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Abstract

Gibberellin-dioxygenases genes plays important roles in the regulating plant development.

However, Gibberellin-dioxygenases genes are rarely reported in maize, especially response

to gibberellin (GA). In present study, 27 Gibberellin-dioxygenases genes were identified in

the maize and they were classified into seven subfamilies (I-VII) based on phylogenetic

analysis. This result was also further confirmed by their gene structure and conserved motif

characteristics. And gibberellin-dioxygenases genes only occurred segmental duplication

that occurs most frequently in plants. Furthermore, the gibberellin-dioxygenases genes

showed different tissue expression pattern in different tissues and most of the gibberellin-

dioxygenases genes showed tissue specific expression. Moreover, almost all the gibberel-

lin-dioxygenases genes were significantly elevated in response to GA except for ZmGA2ox2

and ZmGA20ox10 of 15 gibberellin-dioxygenases genes normally expressed in leaves

while 10 and 11 gibberellin-dioxygenases genes showed up and down regulated under GA

treatment than that under normal condition in leaf sheath. In addition, we found that

ZmGA2ox1, ZmGA2ox4, ZmGA20ox7, ZmGA3ox1 and ZmGA3ox3 might be potential

genes for regulating balance of GAs which play essential roles in plant development. These

findings will increase our understanding of Gibberellin-dioxygenases gene family in

response to GA and will provide a solid base for further functional characterization of Gibber-

ellin-dioxygenases genes in maize.

Introduction

The development of plant organs is directly dependent on the frequency of cell division, the

parameters of the cell cycle, and the number and size of the cells [1]. Plants are continuously

exposed to a variety of stress factors in their natural environment. Of them, gibberellins (GAs)

play multiple roles in plant development and stress responses which will significantly affect the

production and quality of the plants [2, 3]. To adapt natural environment, plants have to
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acclimate to GA by triggering a cascade of events leading to changes in gene expression and

subsequently to biochemical and physiological modifications. GA synthesis, metabolism and

GA signaling transduction play core roles to cope with various natural environment. However,

although much effort, the key genes and signaling pathways involved in GA remains need for

further study.

With development of advanced technologies, numbers of genes which contribute to GA sig-

naling were discovered. Genetic analyses of GA-deficient and GA-response mutants have

revealed that the central step in GA action is to turn off the repressive effects of DELLAs in

plants. In the presence of GA, the GA-GID1-DELLA complex stimulates the interaction of

DELLAs with an F-box protein, resulting in the degradation of DELLAs and consequently the

activation of downstream-responsive processes [4]. In higher plants, the flux of active GAs is

regulated by the balance between their rates of biosynthesis and deactivation. The GA 20-oxi-

dase (GA20ox) and GA 3-oxidase (GA3ox) genes encode key enzymes of bioactive GAs syn-

thesis, whereas GA 2-oxidase (GA2ox) is the major GA inactivation enzyme [5]. In fact,

increasing numbers of studies have investigated the gibberellin oxidase gene family in various

kinds of plants, such as rice, Arabidopsis, soybean, Grape and Phyllostachys edulis [6–8]. In

addition, the function of several gibberellin-dioxygenases genes has been clarified. For exam-

ple, Shan et al., demonstrated that OsGA2ox5 was involved in plant growth, the root gravity

response and salt stress [9]. Gibberellin 20-oxidase promoted initiation and elongation of cot-

ton fibers by regulating gibberellin synthesis [10] while Gibberellin 20-Oxidase dictated the

flowering-runnering decision in Diploid Strawberry [11]. And overexpression of jatropha gib-

berellin 2-oxidase 6 (jcga2ox6) induced dwarfism and smaller leaves, flowers and fruits in Ara-

bidopsis and Jatropha [12].

Maize is one of the most important cereal crops worldwide. GA has been showed play

essential roles in response to environment stress during the development of maize. Yang et al.,

demonstrated that GA could improve the resistance of tebuconazole-coated maize seeds to

chilling stress by microencapsulation [13]. Hu et al., found that GA promote brassinosteroids

action and both increase heterosis for plant height [14] and Chen et al., considered that

dwarfish and yield-effective GM maize could be developed through passivation of bioactive

gibberellin [15]. Recently, Zhang and Wang demonstrated that GA signaling play important

roles in response to phosphate deficiency and nitrogen uptake, respectively [16, 17]. In addi-

tion, increasing numbers of studies have demonstrated that numbers of genes involved in GA

signaling which contribute to the development and the production of maize. For example.

Wang et al., (2013) provided physiological and transcriptomic evidence that gibberellin bio-

synthetic deficiency was responsible for maize dominant dwarf11 (d11) mutant phenotype

and they found that the expression of ent-kaurenoic acid oxidase (KAO), GA20ox and GA2ox

are up-regulated in D11 [18]. Recently, some GA-responsive transcripts which encoded the

components of GA pathway were showed differential expressed in wild type and D11 in

response to gibberellin stimulation, including CPS, KS, and KO enzymes for GA biosynthesis,

GA2ox enzymes for GA degradation, DELLA repressors and GID1 receptor for GA signaling

[19]. Muylle et al., demonstrated that overexpression of GA20-OXIDASE1 impacts plant

height, biomass allocation and saccharification efficiency in maize [20].

Taken together, these results demonstrated that the biosynthesis and deactivation of gibber-

ellin-dioxygenases genes played essential roles in maize involved in GA induced growth and

development. However, there is few systematic and complete investigation on gibberellin-

dioxygenases genes family in maize. Therefore, in present study, we aimed to investigate the

characteristics of the biosynthesis and deactivation of gibberellin-dioxygenases gene family

and identify the key genes in response to GA in maize.
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Materials and methods

Plant materials and GA treatments

Seeds of the maize (Zea mays L.) are disinfected with 2% sodium hypochlorite (NaClO) or

70% ethanol and then rinsed with distilled water three times. And the seeds then were grown

in a greenhouse at 28˚C/23˚C(day/night) with a 16-h light/8-h dark photoperiod. For gibberel-

lin (GA) treatment, seedlings were treated with 150mg/L GA with spraying to the leaves at two

leaves and one heart period. During the period of GA treatment, the seedlings were watered

every day, and control seedlings were maintained under non-stress conditions. After treatment

for 6, 12, 24, 48, 72 h, the samples were collected and immediately frozen in liquid nitrogen

and stored at -80˚C for RNA isolation. The seedlings without GA treatment at 0 h act as con-

trol. There were three biological replicates for each experiment.

Identification of gibberellin-dioxygenases genes in maize

The Hidden Markov Model (HMM) profile of gibberellin-dioxygenases gene (accession num-

ber PF03171.20) was downloaded from the Pfam database (http://pfam.xfam.org/). All gibber-

ellin-dioxygenases genes were obtained by screening protein sequences of maize using

HMMER 3.0 software (http://hmmer.janelia.org/) and blastp (National Center for Biotechnol-

ogy Information (NCBI) Basic Local Alignment Search Tool, e-value< = 0.001). The putative

gibberellin-dioxygenases genes were checked by the NCBI Conserved domain database (CDD)

and Simple Modular Architecture Research Tool (SMART) online. The gibberellin-dioxy-

genases genes from Arabidopsis and rice were download from TAIR (Arabidopsis Information

Resource, https://www.arabidopsis.org/) and Rice Genome Annotation Project Database

(http://rice.plantbiology.msu.edu/ respectively).

Characteristics of gibberellin-dioxygenases genes in maize

Both genome and coding sequences of gibberellin-dioxygenases genes were downloaded from

the whole genome of maize (B73-REFERENCE-GRAMENE-4.0) database (https://alpha.

maizegdb.org/). For gene structure analysis, genomic and CDS sequences were used for draw-

ing gene structure schematic diagrams with the Gene Structure Display Server from the Center

for Bioinformatics at Peking University (http://gsds.cbi.pku.edu.cn/index.php). Isoelectric

point (PI) and Molecular weight (MW) of the gibberellin-dioxygenases proteins were analyzed

by EXPASY website tool (https://web.expasy.org/compute_pi/). The map of the chromosome

location with genes was constructed through the online software MapGene2Chrom web v2.

Species-wide gene replication events was performed by using MCScanX.

Conserved motif distributions and phylogenetic analysis

Conserved motifs for each gibberellin-dioxygenases amino acid sequence were analyzed by

Multiple Em for Motif Elicitation online software (MEME, http://meme-suite.org/tools/

meme). Amino acid sequences of gibberellin-dioxygenases genes were used to build the phylo-

genetic tree. Prottest was firstly use to predict the best evolution model and JTT+G+I+F as the

best evolution model to build the evolution tree using RAxML 1000 bootstrap and the phyloge-

netic tree visualization is done using Figtree software.

Tissue specific and GA induced expression analysis in maize

RNA-Seq datasets for tissue and GA treatment were downloaded from the NCBI sequence

read archive (SRA) database (PRJNA314400 and PRJNA421076, respectively) [19, 21], then

used to analyze the expression profiles of the identified gibberellin-dioxygenases genes. A total
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of 23 tissues spanning vegetative and reproductive stages of maize development, as well as GA

treatments were used to identify tissue-specific or GA responsive ones. Trimmomatic was

used to remove the sequencing adapters and low-quality reads; Clean reads were aligned to the

reference genome by Hisat2 and Htseq was used to calculate the counts of the reads that

aligned to the genome. And TPM was used to homogenize the gene expression data. After the

expression data of tissue expression in maize is transformed by zscore, it is displayed on the

iTOL online tool together with the motif information; The differential expressed gene analzed

by using DESeq2.

Quantitative reverse transcription polymerase chain reaction (qRT-PCR)

Total RNA was extracted from tissues by using RNAprep pure Plant Kit (DP432, TIANGEN).

2 ug RNA was used to synthesize cDNA using PrimeScript™ RT reagent Kit with gDNA Eraser

(RR047A, Takara, Japan) according to the manufacturer instructions. qRT-PCR was per-

formed using ABI 7500 instrument (ABI7500, ABI, Foster City, CA, USA) with Geneseed1

qPCR SYBR1 Green Master Mix (Geneseed) with 20 μL reaction mixture of volume. The

reaction volume consists of 10 μL SYBR1 Green Master Mix, 0.5 μL of each primer (10 μM),

2 μL of the cDNA template, and 8 μL of RNase free H2O. Thermal cycling parameters for the

amplification were as follows: 95˚C, 5 min, followed by 40 cycles at 95˚C,10 s and 60˚C, 34 s.

The expression level of gibberellin-dioxygenases genes were calculated by 2-44Ct methods.

Actin act as internal reference. Primers used in the present study were synthesized by BGI and

the detailed information was listed in S1 Table.

Statistical analysis

All the data from more than three biological repeats was analyzed using the SPSS 21.0 (SPSS,

Inc., Chicago, IL, USA) software. Quantitative data was presented as mean ± SD. The signifi-

cance of differences between normal group and GA treatment group were assessed by the

paired t test. Significant differences were finally defined as P< 0.05.

Results

Identification of gibberellin-dioxygenases genes in maize

Based on the genome and transcriptome databases, candidate gibberellin-dioxygenases genes

were explored through searching against genome of maize using HMMSearch (PF03171.20)

and BLASTP (e-value < = 0.001) methods. Totally, 38 candidate gibberellin-dioxygenases

were obtained in maize. After removing redundant sequences and confirming the presence of

gibberellin-dioxygenases domains by MEME, 27 Gibberellin-dioxygenases genes were finally

retained and used for further analysis, including 13 GA2ox1 genes (ZmGA2ox1-13), 11

GA20ox genes (ZmGA20ox1-11) and 3 GA3ox (ZmGA3ox1-3) genes, respectively. Further

analysis showed that these gibberellin-dioxygenases genes varied from 903 (ZmGA20ox4) to

1392 (ZmGA20ox10) nucleic acid in length (Table 1) and the exon numbers were 0 or 3 (Fig

1). Their molecular weight ranged from 32.3 kDa (ZmGA20ox4) to 50.7 kDa (ZmGA20ox10)

and the PI ranged from 5.1 (ZmGA2ox5) to 8.91 (ZmGA2ox9), suggesting that 37 Gibberellin-

dioxygenases might play different roles involved in different processes in maize (Table 1).

Chromosome distribution of gibberellin-dioxygenases genes in maize

Generally, genes often undergo replication events during evolution. In order to know whether

gibberellin-dioxygenases genes also experienced gene replication events, the chromosome dis-

tribution of 27 gibberellin-dioxygenases genes were analyzed. The results showed that these
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genes were distributed in 10 chromosomes, except for chromosome 6. And chromosome 6

contained the most gibberellin-dioxygenases genes (6 genes). Further analysis showed that the

gibberellin-dioxygenases genes only occurred fragment duplication while there were no tan-

dem duplication events observed (Fig 2).

Phylogenetic analysis of gibberellin-dioxygenases genes in maize

To investigate the phylogenetic relationships of the gibberellin-dioxygenases gene family in

maize, 27 Gibberellin-dioxygenases genes in maize, together with 16 Arabidopsis and 22 rice

Table 1. Characteristic of gibberellin-dioxygenases genes in maize.

geneName Gene Transcript Chrom Start End Strand Length of CDS Length of peptide PI MW

ZmGA2ox1 Zm00001d002999 Zm00001d002999_T001 2 29175293 29178113 + 1089 362 6.66 38914.2

ZmGA2ox1 Zm00001d002999 Zm00001d002999_T002 2 29175294 29176187 + 420 139 8.77 14767.8

ZmGA2ox2 Zm00001d039394 Zm00001d039394_T001 3 3274307 3276532 + 996 331 5.83 35103.8

ZmGA2ox3 Zm00001d040737 Zm00001d040737_T001 3 60952847 60960982 - 1050 349 8.54 36939

ZmGA2ox4 Zm00001d043411 Zm00001d043411_T001 3 199019233 199021284 - 996 331 8.3 35497.3

ZmGA2ox5 Zm00001d017294 Zm00001d017294_T001 5 192007580 192011428 - 1086 361 5.1 39407.4

ZmGA2ox5 Zm00001d017294 Zm00001d017294_T002 5 192009900 192011331 - 579 192 4.43 20599.7

ZmGA2ox6 Zm00001d035994 Zm00001d035994_T001 6 65164556 65165566 - 1011 336 6.13 35937.5

ZmGA2ox7 Zm00001d037565 Zm00001d037565_T001 6 129802297 129807428 - 618 205 6.23 22653.8

ZmGA2ox7 Zm00001d037565 Zm00001d037565_T002 6 129802305 129807398 - 1101 366 8.83 39675.8

ZmGA2ox7 Zm00001d037565 Zm00001d037565_T003 6 129802324 129807396 - 618 205 6.23 22653.8

ZmGA2ox8 Zm00001d037724 Zm00001d037724_T001 6 135240118 135243717 + 453 150 11.5 15765.7

ZmGA2ox8 Zm00001d037724 Zm00001d037724_T002 6 135240119 135243717 + 1002 333 8.22 35995

ZmGA2ox8 Zm00001d037724 Zm00001d037724_T003 6 135242721 135243667 + 213 70 10.8 8108.28

ZmGA2ox9 Zm00001d038695 Zm00001d038695_T001 6 162656616 162658442 + 1023 340 8.91 36029.1

ZmGA2ox10 Zm00001d038996 Zm00001d038996_T001 6 168446326 168448293 - 1122 373 8.8 39549.3

ZmGA2ox11 Zm00001d008909 Zm00001d008909_T001 8 24852743 24853978 - 210 69 5.39 7392.33

ZmGA2ox11 Zm00001d008909 Zm00001d008909_T002 8 24852747 24855080 - 1011 336 6.55 35338.2

ZmGA2ox12 Zm00001d012712 Zm00001d012712_T001 8 179086672 179088998 - 1017 338 5.48 35965.7

ZmGA2ox12 Zm00001d012712 Zm00001d012712_T002 8 179086908 179088998 - 1017 338 5.48 35965.7

ZmGA2ox13 Zm00001d024175 Zm00001d024175_T001 10 53027195 53031460 - 1116 371 7.79 39987

ZmGA20ox1 Zm00001d031926 Zm00001d031926_T001 1 206982602 206985131 - 1323 440 5.91 47147.6

ZmGA20ox2 Zm00001d032223 Zm00001d032223_T001 1 217837369 217838681 - 900 299 5.49 32358.7

ZmGA20ox3 Zm00001d034898 Zm00001d034898_T001 1 305074531 305075830 - 1215 404 6.67 45000.9

ZmGA20ox4 Zm00001d003311 Zm00001d003311_T001 2 39752127 39753847 + 903 300 5.32 32327.7

ZmGA20ox5 Zm00001d007894 Zm00001d007894_T001 2 241897454 241898638 - 1185 394 7.26 43119.8

ZmGA20ox6 Zm00001d042611 Zm00001d042611_T001 3 173559174 173562022 - 1161 386 6.52 42510.3

ZmGA20ox7 Zm00001d049926 Zm00001d049926_T001 4 53429242 53431331 - 1212 403 6 43718.8

ZmGA20ox8 Zm00001d052999 Zm00001d052999_T001 4 208285887 208290380 + 1332 443 7.94 49491.7

ZmGA20ox9 Zm00001d013725 Zm00001d013725_T001 5 18631981 18633840 + 1050 349 5.5 39166.3

ZmGA20ox9 Zm00001d013725 Zm00001d013725_T002 5 18632040 18633504 + 1116 371 5.51 40583.7

ZmGA20ox9 Zm00001d013725 Zm00001d013725_T003 5 18632512 18633478 + 585 194 6.36 21546.3

ZmGA20ox9 Zm00001d013725 Zm00001d013725_T004 5 18632631 18633478 + 555 184 5.97 21076.6

ZmGA20ox10 Zm00001d012212 Zm00001d012212_T001 8 170115789 170118570 - 1392 463 8.53 50672.7

ZmGA20ox11 Zm00001d026431 Zm00001d026431_T001 10 145720480 145722209 - 963 320 5.23 35373.9

ZmGA3ox1 Zm00001d039634 Zm00001d039634_T001 3 9745656 9748061 + 1149 382 6.56 41510.5

ZmGA3ox2 Zm00001d037627 Zm00001d037627_T001 6 132317697 132319277 + 1125 374 5.56 41160.1

ZmGA3ox3 Zm00001d018617 Zm00001d018617_T001 7 1105512 1106576 + 1065 354 6.18 39155.2

https://doi.org/10.1371/journal.pone.0250349.t001
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gibberellin-dioxygenases genes (S2 Table), were selected for phylogenetic analysis. As Fig 3

shown, the gibberellin-dioxygenases proteins were clustered into seven groups, I to VII. There

are 7, 3, 6, 4, 3, 2 and 2 gibberellin-dioxygenases genes were in I to IV groups, respectively.

And further analysis showed that in every groups contained gibberellin-dioxygenases genes

from Arabidopsis and rice, indicating that the differentiation of gibberellin-dioxygenases

genes in maize is earlier than that of monocotyledonous and dicotyledonous plants.

Conserved motifs analysis of gibberellin-dioxygenases genes in maize

The conserved motifs of gibberellin-dioxygenases protein sequences were further predicted

using the MEME software. A total of 10 conserved motifs were found among all the gibberel-

lin-dioxygenases genes (Fig 4). In consistent with phylogenetic tree of gibberellin-dioxy-

genases genes, the 27 gibberellin-dioxygenases genes were classified to 7 clades. Further

analysis showed that all the gibberellin-dioxygenases proteins were lack of 1-motifs in I-IV

clades. Of them, the proteins from clades I and II is lack of motif 9. The genes form Clade III,

V and ZmGA3ox2 from Clade VII showed the similar motifs constitution which lack of motif

9 and motif 8 except for ZmGA3ox3 and ZmGA2ox6 from Clade III and ZmGA20ox8 from

Clade V. The genes from clade IV and ZmGA3ox1 from Clade VII showed the same motifs

constitution which lack of motif 8 and motif 10. In addition, the ZmGA20ox9 and from

ZmGA20ox9 showed the greatest degree of absence in conserved motifs that lack of 5 and 3

motifs, respectively. The results of the conserved motifs of gibberellin-dioxygenases genes

showed evolutionary divergence in maize.

Fig 1. Gene structure of gibberellin-dioxygenases genes in maize. For gene structure analysis, genomic and CDS sequences were used for drawing gene

structure schematic diagrams with the Gene Structure Display Server from the Center for Bioinformatics at Peking University (http://gsds.cbi.pku.edu.cn/

index.php).

https://doi.org/10.1371/journal.pone.0250349.g001
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Tissue-specific expression profile analysis of gibberellin-dioxygenases

genes in maize

We have demonstrated that the gibberellin-dioxygenases genes showed different conserved

motifs. In order to insight into the putative functions of the gibberellin-dioxygenases genes in

maize, the temporal and spatial expression profile of these identified gibberellin-dioxygenases

genes were analyzed using the public RNA-Seq data (PRJNA314400) from different tissues (S3

Table). As Fig 5 shown, the gibberellin-dioxygenases genes showed different tissue expression

pattern in different tissues and most of the gibberellin-dioxygenases genes showed tissue spe-

cific expression. For example, ZmGA3ox1 mainly expressed in the germinating period of

kemels while ZmGA3ox3 and ZmGA20ox11 were mainly expressed in tip of the roots. In addi-

tion, we also found several gibberellin-dioxygenases were simultaneously expressed in the same

tissue, such as ZmGA20ox5, ZmGA20ox2 and ZmGA2ox5 expressed in silks and ZmGA2ox6,

ZmGA20ox3, ZmGA20ox4 and ZmGA20ox1expressed in the transfer zone of matemal. The

diversity of tissue expression pattern indicated the functional diversity of gibberellin-dioxy-

genases genes which will contribute to different morphogenesis in plant development.

Expression analysis of gibberellin-dioxygenases genes responding to GA

A large number of gibberellin-dioxygenases genes have been demonstrated to regulate num-

bers of processes in response to GA. However, the studies focus on the gibberellin-dioxy-

genases in response to GA in maize is rare. Therefore, transcriptome of maize (PRJNA421076)

in response to GA were used to explore the GA induced expression of gibberellin-dioxygenases

genes in leaf and leaf sheath. As Fig 6 shown, almost all the gibberellin-dioxygenases genes

Fig 2. Chromosome distribution for gibberellin-dioxygenases genes in maize. The chromosome distribution was finished by MapGen2Chrom web V2(http://mg2c.

iask.in/mg2c_v2.0/).

https://doi.org/10.1371/journal.pone.0250349.g002
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were significantly elevated in response to GA except for ZmGA2ox2 and ZmGA20ox10 of 15

gibberellin-dioxygenases genes normally expressed in leaves. 10 and 11 gibberellin-dioxy-

genases genes showed up and down regulated under GA treatment than that under normal

condition in leaf sheath. Further analysis showed that these differential expressed genes were

from different groups, implying that gibberellin-dioxygenases genes might play different roles

in response to GA.

Fig 3. Phylogenetic analysis of gibberellin-dioxygenases proteins among maize (27), Arabidopsis (16) and rice (22). The

phylogenetic tree was constructed based on the full-length protein sequences using Figtree software. Seven subgroups (I-VII) are shown

in various colors.

https://doi.org/10.1371/journal.pone.0250349.g003
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Candidate gibberellin-dioxygenases genes response to GA verified by

qRT-PCR in maize

In order to explore the key GA stress-responsive candidates in maize, 6 Gibberellin-dioxygenasess

based on the RNA-Seq data which showed the most significant upregulated in leaves or leaf sheath

were selected to verified by qRT-PCR analysis at 6h, 12h, 24h, 48h and 72h after GA treatment.

In consistent with the RNA-seq data, compared with control, the expression of ZmGA2ox1,

ZmGA2ox4, ZmGA20ox2 was significantly elevated in 6h and 24h, 6h and 12h, and 24h, respec-

tively (Fig 7). However, the expression of ZmGA20ox7, ZmGA3ox1 and ZmGA3ox3 were sig-

nificantly downregulated at all the times after GA treatment compared with control. This result

may be caused by different varieties used in present. These results demonstrated ZmGA2ox1,

ZmGA2ox4 and ZmGA20ox2 could consider to be key genes which played vital roles in GA stress.

Discussion

Gibberellin (GA) is an essential hormone that is involved in many aspects of plant growth and

development, including seed maturation, stem elongation and response to abiotic stress [22,

23]. Gibberellin-dioxygenases genes are reported to be involved in many critical development

processes [24]. Systematic and integrative analyses of gibberellin-dioxygenases genes have

been performed in Arabidopsis, rice and some other plants [5]. However, the gibberellin-diox-

ygenases genes in response to GA are less studied in maize compared with that in Arabidopsis

and rice. Therefore, we sought to study the characteristics of this gene family in response to

gibberellin by combining bioinformatic and expression analyses.

The details of how GAs is biosynthesis and deactivation have accumulated in the last few

years and are beginning to explain in molecular terms the pleiotropic action of GA in plant

Fig 4. Phylogenetic relationships and conserved motifs compositions of the 27 gibberellin-dioxygenases genes in maize. MEME was used to predict conserved

motifs. Each motif is represented by a different colored box. Amino acid sequences of gibberellin-dioxygenases genes were used to build the phylogenetic tree. Prottest

was firstly use to predict the best evolution model and JTT+G+I+F as the best evolution model to build the evolution tree using RAxML 1000 bootstrap and the

phylogenetic tree visualization is done using Figtree software.

https://doi.org/10.1371/journal.pone.0250349.g004
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development [4, 5]. The 2-oxoglutarate dependent dioxygenases (2-ODDs), including GA20ox

and GA3ox, are the key enzymes in a series of oxidation steps and, GA 2-oxidases GA2ox are

the unique enzymes in the pathways and regulation of GA degradation [2]. And several gibber-

ellin-dioxygenases genes were also investigated in maize, such as ga2ox1 [25]. In present study,

27 Gibberellin-dioxygenases genes were finally retained and used for further analysis, includ-

ing 13 GA2ox1 genes, 11 GA20ox genes and 3 GA3ox (ZmGA3ox1-3) genes which is different

from the numbers of other plants, such as 16 members in Arabidopsis thaliana [26], 21 mem-

bers in rice [27], 24 members in soybean [8]. Gene duplications are considered to be one of the

primary driving forces in the evolution of genomes and genetic systems [28]. Segmental and

tandem duplications have been suggested to represent two of the main causes of gene family

expansion in plants [29]. Further analysis showed that 27 gibberellin-dioxygenases genes were

distributed in 10 chromosomes, except for chromosome 6. And gibberellin-dioxygenases

genes only occurred segmental duplication while there were no tandem duplication events.

These results are consistent with that segmental duplications multiple genes through poly-

ploidy followed by chromosome rearrangements and occurs most frequently in plants because

most plants are diploidized polyploids and retain numerous duplicated chromosomal blocks

within their genomes [30]. Previous investigations of the gibberellin-dioxygenases genes in

various plant species have divided the plant gibberellin-dioxygenases genes into different clas-

ses [5]. In present study, the gibberellin-dioxygenases proteins were clustered into seven

groups, I to VII. And further analysis showed that in every groups contained gibberellin-dioxy-

genases genes from Arabidopsis and rice, indicating that the differentiation of gibberellin-

dioxygenases genes in maize is earlier than that of monocotyledonous and dicotyledonous

plants. Specific motifs in amino acid sequences are vital regions related to function. Previous

analysis found that all the GA20ox, GA3ox and GA2ox sequences belonged to the 2-ODDs

superfamily, which share high homology with the functional domains DIOX_N (PF14226)

and 2OG-FeII_Oxy (PF03171). In consistent with phylogenetic tree of gibberellin-

Fig 5. Tissue-specific expression analysis of gibberellin-dioxygenases genes in maize.

https://doi.org/10.1371/journal.pone.0250349.g005
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dioxygenases genes, the 27 gibberellin-dioxygenases genes were classified to 7 clades. Further

analysis showed that all the gibberellin-dioxygenases proteins were lack of 1–4 motifs in I-IV

clades. The results of the conserved motifs of gibberellin-dioxygenases genes showed evolu-

tionary divergence in maize, suggesting the divergent function in maize development of gib-

berellin-dioxygenases genes.

In order to investigated the divergent function caused by the conserved motifs, the expres-

sion of gibberellin-dioxygenases genes was investigated. The gibberellin-dioxygenases genes

showed different tissue expression pattern in different tissues and most of the gibberellin-diox-

ygenases genes showed tissue specific expression. In fact, the gibberellin-dioxygenases genes

from different plants have been studied [7]. And they played various kinds of functions in dif-

ferent plants, such as response to abiotic stress, increased biomass production and yield and

plant development. For example, activation of gibberellin 2-oxidase 6 decreased active gibber-

ellin levels and created a dominant semi-dwarf phenotype in rice (Oryza sativa L.) [31]. Over-

expression of stga2ox1 gene increases the tolerance to abiotic stress in transgenic potato plants

Fig 6. Differential expressed genes in response to GA.

https://doi.org/10.1371/journal.pone.0250349.g006
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[32]. Developing xylem-preferential expression of PdGA20ox1 improves woody biomass pro-

duction in a hybrid poplar [33] and the QTL GNP1 encodes GA20ox1, which increases grain

number and yield by increasing cytokinin activity in rice panicle meristems [34]. In addition,

several gibberellin-dioxygenases genes have been clarified. Such as maize dominant dwarf11

(d11) mutant phenotype is related to the upregulation of GA20ox and GA2ox which contrib-

ute to gibberellin biosynthetic deficiency [18]. Muylle et al., demonstrated that overexpression

of GA20-OXIDASE1 impacts plant height, biomass allocation and saccharification efficiency

in maize [20]. And expression of ZmGA20ox cDNA alters plant morphology and increases bio-

mass production of switchgrass (Panicum virgatum L.) [35]. Furthermore, it also showed that

the maize transcription factor KNOTTED1 directly regulated the gibberellin catabolism gene

ga2ox1 [25]. Taken together, the diversity of tissue expression pattern indicated the functional

diversity of gibberellin-dioxygenases genes which will contribute to different morphogenesis

in plant development and response to abiotic stress.

Wang et al., found some GA2ox, GA3ox, and GA20ox genes which showed differential

expressed after GA treatment [19, 36]. In present study, almost all the gibberellin-dioxygenases

genes were significantly elevated in response to GA except for ZmGA2ox2 and ZmGA20ox10

Fig 7. The expression of candidate genes that were most significantly expressed in the response to GA using qRT-PCR analysis. A-F, The expression of

ZmGA2ox1, ZmGA2ox4, ZmGA20ox7, ZmGA3ox1 and ZmGA3ox3 after GA treatment, respectively. CK, Control check. ��, p< 0.01, Student’s t-test). Gene

expression profiles were evaluated using the 2-44Ct methods.

https://doi.org/10.1371/journal.pone.0250349.g007
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of 15 gibberellin-dioxygenases genes normally expressed in leaves. And 10 and 11 gibberellin-

dioxygenases genes showed up and down regulated under GA treatment than that under nor-

mal condition in leaf sheath. Further analysis showed that these differential expressed genes

were from different groups, implying that gibberellin-dioxygenases genes might play different

roles in response to GA. Generally, in most plants, GA20ox and GA3ox which contribute to

the production of bioactive GAs are downregulated by applied exogenous GA [37]. In contrast,

the genes encoding GA2ox, which convert active GAs to inactive catabolites, are upregulated

by GA treatment [38]. qRT-PCR results showed that compared with control, the expression of

ZmGA2ox1and ZmGA2ox4 was significantly elevated in 6h and 24h, 6h and 12h, respectively.

However, the expression of ZmGA20ox7, ZmGA3ox1 and ZmGA3ox3 were significantly

downregulated at all the times after GA treatment while ZmGA20ox2 was significantly elevated

at 24h compared with control. Our findings are in accordance with previous studies [39].

These results indicated that ZmGA2ox1, ZmGA2ox4, ZmGA20ox7, ZmGA3ox1 and

ZmGA3ox3 might be potential genes for regulating balance of GAs which play essential roles

in plant development. However, the precise function and mechanism of these candidate genes

need to be further investigation.

Conclusion

Our results provide a more comprehensive understanding of gibberellin-dioxygenases in

maize, including phylogenetic analysis, gene structure and conserved motif characteristics,

gene duplication and tissue expression. Totally, 27 Gibberellin-dioxygenases genes were iden-

tified which classified into seven subfamilies (I-VII) based on phylogenetic analysis, gene

structure and conserved motif characteristics. And gibberellin-dioxygenases genes only

occurred segmental duplication that occurs most frequently in plants. Furthermore, the diver-

sity of tissue expression pattern indicated the functional diversity of gibberellin-dioxygenases

genes which will contribute to different morphogenesis in plant development. Moreover,

ZmGA2ox1, ZmGA2ox4, ZmGA20ox7, ZmGA3ox1 and ZmGA3ox3 were considered to be

potential genes for regulating balance of GAs which play essential roles in plant development

though transcriptome data and qRT-PCR. Our findings provided a basis for conducting in-

depth mechanistic studies on the in distinct biological characteristics and adaptability in

response to GA for gibberellin-dioxygenases genes in maize.
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