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The most effective way to combat B-thalassemias is to prevent the birth of children with thalassemia
major. Therefore, a cost-effective screening method is essential to identify B-thalassemia traits (BTT)
and differentiate normal individuals from carriers. We considered five hematological parameters to for-
mulate two separate scoring mechanisms, one for BTT detection, and another for joint determination of
hemoglobin E (HbE) trait and BTT by employing decision trees, Naive Bayes classifier, and Artificial neural
network frameworks on data collected from the Postgraduate Institute of Medical Education and
Research, Chandigarh, India. We validated both the scores on two different data sets and found 100% sen-
sitivity of both the scores with their respective threshold values. The results revealed the specificity of the
screening scores to be 79.25% and 91.74% for BTT and 58.62% and 78.03% for the joint score of HbE and
BTT, respectively. A lower Youden’s index was measured for the two scores compared to some existing
indices. Therefore, the proposed scores can obviate a large portion of the population from expensive
high-performance liquid chromatography (HPLC) analysis during the screening of BTT, and joint determi-
nation of BTT and HbE, respectively, thereby saving significant resources and cost currently being utilized
for screening purpose.
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Introduction

Hemoglobinopathies are a group of inherited hemoglobin (Hb)
disorders with abnormal production or structure of the globin
molecule due to mutations of globin genes. According to the World
Health Organization (WHO) and the thalassemia International Fed-
eration, every year over 330,000 babies are added worldwide with
Hb disorders. WHO has reported that hemoglobinopathies as a
growing health problem in most of the countries [1,2]. The approx-
imate rate of heterozygosity is 13% in Africa, 4% in Asia, and 2% in
the United States [2]. In India alone, the estimated number of per-
sons with hemoglobinopathies is 25 million [3]. Although most of
the inherited hemoglobin disorders originated from Southeast
Asian, Indian, Mediterranean, and Middle-Eastern ethnic groups,
currently the entire world is at risk of these disorders due to the
large-scale migration [4-7]. Among the various hemoglobin disor-
ders, symptomatic beta-thalassemia is considered to be the com-
monest autosomal recessive disease worldwide, with 1-5% of the
world population being beta-thalassemia trait’s (BTTs) [8,9].
Patients with hemoglobin E (HbE) traits and BTT interactions have
a significant contribution to morbidity and mortality in India, Ban-
gladesh and Myanmar [10-13]. Though different types of hemoglo-
binopathies are encountered in India, HbE is most frequently found
in the north-eastern regions of India [14,15]. Homozygous
o®-thalassemia causing Hb Bart’s hydrops fetalis, homozygous
beta-thalassemia, and beta-thalassemia/HbE are important ones,
which require attention for prevention and control measures in
South East Asia [16]. However, hydrops fetalis due to homozygous
alpha zero genotypes are rare and not clinically significant in India
[17].

Detection of carriers by screening program is considered to be
the most effective way to control symptomatic Hb disorders. The
objective of screening programs is to detect potential health risks
for themselves or their offspring [18,19]. There is no consensus
on the most suitable method for performing such screening pro-
grams due to social, cultural, and religious stigma [20-22]. It is
important to choose cost-effective and evidence-based approaches
for the screening of hemoglobinopathies [23]. In India, the average
estimated cost of preventing the birth of 10,000 patients every year
by the screening of antenatal women is approximately $90 million.
In contrast, the cost of treating these 10,000 patients over an esti-
mated lifespan of 40 years is $975 million and the annual esti-
mated beta-thalassemia major management cost per patient is
$2400-3500 [24]. Thus, the cost of prevention is only one-tenth
of the treatment costs [25]. Sinha et al [26] predicted that by
2026, the estimated amount of annual blood required for the treat-
ment of Hb disorders in India would increase to 9.24 million units,
together with an 86% increase in budgetary requirements which
would then account for over 19% of the current National Health
Budget, which is alarming. According to Colah and Gorakshakar
[27]; Khera et al [28], most initial screening are based on red cell
indices, and then samples are subjected to the relatively expensive
high-performance liquid chromatography (HPLC) technique [29].
However, the similarity of red cell indices between beta tha-
lassemia trait and iron deficiency can confuse the screening due
to low mean corpuscular volume (MCV) and mean corpuscular
hemoglobin (MCH) [30]. If the thalassemia screening test is per-
formed for all the individuals having low MCV and MCH, it will
cause an over-utilization of expensive HPLC mechanism and will
add to the burden of health expenditure.

Nowadays, predictive data mining is extensively used to dis-
cover patterns of clinical observation from the perspective of med-
ical diagnosis [31,32]. The researchers successfully employed
various techniques such as support vector machine [33], multi-
layer perceptron (MLP) [34,35] radial basis function (RBF) [35],
feed-forward neural network [35], adaptive network-based fuzzy

inference system [36], ANN with wavelet transformation [37],
fuzzy support vector machine [38], Naive Bayes (NB) classifier
[39], etc to analyze a real-life complex problem and proposed sev-
eral frameworks in different contexts [40,41]. On the other hand,
researchers have developed several optimization techniques such
as gradient descent, genetic algorithm [42], dolphin swarm algo-
rithm [43,44], particle swarm optimization techniques [45], Yin-
Yang firefly algorithm [46] to optimize a highly complex data anal-
ysis framework. However, instead of developing a new algorithm,
we focused on some standard techniques to propose a data analyt-
ics framework for BTT and HbE screening in this study. In this
direction, Amendolia et al [47] investigated the feasibility of two
well-known pattern recognition techniques for beta-thalassemia
screening. The authors compared the support vector machine and
K-nearest neighbor with an MLP. Setsirichoket et al. [48], applied
the C4.5 decision tree, NB classifier, and MLP method for tha-
lassemia screening. They concluded that the NB classifier and
MLP could efficiently categorize instances. Jahangiri et al. [49] pro-
posed a tree-based method for the differential screening of BTT and
iron deficiency anemia (IDA). The authors used a Chi-squared auto-
matic interaction detector (CHAID); an Exhaustive Chi-squared
automatic interaction detector; Quick, unbiased, efficient statisti-
cal tree (QUEST); and Generalized, unbiased, interaction detection
and estimation (GUIDE) for differentiating diagnosis processes
between BTT and IDA.

In a thalassemia screening program, a heterogeneous set of
samples containing various types of hemoglobinopathies is
expected. Therefore, creating a distinction between IDA and BTT,
which is the main focus in the existing literature, may not fully
serve the cost and resource-saving objective for any government
or private organization, especially in a highly populated country
like India. Moreover, to the best of our knowledge, the scoring
mechanism for the joint determination of BTT and HbE is scanty.
The objective of this study is strictly to identify BTT or HbE, even
if a small fraction of normal individuals is recommended for fur-
ther evaluation of the HPLC. And, if a scoring mechanism can pro-
vide such assurance, then it can serve as a tangible cost-saving tool
for medical practitioners and organizations so that the majority of
the population can be competently excluded from performing
expensive HPLC approach during a carrier screening program. We
used NB classifier, decision trees and employed the simulation of
ANN model to develop two robust scoring mechanisms based on
the combined impact of routine hematological parameters (MCV,
MCH, Red blood cell distribution width (RDW), red blood corpus-
cles (RBC), and Hb), those can be measured economically through
Automated hematology analyzers. It has been documented that
several researchers have used some of these five parameters, such
as Lafferty et al. [50] and Jiang et al. [51] used only MCH, whereas
Old et al. [52] used MCH and MCV, but to make the scoring mech-
anism robust, we considerd five parameters simultaneously. We
compared our results with the existing screening indices such as
Mentzer [53], Srivastava [54], Shine & Lal [55], and found the pro-
posed scoring mechanisms have higher sensitivity and lower pos-
itive prognostic values. Both the scores proposed in this study were
found capable to identify BTT and HbE carriers individually from
non-carrier individuals with 100% sensitivities.

Material and methods
Collection of data and diagnostic criteria

Clinical data were collected from the Department of Hematol-
ogy at the Postgraduate Institute of Medical Education and

Research (PGIMER), Chandigarh, India, where routine diagnosis
for thalassemia and hemoglobinopathies are performed. The data
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set consisted of 1076 samples (387 normal individuals, 104 HbE,
293 BTT, 135 IDA, and 157 IDA with BTT). We named it the test
data set. We performed the entire data analysis and derived two
scoring mechanism separately.

For validation purpose of the proposed scoring scheme, a data
set consisting of 252 samples (174 normal individuals, 58 BTT,
14 HDE, 2 Thalassemia major, 1 Thalassemia intermedia, 1 Sickle
cell trait, 1 Double heterozygote for HbS and BTT, and 1 Double
heterozygote for Hemoglobin D disease (HbD) Punjab and BTT)
was also collected from PGIMER, India. We named it the validation
data set. The laboratory at PGIMER is under the United Kingdom
National External Quality Assessment Service (UK NEQAS) Hema-
tology program.

Besides, a field data set consisting of 240 samples (214 normal
individuals, 10 BTT, and 16 HbE) were collected from carrier screen-
ing program conducted at Ranaghat, West Bengal, India by the Aux-
iliary unit of State Thalassemia Control Programmed (STCP),
Department of Health and Family Welfare, the Government of West
Bengal, India to crosscheck the efficiency of the proposed scores.

The ethical justification was not taken for this data set as only
retrospective evaluation of the automated red cell indices was car-
ried out. No additional samples were taken or tests were per-
formed on the samples.

Basic statistical analysis

Statistical analysis of this study was conducted using SPSS 25
(www.ibm.com). We measured preliminary descriptive statistical
analysis for the test data set to obtain a generalized overview
regarding the relation between the hematological parameters con-
sidered in this study.

Score construction

In this study, we employed an NB classifier [48], Decision trees,
and ANN framework to derive the scoring schemes. A brief descrip-
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tion of each method is presented in the supplementary file. Note
that MATLAB 2019a (www.mathworks.com) was used for further
analysis. The software was availed through Aalborg University,
Denmark. An overview of the computational scheme employed to
generate scores is presented in Fig. 1.

We employed both the MLP and RBF techniques to identify the
average correct percentage of the classified instances. Simultane-
ously, we employed decision tree methods to identify the thresh-
old of five parameters. Finally, the outcomes of ANN frameworks
and Decision tree methods were jointly used to formulate the
equations representing scores for screening. The stepwise explana-
tion for the data analysis scheme is presented in the next section.

Results and discussion

The objective of this study was to rule out non-carrier individ-
uals as much as possible by using a single-cost effective test before
initiating the HPLC test. First, we performed preliminary descrip-
tive statistical analysis for five parameters MCV, MCH, RDW, RBC,
and Hb; and results are presented in the Supplementary file
(Tables S1-S5). Besides, normal ranges of values for five hemato-
logical parameters are also presented in the Supplementary file
(Table S6). It was observed from descriptive statistical analysis that
the mean and median values of Hb, MCV and MCH were higher for
the normal individuals compared to BTT and HbE traits. However,
the reverse trend was observed for RDW and RBC.

For precise identification of parameters responsible for the
identification of BTT and HbE carriers, C4.5 and NB classifiers were
employed. Note that IDA samples are considered as normal indi-
vidual during the process so that the score can be applied in prac-
tice for BTT screening purposes in a heterogeneous environment.
We separated the data sets into two groups. The first group was
used to obtain the significance of the critical parameters account-
able for BTT only, whereas the second group was used for BTT and
HDbE traits, jointly. The results for C4.5 and NB classifiers are pre-
sented in Table 1 below.

Values of five hematological parameters for

all samples

A

Divide the entire data set randomly into
6:2:2 as training, test, and validation set

}

A 4

Apply decision tree algorithm to

find approximate lower limit for

MCYV, MCH, Hb and upper limit
for RBC,RDW

Apply MLP Apply RBF
N | |
’ Calculate: Calculate:

(i) Average correct percent

(i) Mean and 95% confidence
limit of mean for coefficient
of five variables

(i) Average correct percent
(i) Mean and 95% confidence

limit of mean for coefficient
of five variables

L ,

Number of

Standard deviation

Campere average correct percent to
select results from MLP or RBF.
Normalized the mean coefficient

Yes

< 0.01

trails >100
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?

for scoring equation
A

v
Score and corresponding threshold

Fig. 1. Data analysis scheme used for developing scores.
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Table 1
Correctly classified instances and error details for the C4.5 and NB classifier.
Scenarios Classifier Correctly classified Kappa MAE RMSE RAE (%) RRSE (%) Precision of
instances (%) statistics NB Classifier
BTT test data set C45 95.27 0.90 0.06 0.21 12.21 41.71
(387 Normal + 293 BTT + 157 IDA & BTT + 135 IDA) NB 93.83 0.87 0.07 0.22 14.48 43.60 RDW-0.17
MCV-0.16
MCH-0.15
HDE and BTT test data set Cc45 90.09 0.61 0.13 0.30 47.54 80.60
(387 normal NB 85.95 0.40 0.18 0.30 66.09 82.11 MCV-0.19
+104 HbE + 293 BTT + 157 IDA & BTT + 135 IDA) RDW-0.18
MCH-0.15

From Table 1, the following results were obtained:

e MCH, MCV, and RDW appeared to be indicative parameters in
C4.5 and NB classifiers

o A higher Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), Root Relative Squared Error (RRSE) and lower value of
Kappa Statistics were measured for joint HbE and BTT test data
set compared to BTT test data set.

Although the NB classifier and C4.5 algorithm are extensively
used to analyze clinical data [33], it was however observed, that
correctly classified instances were less and RRSE were too high
when it was applied for the joint determination of BTT and HbE
traits due to the heterogeneous nature of data set. Therefore,
we executed both the MLP and RBF techniques which are more
robust. In both methods, it was necessary to divide the data set
randomly into three sub sets, namely training, test, and holdout
sets. The training data were used to find the weights and build
the ANN model. The test data set was used to find errors and pre-
vent overtraining. The holdout/validation data were used for the
validation of the outcomes. Consequently, the rule of arbitrary
division created a significant impact on the calculation of normal-
ized importance for each parameter. To scale down this effect, we
executed the simulation process 100 times to measure the aver-
age values of normalized importance for each parameter. During
the simulation experiment, we observed that the average values
of the normalized importance percentage for each parameter
were nearly converged with the increasing number of iterations.
Based on the data analysis scheme presented in Fig. 1, the step-
wise details of scoring mechanism developed for the joint deter-
mination of BTT and HbE, we named it SCS_HbE &BTT, as pre-
sented below:

Step 1: We applied MLP and RBF on the test data set by dividing
it randomly into 6:2:2, where five hematological parameters are
considered as an independent variable to build ANN model. After
100 iterations the results for a mean of coefficients of relative
importance of five hematological parameters are obtained as fol-
lows in Table 2:

The results demonstrate the followings:

e The average accuracy of MLP and RBF methodologies was rea-
sonably high compare to the NB classifier and C4.5 algorithm

e MCV and MCH are the most important parameters among the
five

Table 2 demonstrates that the average correct percent, in MLP is
higher compared to RBF. Consequently, the normalized importance
of MLP was used in benchmark scoring for SCS_HbE&BTT. Note that
the impact of each independent variable can be evaluated in an
ANN model by relative importance factors. Therefore, MCV is a
major determinant in the perspective of model predictive power
compared to the other four.

Table 2
Mean of coefficients of relative importance factors of five hematological parameters.
Hematological Parameters SCS_HbE&BTT
score
RBF MLP
Hb 0.4224 0.6222
RDW 0.2351 0.5351
MCH 0.6852 0.5459
MCV 09103 0.9103
RBC 0.5077 0.5077
Average correct percentage of prediction = (correct 93.76 95.24

percent of the training set, test set, and holdout set)/3

Step 1.1: Determine the approximate value of the threshold to
identify the cut-off value for each parameter through decision tree
analysis. Note that we focused on the classification to find some
pure nodes which are not necessarily to be the immediate leaf
and used extensive pruning to identify all the cut-off values. Then,
the concept of supremum and infimum values were used to set
joint cut-off values that were integrated with normalized impor-
tance obtained from MLP. For example, it is found that the influ-
ence MCV, MCH and Hb are increasing whereas RDW and RBC
are decreasing. Therefore, to determine the threshold cut-off value,
the infimum of the first three parameters and supremum of the last
two are used to find the threshold for each score. This strict substi-
tution can ensure that all traits are included even if some addi-
tional normal individuals are also included in the process for
separation.

Step 2: Calculate mean and 95% confidence limit of the mean
(mean * 1.96 x -Standard deviation  for the relative importance coeffi-

\/number of sample

cient of each parameter. We use the threshold -Standard deviation

y/number of sample

minimize errors. The upper and lower real limits of the class inter-
vals can be obtained from Table 3.

Note that in most of the existing studies, researchers focused to
determine the confidence interval for screening purposes [56].
However, from the perspective of the implementation issue,
instead of the interval, it may be easier for the user as well as from
the perspective of devise management to use the exact value of the
thresholds.

Step 3: By normalizing the coefficient of relative importance
factors, we formulate the equation for each score and obtain
threshold by substituting the cut-off values from decision tree
analysis.

To develop a scoring mechanism for the joint determination of
BTT and HbE traits for improving the effectiveness of the screening
program, we developed the SCS_HbE&BTT score. Based on the nor-
malized importance of MLP, the following scoring mechanism is
proposed:

SCS_HBE&BTT = 0.2916MCV + 0.1749MCH — 0.1626RBC
—0.1714RDW + 0.1994Hb (1)
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Table 3
Mean, S.E., median, and 95% confidence level (CL) of the coefficient of five parameters.
Hb RDW MCH MCV RBC
Mean 0.6222 0.5351 0.5459 0.9103 0.5077
Standard Error 0.0457 0.0345 0.0388 0.0255 0.0334
Median 0.7340 0.4999 0.5358 1 0.5249
CL (95.0%) 0.0915 0.0692 0.0776 0.0511 0.0669

From the decision tree analysis, the combined cut-off values
were obtained as Hb < 119, RBC > 3.78, MCH < 27.7,
MCV < 85.4, and RDW > 12.75. These cut-off values are used in
Eq. (1) to obtain the threshold value which is 29.323. Therefore,
if the score for a particular sample is greater than 29.323, then that
sample can be excluded from further HPLC test.

The SCS_HbE&BTT score was applied to two validation sets. 72
samples out of 174 normal individuals were recommended for fur-
ther HPLC test, the false positive rate for SCS_HbE&BTT score was
41.37%. In the second field data set, 47 samples out of 214 normal
samples are necessary to recommend for further HPLC test, i.e. the
false positive rate is only 21.96%. Most importantly, the score can
perfectly determine all the carriers of HbE and BTT for both the
data sets.

Similarly, to determine cut-off values precisely for BTT carrier
detection, we employed all five types of decision tree methods
and drew decision trees for all possible consequences by consider-
ing 387 normal, 293 BTT, 157 IDA with BTT and 135 IDA samples.
From the analysis of those trees, the combined cut-off values were
obtained as Hb< 11.7, RBC > 4.34, MCH < 25.15, MCV < 78.75, and
RDW > 12.25. Note that the cut-off values reported from decision
tree analysis in the existing literature from the perspective of BTT
screening are summarized in Table 4.

One can observe that five parameters were not simultaneously
measured and prioritized in the perspective of BTT screening, and
cut-off values identified in the present study are similar to some of
the previous studies mentioned in Table 4. Therefore, based on the
normalized importance of MLP, the following scoring mechanism
is proposed for BTT screening:

SCS_BTT = 0.2815MCV + 0.2015MCH — 0.2641RBC
— 0.1693RDW + 0.0835Hb 2)

We applied the SCS_BTT score on validation data sets. During
the validation process, we considered 14 HbE samples as normal
samples because SCS_BTT is developed to detect BTT only. There-
fore, we had a total of 188 normal samples and the following
was found:

o No need for further HPLC if the score of a subject is greater than
24.993

e 39 samples out of 188 normal samples are necessary to recom-
mend for further HPLC tests, i.e. the false positive rate is 20.74%.

e Most importantly, the score can predict all the BTTs, i.e., all the
subjects with BTT have a score below 24.993.

e 10 samples out of 14 HbE samples were also recommended for
further HPLC tests, although we consider all these 14 samples as
normal samples.

Table 4
Cut-off values for hematological parameters in some existing literature.

The SCS_BTT was also validated on the field data set also. Sim-
ilarly to the first validation data set 16 HbE samples were consid-
ered as normal samples and we have 230 normal samples and the
followings were found:

e 19 samples out of 230 normal individuals are necessary to rec-
ommend for further HPLC tests, i.e. the false positive rate is
8.26%.

e The score can detect all the samples with BTT because all the
BTT samples were having a score of less than 24.993.

e 11 samples out of 16 HbE samples were also recommended for
further HPLC tests, although we consider all these 16 samples as
normal samples.

To validate the scalability of the above two scoring mecha-
nisms, we compared our results with some commonly practiced
indexing mechanisms which are given in Table 5.

Note that, sensitivity (SENS) = 2 specificity (SPEC) = N

TP+FN’ TN+FP?
positive prognostic value (PPV) = P negative prognostic value

7P
(NPV) = I, efficiency (EFF) = 1R

e and Youden’s index
(YI) = SENS + SPEC — 100, where TP, FP, TN, and FN represents
the true positive, false positive, true negative, and false negative,
respectively. These measures are used for comparison purposes.
Table 5 demonstrates that several indices have been proposed for
thalassemia carrier screening, but none has yet been proved to
be satisfactory [8]. Therefore, it was necessary to create a robust
scoring mechanism. In this study, we considered the joint impact
of MCV, MCH, RDW, RBC, and Hb in a single formula. We observed
the normalized importance of each of the five parameters is not
negligible in Egs. (1) and (2). This is the reason for obtaining higher
Youden'’s index value as measured in this study for the SCS_BTT,
compared to other indices mainly developed for BTT screening.
The negative prognostic value indicates that the SCS_BTT is robust
from the perspective of carrier identification without excluding the
BTTs.

The decision-support scheme for the application software is
presented in Fig. 2., which can be easily implemented on different
gadgets like mobile, tablet, phablet, etc. or devices that can imitate
intelligent human behavior for ease of application.

Fig. 2 provides a schematic representation of the decision sup-
port scheme that can be used for screening purposes. Based on
the information of five hematological parameters, a practitioner
can use it for the identification of both the BTT and HbE in a screen-
ing program.

Over the past three decades, many discriminant formulae have
been developed by several researchers, primarily to differentiating
thalassemia carriers from patients with IDA [61,62]. Most of them

Parameters Lafferty et al. [50]  Jiang et al. [51] Old et al. [52] Rathod et al. [57]  Sahli et al. [58] Caoetal.[59] Plengsuree et al. [60]
MCH (picogram) - - <27 <27 <23 <27 <27

MCV (femtoliters) <72 <80 <79 <76.5 <75 <78 <76

RBC (million/microliter) - - - >5 >5 - >5

RDW % - - - >13.6 >14 - >14
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Table 5
Comparative outcomes of proposed scoring mechanisms with existing indices.

Index Formula BTT Sensitivity Specificity PPV NPV Efficiency Youden’s Index
Mentzer [53] “QTCX <13 70.31 96.28 86.54 90.50 89.68 66.59
Srivastava [54] e <3.8 62.50 97.34 88.89 88.40 88.49 59.84
Shine & Lal [55] MCV]ZOXOMCH <1530 95.31 79.79 61.62 98.04 83.73 75.10
Jayabose et al.[61] MCv-RDW <220 64.06 90.96 70.69 88.14 84.13 55.02
Sirdah et al. [62] MCV — RBC — 3Hb <27 64.06 97.34 89.13 88.83 88.89 61.40
Ehsani et al. [63] MCV — 10RBC <15 68.75 96.81 88 90.10 89.68 65.56
SCS_BTT(PGIMER) Eq. (2) <24.99 100 79.25 62.13 100 84.52 79.25
SCS_HbE&BTT(PGIMER) Eq. (1) <29.323 100 58.62 52 100 71.43 58.62
SCS_BTT(STCP) Eq. (2) <24.99 100 91.74 34.48 100 92.08 91.74
SCS_HbE&BTT(STCP) Eq. (1) <29.323 100 78.04 35.62 100 80.42 78.04
Determine
MCH, MCYV,
RDW, RBC, Hb
SCS_BTT score
applied
SCS_BTT
>24.993
v 4
Suspected for BTT Not suspected for BTT
& &

SCS_HbE&BTT score applied

SCS_HbE&BTT score applied

SCS_HbE
&BTT
>29.323

SCS_HbE
&BTT
>29.323
No Yes
Non HbE& non
BTT (Not
suggested for
HPLC)

Fig. 2. Decision support scheme for SUSOKA application.

use various combinations of five hematological parameters, but not
all [64]. Sometimes these formulae fail to validate the results in
some scenarios such as if a sample characterizes thalassemia carri-
ers with concomitant severe IDA. However, initial indications of
thalassemia carrier remain important for the practitioners, mainly
in countries with limited health-care resources [26,48]. Therefore,
the development of a diagnostically useful discriminant formula or
scoring mechanism is a priority research direction. It is always
challenging to bear accumulated expenses for undertaking BTT
screening programs for any organization, especially for govern-
ment health systems in low- and middle-income countries.
Although low values of hematological parameters such as MCV
and MCH are generally considered as an indication of BTTs, one

subsequently needs to perform HPLC for the quantization of
HbA2, HbF and other variants of Hb [65]. At PGIMER, Chandigarh,
India the cut-off of >4% HbA2 is used to be definite BTTs and values
between 3.6 and 3.9% as borderline carriers. The borderline HbA2
cases are advised screening for the partners either after marriage
or as a pre-marital screening. In a case where HbE trait is being
considered on HPLC, Hb electrophoresis at alkaline pH of 8.6 is per-
formed where the HbA2 cosegregate with HbE. In screening pro-
grams, it is envisaged that some additional cases of IDA will also
be picked up for performing HPLC. Refereeing all the subjects with
reduced MCV and/or MCH for performing HPLC may cause an over-
utilization of the costly mechanism and corresponding resources.
Moreover, existing indices fail to differentiate carriers and
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non-carriers perfectly as shown in Table 3. Normalized relative
importance obtained from MLP or RBF techniques demonstrates
that it is difficult to ignore the impact of parameters such as
RDW or Hb. However, most of the indices did not consider the
mutual impact of all these parameters. Table 5 demonstrates a
higher Youden’s Index for both the score, which indicates that
the score can be applicable for initial screening purposes effec-
tively compared to some of the existing indices. Although there
exists a small number of false-positive results, higher sensitivity
for both the scores can lead to satisfactory screening tools.

Conclusion

Hemoglobinopathies are a blood disorder associated with the
production of hemoglobin that carries oxygen to cells throughout
the body. BTT and HbE are two commonly found variants that
may cause abnormal blood clots, pale skin, weakness, enlarged
liver, fatigue, and more serious complications. Routine carrier
screening is extensively used in this regard. In this study, a novel
decision support system was proposed based on the combined
impact of MCV, MCH, RDW, Hb, and RBC. The idea is not to miss,
even we end up studying more cases for HPLC which may turn
out to have a normal HPLC pattern. The false-positive rates of the
proposed scoring mechanisms were found to be 20.74% and
41.37%, respectively for validation data set. Most importantly, the
scores can predict the true positive rate perfectly. Therefore, a large
portion of the population can be excluded at the initial stages of
the carrier screening program, which leads to substantial savings
in health expenditure. The parameters considered for scoring pur-
poses are determined with a blood test at a reasonable expense.
For example, one may solely perform CBC tests at the primary
stage of a thalassemia screening program and effectively use the
proposed scoring indices. Presently, the HPLC test is at least
10-15 times costlier than the CBC test throughout India [66].
Therefore, the proposed scores can be supportive of the govern-
ment organization by saving significant expense on thalassemia
screening programs and reducing the over utilization of resources.

An application software SUSOKA will be developed for screen-
ing purposes after validation of proposed scores for mass utiliza-
tion. The data analysis framework may also be employed for the
identification of disorders such as HbD Punjab trait, HbS trait and
other similar variants [67,68]. For any given method with 100%
sensitivity may be more theoretical, but it happens due to the
impact of supremum and infimum measure considered in the scor-
ing process, but it should be noted that a percentage of normal
individuals are also recommended for HPLC, consequently how to
reduce false-positive rate would be the next challenge. It should
be noted that the normal range of hematological parameters can
change country wise, however, by using the model the threshold
values can be modified. Although the proposed scoring mecha-
nisms provide us an opportunity to differentiate two major vari-
ants of hemoglobinopathies, it needs to be validated with
heterogeneous data set collected from various countries for unifi-
cation and implementation.
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