2c2 [112], or by engineering of sgRNAs [113,
114]. For a comprehensive review on current Cas variants
see Cebrian-Serrano et al. [115].
The first insect genome edited via CRISPR/Cas was

that of D. melanogaster [116–118]. In 2014 and 2015,
CRISPR/Cas was transferred to mosquitoes. Dong et al.
provided the first proof-of-principle experiment in Ae.
aegypti by knocking out a marker gene in a transgenic
line [119]. At the same time, Kistler et al. published a
systematic study on the composition of CRISPR injec-
tion mixes and gRNA design in Ae. aegypti. The authors
achieved a knockdown rate of at least 18% using two
gRNAs per target gene in three independent experi-
ments. Moreover, they succeeded in integrating large
fluorescent protein cassettes via CRISPR/Cas [120]. Re-
cently it was shown that germline expression of Cas9 in
Ae. aegypti strongly enhances the mutagenesis rate
[121], in accordance with the results in D. melanogaster
[122–125]. In 2015, Basu et al. investigated the effect of
knocking down the NHEJ pathway in Ae. aegypti on the
rate of NHEJ versus HDR in TALEN and CRISPR exper-
iments [126]. The permanent knockdown of Lig4 failed
to create strains viable for more than a few generations
and transient Lig4 knockdown did not produce the de-
sired results. In contrast, the transient knockdown of
ku70 (which was also successfully used in B. mori to
suppress NHEJ [127]) resulted in HDR events with a fre-
quency of about 2% for TALEN as well as CRISPR [126].
With the simplicity to re-program CRISPR/Cas to new

target sites, it has become much easier and more
straight-forward to knock down specific genes to elucidate
their function. During the investigation of the gene Nix as
the long-searched Aedes maleness-factor, CRISPR/Cas
was used to knock down Nix to show that the factor gov-
erns the male determining pathway. Its knockdown re-
sulted in female-specific splicing of the sex-determination
genes fruitless and doublesex, and feminized genetic males
[20]. Similarly, CRISPR knockdown of two miRNA-encod-
ing sequences in Ae. aegypti helped to elucidate their
function in development and lipid metabolism [128, 129].

Along the same line, Li et al. optimized CRISPR for
site-specific mutagenesis in three Anopheles species, An.
funestus, An. coluzii and An. albimanus, with the goal to
establish CRISPR/Cas as an efficient tool for reverse
genetics in Anopheles mosquitoes [130]. In An. gambiae,
CRISPR/Cas was used to target ribosomal sequences on
the X chromosome, with the goal of creating a sexing
strain. Expressing Cas9 during male gametogenesis leads
to RNA-guided shredding of the X chromosome in
sperm, resulting in highly male-biased offspring [131].
This experiment recapitulates the original X-shredder
that used a naturally occurring endonuclease targeting
ribosomal sequences on the X chromosome [61].
Recently, a pipeline for the identification of abundant
and specific X-chromosome target sequences for
X-shredding by CRISPR endonucleases was developed
[132]. The flexibility of CRISPR/Cas should allow the
transfer of this approach to many other mosquito spe-
cies with an XY sex determination system.
Besides strongly facilitating functional gene studies and

genome editing, CRISPR has also revolutionized the field
of gene drive research. Gene drives offer additional possi-
bilities to address population control or vector capacity of
mosquitoes. They could be developed to drive female ster-
ility into a population, or to convert females into males,
both of which should lead to the collapse of the (local)
wild population. On the other hand, natural populations
could be replaced with transgenic strains that are refract-
ive to pathogen infection [48, 133–135]. Recent work re-
sulted in two gene drive systems in Anopheles. The first
approach in An. gambiae targets female fertility by insert-
ing a CRISPR/Cas gene drive construct in three candidate
genes conferring recessive female sterility upon disruption
[87]. A CRISPR-based gene drive in An. stephensi is used
to drive multiple anti-plasmodium effector genes into a
wildtype population, resulting in more than 99% of posi-
tive offspring [136]. Gene drive research, however, is still
at its beginning. Consequently, the understanding of gene
drive behavior in a real population is very limited, espe-
cially since each drive behaves differently, depending on
its architecture and components. Although there is lots of
activity on the modeling side to predict the behavior of
gene drives in a population [137–143], there are not many
real data sets available yet. Moreover, recently observed
resistance development poses further challenges for the
field [144–146]. Therefore, more thorough research in-
cluding safeguards, control strategies and potential revers-
ibility of released gene drives will be necessary before such
applications could be considered for vector control [147].

Conclusions
With transposable elements, site-specific recombination
systems and genome editing via CRISPR/Cas there are
three powerful molecular tools available that can help to
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achieve the goal of creating efficient sexing strains for
the major vector mosquitoes and thereby enable
large-scale control programs based on the (mass-) re-
lease of male mosquitoes. Aedes as well as Anopheles
mosquitoes are amenable to the available tools, and re-
searchers are continuously working to further develop
and optimize the tools for their use in efficient mosquito
genome modification [83, 120, 121, 148]. These molecu-
lar tools can be used in two ways to progress towards
the goal of creating sexing strains in mosquitoes. First,
in basic research and second, in the application of the
knowledge obtained from basic research to build sexing
systems. Basic research recently led to the discovery of
important male-determining factors in mosquitoes, the
Ae. aegypti M-factor Nix [20], and the An. gambiae
maleness factor Yob [149]. These crucial insights into
mosquito sex determination can and will be exploited
for the development of sexing systems, for example to
build a female lethality system by conditionally overex-
pressing Yob [149], or to achieve female to male conver-
sion by conditionally overexpressing Nix [20]. The
available genome modification tools will then allow the
creation of (transgenic) sexing strains for vector control
applications. Other strategies could be to a build a fe-
male lethality system similar to the TESS, based on the
conditional early embryonic expression of lethal genes in
females but not males [24, 25]. While it has been shown
that exogenous genes and regulatory elements for such
constructs can be functional in related species [24, 25,
54], several studies indicated that the endogenous
homologue, if available, can be more effective [55].
Where such homologues have not been identified yet or
for species where no genome sequencing data are avail-
able, more basic research will be necessary. Alternatively,
mutations that are already successfully used for sexing in
one species, could be exploited to create similar muta-
tions in other species via CRISPR, once the molecular
basis of the mutation is uncovered. The resulting sexing
strains might even not be considered transgenic, de-
pending on the applied modification. A prime example
for such a mutation is the Medfly VIENNA 8 tempera-
ture-sensitive lethal (tsl) that was created by chemical
mutagenesis and kills female embryos upon heat shock
[150]. Genome modification and genome editing tools
could thus facilitate the transfer of successful strat-
egies from one species to another. Site-specific sys-
tems further allow to compare the effectiveness of
potential candidate genes and transgene constructs
for sexing systems at the same genomic location un-
biased by genomic position effects, which is not pos-
sible for transgenic strains created by transposition
due to the random genomic integration. Thus, the
most suitable approach or construct in terms of sex-
ing efficacy can be selected.
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