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Aims. To conduct a genome-wide DNA methylation in individuals with type 2 diabetes, individuals with prediabetes, and control
mixed ancestry individuals from South Africa. Methods. We used peripheral blood to perform genome-wide DNA methylation
analysis in 3 individuals with screen detected diabetes, 3 individuals with prediabetes, and 3 individuals with normoglycaemia
from the Bellville South Community, Cape Town, South Africa, who were age-, gender-, body mass index-, and duration of
residency-matched. Methylated DNA immunoprecipitation (MeDIP) was performed by Arraystar Inc. (Rockville, MD, USA).
Results. Hypermethylated DMRs were 1160 (81.97%) and 124 (43.20%), respectively, in individuals with diabetes and prediabetes
when both were compared to subjects with normoglycaemia. Our data shows that genes related to the immune system, signal
transduction, glucose transport, and pancreas development have altered DNA methylation in subjects with prediabetes and
diabetes. Pathway analysis based on the functional analysis mapping of genes to KEGG pathways suggested that the linoleic acid
metabolism and arachidonic acid metabolism pathways are hypomethylated in prediabetes and diabetes. Conclusions. Our study
suggests that epigenetic changes are likely to be an early process that occurs before the onset of overt diabetes. Detailed analysis of
DMRs that shows gradual methylation differences from control versus prediabetes to prediabetes versus diabetes in a larger sample
size is required to confirm these findings.

1. Introduction

Deoxyribonucleic acid (DNA) methylation is a biochemical
process catalyzed by DNA methyltransferase enzymes to
covalently add a methyl group at the 5 position of cyto-
sine DNA nucleotides, creating 5-methylcytosine in CpG
dinucleotides concentrated in gene promoters [1]. The CpG
dinucleotides in gene promoters are not generallymethylated;

thus methylation at these sites is associated with changes
in gene expression. Hypermethylation represses transcrip-
tion, thereby reducing gene expression, while hypomethy-
lation is associated with transcriptional activation of the
affected genes [2, 3]. DNA methylation is the most char-
acterized of the epigenetic processes, which also include
histonemodification, chromatin remodeling, and noncoding
RNAs. Epigenetics, defined as mechanisms that affect gene
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transcription and/or expression in the absence of alterations
to the DNA sequence, provides a plausible link between
genetic and environmental determinants of health status.
Current studies have shown congruence of epigenetic loci and
gene polymorphisms in diseases [4–7]. In type 2 diabetes,
for example, 19 single nucleotide polymorphisms (SNPs)
associated with the disease introduced or removed potential
sites for DNA methylation [7]. Furthermore, the genetic-
epigenetic-environment link has been demonstrated in a
report that showed an association between the nuclear-
encoded gene, NADH dehydrogenase [ubiquinone] 1 beta
subcomplex subunit 6 (NDUFB6) polymorphism, DNA
methylation, age, and the expression of NDUFB6 in human
skeletal muscle [4].

Estimates from the International Diabetes Federation
(IDF) suggest that the population of people with diabetes
is growing relatively faster in Africa compared to anywhere
else [8]. Emerging evidence suggests that this process is
not entirely accounted for by the traditional drivers of the
diabetes epidemic. In mixed ancestry South Africans, for
instance, who are largely overweight or obese and at high risk
of diabetes [9], the distribution of traditional risk factors for
diabetes is not appreciably different between individuals with
diabetes and those without diabetes, while the accelerated
deterioration of glucose tolerance status over time is not
explained by the known powerful determinants of diabetes
occurrence [10]. In this context, the contribution of emerging
risk factors for diabetes including epigenetic changes has
been postulated [11] but remains largely uninvestigated. It,
therefore, became our primary aim to investigate nontradi-
tional context specific diabetes risk factors and pathophys-
iological pathways underlying the excess risk of diabetes in
this population. Herein, we report the South African mixed
ancestry population’s specific differentially methylated sites
and metabolic pathways affected by DNAmethylation in this
population.

2. Subjects

Participants were members of a cohort study conducted in
Ward 009, Cape Town, South Africa. The city of Cape Town
defines Ward 009 as a mixed ancestry township formed in
the late 1950s. According to the 2011 population census, its
population stands at approximately 29,301 with an average
household size of 4.84 individuals.Thepopulation is predom-
inantly ofmixed ancestry or coloured (76%) followed by black
Africans (18.5%) and Caucasian and Asians who make only
1.5%.Most of the residents in this community have lived there
for more than five years, while others have been there for
their entire lives. The socioeconomic condition of the people
is average with 37% of households having a monthly income
of ZAR3, 200 or less.The recruitment of theWard 009 cohort
was initiated in April 2014, from which 3 individuals with
screen detected diabetes, 3 individuals with prediabetes, and
3 individuals with normoglycaemia who were age-, gender-,
body mass index- (BMI-), duration of residency-matched
were selected for the current study. All participants were
females.

3. Materials and Methods

3.1. Ethical Approval of the Study. This investigation is based
on the Bellville South (Ward 009) cohort from Cape Town
that has been approved by the Research Ethics Committees
of the Cape Peninsula University of Technology and Stel-
lenbosch University (resp., NHREC: REC-230 408-014 and
N14/01/003).The study was conducted according to the Code
of Ethics of the World Medical Association (Declaration of
Helsinki). All participants signed written informed consent
after all the procedures had been fully explained in the
language of their choice.

3.2. Study Procedures. All participants received a standard-
ized interview, blood pressure, and anthropometric mea-
surements. Participants with no history of doctor-diagnosed
diabetes mellitus underwent a 75 g oral glucose tolerance
test (OGTT) as recommended by WHO [12]. Further, the
following biochemical parameters were analyzed at an ISO
15189 accredited pathology practice (PathCare, Reference
Laboratory, Cape Town, South Africa): plasma glucose,
serum insulin, serum creatinine, total cholesterol (TC),
high density lipoprotein cholesterol (HDL-c), triglycerides
(TG), low density lipoprotein cholesterol (LDL), C-reactive
protein (CRP), 𝛾-glutamyl transferase (GGT), AST, ALT,
and glycated haemoglobin (HbA1c), certified by National
Glycohemoglobin Standardization Program (NGSP). Full
blood count was also assessed on all participants. In addition,
an EDTA blood sample was collected and stored at −20
degrees for DNA extraction and analysis.

3.3. Genome-Wide DNA Methylation. Genomic DNA was
extracted from peripheral blood using theWizard�Genomic
DNA Purification Kit (Promega,Madison,WI, USA) accord-
ing to the manufacturer’s instructions. Briefly, white blood
cells were lysed; thereafter, cellular proteins were removed
by salt precipitation, and high molecular weight genomic
DNA left in solution was then concentrated and desalted
by isopropanol precipitation. At least 2 𝜇g of DNA (con-
centrations ranging between 70 ng/𝜇L and 130 ng/𝜇L) with
A260/A280 and A260/A230 ratios ≥ 1.8 was shipped frozen
on dry ice, as instructed by Arraystar Inc. (Rockville, MD,
USA). Methylated DNA immunoprecipitation (MeDIP) was
performed by Arraystar Inc. (Rockville, MD, USA) according
to Down et al. [13] with minor modifications as follows.

3.4. Sequencing Library Preparation. For MeDIP, genomic
DNAwas sonicated to ∼200–900 bp with a Bioruptor sonica-
tor (Diagenode,Denville,NJ,USA).Thereafter, 800 ng of son-
icated DNAwas end-repaired, A-tailed, and ligated to single-
end adapters following the standard Illumina genomic DNA
protocol. After agarose size selection to remove unligated
adapters, the adaptor-ligated DNA was used for immunopre-
cipitation using a human monoclonal anti-5-methylcytosine
antibody (Diagenode). For this, DNA was heat-denatured
at 94∘C for 10min, rapidly cooled on ice, and immunopre-
cipitated with 1 𝜇L of primary antibody overnight at 4∘C
with rocking agitation in 400 𝜇L of immunoprecipitation
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buffer (0.5%BSA inPBS). To recover the immunoprecipitated
DNA fragments, 100 𝜇L of protein G magnetic beads (Life
Technologies, Carlsbad, CA, USA) was added and incubated
for additional 2 hours at 4∘C with agitation. After immuno-
precipitation, a total of five immunoprecipitation washes
were performed with ice-cold immunoprecipitation buffer. A
nonspecific human IgG immunoprecipitationwas performed
in parallel to methyl DNA immunoprecipitation as a negative
control. Washed beads were resuspended in TE buffer with
0.25% SDS and 0.25mg/mL proteinase K for 2 hours at 65∘C
and then allowed to cool down to room temperature. MeDIP
and supernatant DNA were purified using Qiagen MinElute
columns and eluted in 16 𝜇L EB (Qiagen, Germantown,
MD, USA). Fourteen cycles of PCR were performed on
5 𝜇L of the immunoprecipitated DNA using the single-end
Illumina PCR primers. The resulting reactions were purified
with Qiagen MinElute columns, after which a final size
selection (300–1,000 bp) was performed by electrophoresis
in 2% agarose. Libraries were quality controlled with the
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA). An aliquot of each library was diluted in EB
(Qiagen) to 5 ng/𝜇L and 1 𝜇L was used in real-time PCR
reactions to confirm the enrichment for methylated region.
The enrichment of DNA immunoprecipitation was analyzed
by qPCR using specific methylated sites at H19 locus and
nonmethylated sites at GAPDH.

3.5. Sequencing. The library was denatured with 0.1MNaOH
to generate single-stranded DNAmolecules and loaded onto
channels of the flow cell at 8 pM concentration, amplified in
situ using TruSeq Rapid SR Cluster Kit (Illumina, San Diego,
CA, USA). Sequencing was carried out by running 100 cycles
on Illumina HiSeq 2000 according to the manufacturer’s
instructions. The Agilent 2100 Bioanalyzer was used for
accurate assessment of the quality and concentration of
the sequencing library, while the size and concentration
of each sample were determined after sequencing library
preparation.

3.6. Data Analysis. After the sequencing platform generated
the sequencing images, the stages of image analysis and base
calling were performed using Off-Line Basecaller software
(OLB V1.8). After passing Solexa CHASTITY quality filter,
the clean reads were aligned to the human genome (UCSC
HG19) using BOWTIE software (V2.1.0). MeDIP peaks were
identified by MACS2 and MAnorm identified DMRs. Statis-
tically significant MeDIP-enriched regions (peaks) detected
by MACS2 were identified by comparison to a Poisson
background model, using a q-value threshold of 10−2. The
peaks in samples were annotated by the nearest gene (the
nearest TSS to the canter of peak region) using the newest
UCSC RefSeq database. Peaks were divided into 3 classes on
the basis of their distances to UCSC RefSeq genes:

(1) Promoter peaks: promoters were defined as 2000 bp
upstream and downstream from the transcription
start site (TSS). Peaks whose centers were located
in these promoter regions were defined as promoter
peaks.

(2) Gene body peaks: the gene body region was defined as
+2000 bp downstream of the transcription start site
(TSS) to the transcription termination site (TTS).

(3) Intergenic peaks: intergenic regions were defined as
the other genomic regions not included in the above
2 regions. Peaks whose centers were located in these
intergenic regions were defined as intergenic peaks.
MAnorm was used to calculate differentially methy-
lated regions with statistical significance.

3.7. Solexa CHASTITY Quality Filter. Individual bases gen-
erated from original image files have quality scores, which
reflect the probability whether base calling is correct or
not. The score is calculated by CHASTITY Formula. The
CHASTITY (C) of each base in the short reads is determined
by the intensity of four colours (IA, IC, IG, and IT here), and
the formula means “the ratio of the highest (IC here) of the
four (base type) intensities to the sum of highest two (IC and
IG here).” The CHASTITY (C) should be no less than 0.6 in
the first 25 bases.

3.8. Gene Ontology (GO) Analysis. The Gene Ontology
project provides a controlled vocabulary to describe gene
and gene product attributes in any organism (http://www
.geneontology.org/).The ontology covers three domains: bio-
logical process, cellular component, and molecular function.
Fisher’s exact test was used to find if there was more overlap
between the DE list and the GO annotation list than would
be expected by chance. The 𝑃 value denotes the significance
of GO terms enrichment in the DE genes. The lower the 𝑃
value, the more significant the GOTerm; a 𝑃 value ≤ 0.05 was
considered significant.

3.9. Pathway Analysis. Pathway analysis is a functional anal-
ysis mapping of genes to KEGG pathways.The𝑃 value (EASE
score, Fisher’sP value, or hypergeometricP value) denotes the
significance of the pathway correlated to the conditions. The
lower the 𝑃 value is, the more significant the pathway is; a 𝑃
value ≤ 0.05 was considered significant.

4. Results

4.1. General Characteristics of Participants. The general char-
acteristics of the nine female participants are presented
in Table 1 for each participant and further summarized
across subgroups defined by the glucose tolerance status.
All participants had reported no menstrual periods for 6
months or more prior to taking part in this study. As
expected from the study design, age and BMI were mostly
similar across subgroups, with all participants being obese.
Hip circumferences were mostly similar across subgroups,
while waist circumference and waist-to-hip ratio decreased
with improved glucose tolerance. Blood pressure levels were
lowest in normotolerant subjects and highest in those with
prediabetes. The lipid profile and indicators of glycaemia
improved with improving glucose tolerance status, while
fasting insulin levels decreased accordingly (Table 1).
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Table 1: Characteristics of all participants.

Diabetes Prediabetes Controls
Case 1 Case 2 Case 3 Mean Case 1 Case 2 Case 3 Mean Case 1 Case 2 Case 3 Mean

Age, years 62 52 52 55.3 52 50 55 52.3 62 52 52 55.3
BMI, kg/m2 35.3 39.3 31.2 35.3 32.6 35.2 30.4 32.7 41.3 34.0 31.7 35.6
WaistC, cm 120 103 116 113 104 108 116 109 112 93 89 98
HipC, cm 118 124 113 118 108 119 129 118 127 124 106 119
WHR 1.02 0.83 1.02 0.96 0.96 0.91 0.90 0.93 0.88 0.75 0.84 0.82
SBP, mmHg 153 183 143 160 178 164 163 168 142 127 137 135
DBP, mmHg 78 130 61 90 109 101 78 96 72 75 92 80
S-Creat., 𝜇mol/L 45 75 35 52 69 47 52 56 62 58 50 57
GGT, U/L∗ 18 42 295 118 22 20 12 18 22 20 99 47
ALT, U/L 19 86 61 55 22 16 17 18 12 12 30 18
AST, U/L 24 45 50 40 21 18 18 19 21 16 30 22
Smoking, yes/no Yes Yes Yes Yes No No Yes Yes No
Cotinine, ng/mL∗ 160 >500 76.3 245.4 94 <10 <10 38 94.4 338 <10 147.5
TC, mmol/L 6.0 6.0 8.3 6.8 4.9 4.1 5.5 4.8 3.6 5.2 4.7 4.5
TG, mmol/L 1.49 3.35 2.51 2.45 2.10 1.21 1.04 1.45 1.22 1.23 1.27 1.24
HDL-C, mmol/L 1.09 1.1 1.87 1.35 1.09 1.17 1.42 1.23 1.35 1.08 1.42 1.28
LDL-C, mmol/L 3.9 4.2 5.1 4.4 3.1 2.1 3.5 2.9 1.6 3.4 2.7 2.6
FSI, mIU/L 97.9 68.7 47.7 71.4 77.3 29.9 110.2 72.5 72.8 20.8 30.1 41.2
FSI, mIU/L∗ 20.7 21.2 21.0 5.7 5.5 11.5 7.6 10.4 7.6 5.3 7.8
HbA1c, % 7.2 7.5 6.1 6.9 5.0 6.1 6.4 5.8 5.9 5.6 6.1 5.9
HbA1c, mmol/mol 55.2 58.5 43.2 52.3 31.1 43.2 46.4 40.2 41.0 37.7 43.2 40.6
FBG, mmol/L 9.0 8.1 7.8 8.3 4.7 6.2 6.1 5.7 5.4 2.8 5.8 4.7
2-hour PG, mmol/L 16.4 13.8 5.9 12.0 7.8 10.3 9.4 9.2 7.4 5.0 6.1 6.2
U-CRP, mg/L 3.2 10.4 5.3 6.3 5.2 15.6 21.6 14.1 23.4 8.2 5.9 12.5
RBC, ×1012 /L 4.56 5.07 4.37 4.67 4.86 4.42 4.88 4.72 3.75 4.42 4.82 4.33
Platelet count, ×109/L 284 217 369 290 238 286 305 276 281 152 256 230
WCC, ×109/L 8.6 10.0 7.8 8.8 7.1 8.0 8.9 8.0 6.0 8.3 4.6 6.3
Hb, g/dL 13.0 15.1 12.6 13.6 13.6 13.2 13.5 13.4 6.1 14.4 13.6 11.4
Haematocrit, L/L 0.39 0.46 0.37 0.41 0.42 0.39 0.41 0.41 0.22 0.42 0.41 0.35
MCV, fL 85 90 85 87 86 89 83 86 57 95 86 79
MCH, pg 29 30 29 29 28 30 28 29 16 33 28 26
MCHC, g/dL 34 33 34 34 33 34 33 33 29 34 33 32
RDW, % 14.0 15.0 15.2 14.7 12.7 14.1 14.0 13.6 25.3 14.8 15.9 18.7
Neutrophils, ×109/L 5.6 7.2 4.6 5.8 4.5 4.5 5.4 4.8 2.8 5.7 2.9 3.8
Lymphocytes, ×109/L 2.3 2.0 2.4 2.2 2.1 3.0 2.8 2.6 2.3 1.9 1.4 1.9
Monocytes, ×109/L 0.50 0.30 0.40 0.40 0.30 0.30 0.30 0.30 0.72 0.46 0.20 0.46
Eosinophils, ×109/L 0.10 0.40 0.40 0.30 0.20 0.20 0.40 0.27 0.12 0.14 0.10 0.12
Basophils, ×109/L 0.01 0.01 0.10 0.04 0.01 0.01 0.01 0.01 0.06 0.04 0.01 0.04
2-hour PG, after 2-hour plasma glucose; 2-hour SI, after 2-hour serum insulin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; DBP, diastolic
blood pressure; FBG, fasting plasma glucose; FSI, fasting serum insulin; GGT, gamma glutamyl transpeptidase; Hb, haemoglobin; HDL-C, high density
lipoprotein cholesterol; HipC, hip circumference; LDL-C, low density lipoprotein cholesterol; MCH, mean cell haemoglobin; MCHC, mean corpuscular
haemoglobin concentration; MCV, mean cell volume; RBC, red blood cell count; RDW, red cell distribution width; S-Creat., serum creatinine; SBP, systolic
blood pressure; TC, total cholesterol; TG, triglycerides; U-CRP, ultrasensitive C-reactive protein; WaistC, waist circumference; WCC, white cell count; WHR,
waist-to-hip ratio.
∗ refers to using the median instead of mean because, since the data is skewed for those parameters, the mean will give a wrong meaning.

4.2. Differentially Methylated Regions. A total of 450,142
statistically significant MeDIP-enriched regions (peaks) were
identified in all the samples. As expected, the promoter
region [TSS − 2000 bp; TSS + 2000 bp] showed the
least number of peaks, compared to the gene body and

intergenic regions, in all groups. MAnorm was then used to
calculate the statistical significance of differentially methy-
lated regions (DMRs) within gene promoters. Subjects with
diabetes showed the highest number of DMRs and these
are summarized in Figure 1. Generally, more than 80% of
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Total sites = 450142

Controls = 102043 (22.67%) Prediabetics = 88037 (19.56%)Diabetics = 260062 (57.77%) 

GB = 27.94%I = 67.24% P = 4.82%GB = 27.24%I = 69.07% P = 3.69% GB = 28.55%I = 65.88% P = 5.57 %

Hyper DMRs (DM) versus controls =
1160/1415 (81.97%)

Hyper DMRs (DM) versus 
prediabetes = 1099/1321 (83.12%)

Hyper DMRs (pre-DM) versus
controls = 124/287 (43.20%)

Figure 1: MeDIP-enriched regions (peaks) identified in all the samples. Total sites are the sum of the peak numbers for subjects with diabetes,
subjects with prediabetes, and controls and include all the peaks that may be common/redundant across the conditions, as well as the
peaks unique to each condition. Distributions of peaks in intergenic (I), gene body (GB), and promoter (P) regions are shown. Statistically
significant MeDIP-enriched regions (peaks) were detected by MACS2 and identified by comparison to a Poisson background model, using
a q-value threshold of 10−2. MAnorm was used to calculate differentially methylated regions with statistical significance. The differentially
methylated regions located within gene promoters [TSS − 2000 bp; TSS + 2000 bp] are selected and provided. By peak number, there aremore
hypermethylated peaks in individuals with diabetes (82%) than in the control subjects.

DMRs in subjects with diabetes were hypermethylated when
compared to those with prediabetes or normoglycaemia,
while no differences were observed between subjects with
prediabetes or normoglycaemia (Figure 1). Supplementary
Tables 1 to 6 in Supplementary Material available online
at http://dx.doi.org/10.1155/2016/3172093 show the DMRs
in subjects with diabetes, subjects with prediabetes, and
controls. To summarize these data, we grouped the DMRs
according to chromosomal location and this is shown in
Figure 2. Compared to controls and subjects with prediabetes,
hypermethylated DMRs in subjects with diabetes were more
common in chromosomes, 3, 6, 11, 13, and 17, while in
chromosome one, there were more hypomethylated DMRs
(Figure 2). No hypomethylated DMRs were present in chro-
mosome 13 in subjects with diabetes or prediabetes when
compared with each other or when those with prediabetes
were compared to controls (Figure 2).

4.3. Pathway Analysis. We first performed Gene Ontology
(GO) classification to retrieve the biological process, cel-
lular process, and molecular function of the DMRs and
these are presented in Supplementary Tables 2–24, while
Figure 3 shows biological processes in the top 10 enrichment
scores for DMRs in subjects with diabetes or prediabetes.
As shown in Figure 3, these hypermethylated DMRs in
subjects with diabetes or prediabetes were widely associated

with cell surface receptor signaling and inflammatory path-
ways. In addition, glucose transport, WNT signaling, muscle
development, pancreas development genes, and insulin sig-
naling pathway were associated with hypermethylation in
subjects with diabetes or prediabetes (Supplementary Tables
7–12). Although the I-kappaB kinase/NF-kappaB cascade
was associated with hypomethylated DMRs in subjects with
diabetes and hypermethylated DMRs in subjects with predia-
betes, the genes associated with these pathways were different
in each group. For example, in subjects with prediabetes,
the hypermethylated genes were CHUK, TRIM38, PLK2,
TNFRSF19, and ZMYND11, while in subjects with diabetes
they were BCL3, IL23A, F2RL1, S100A12, TNFRSF10B, NEK6,
RNF31, SLC35B2, and IRAK1BP1. Pathway analysis based on
the functional analysis mapping of genes to KEGG pathways
also showed an association with inflammatory pathways
(Table 2). The linoleic acid metabolism and arachidonic acid
metabolism pathways were progressively hypomethylated
from prediabetes to diabetes. On the other hand, the hyper-
trophic cardiomyopathy (HCM) pathway was associated
with hypermethylated DMRs in subjects with diabetes when
compared to either controls or subjects with prediabetes.

5. Discussion

Emerging data supports the role of epigenetic mechanisms in
the development of diabetes; however, to date, genome-wide
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Figure 2: Accumulation of differentially methylated regions (DMRs) in chromosomes. (a) represents DMRs in diabetes versus controls, (b)
represents DMRs in diabetes versus prediabetes, and (c) represents DMRs in prediabetes versus controls.

DNA methylation profiling has not involved subjects with
prediabetes or diabetes from sub-Saharan Africa or Africa in
general. In this preliminary genome-wide DNA methylation
analysis of individuals with prediabetes or diabetes from
South Africa, we provide DMRs data and their biological
pathways that appear to be affected in subjects with diabetes
or prediabetes, as well as those that appear to show a trend
from the prediabetes state to diabetes. For instance, the
linoleic acid metabolism and arachidonic acid metabolism
pathways were associated with hypomethylated DMRs in
subjects with prediabetes versus controls and in those with
diabetes versus those with prediabetes, suggesting that the
hypomethylation of these genes is likely to be an early process
that occurs before the onset of overt diabetes. Our data
also shows that genes related to the immune system, signal
transduction, glucose transport, and pancreas development
are hypermethylated in subjects with prediabetes or diabetes.
When they are investigated further, these DMRs may be
potential biomarkers of disease occurrence/progression and
also could suggest possible targets for the development of new
treatments.

Whole epigenetic profiling in individuals with type 2
diabetes is relatively in its infancy with the first study
reported in 2012. The study was conducted using pancreatic
islets of 5 individuals with type 2 diabetes and identified

276 DMRs, where 96% of the 254 DMRs located in the
promoter region were hypomethylated [14]. The DMRs were
associated with beta-cell function, cell death, and adaptation
to metabolic stress. Similar DMRs (71) to Volkmar et al.
[14] have recently been reported in a study, where they were
associated with pathways in cancer, axon guidance (SEMA4A
and SEMA5B), MAPK signaling (CACNA1H) focal adhesion
(ITGB4), ECM-receptor interaction (AGRN and TGB4),
and actin cytoskeleton (TGB4) [7]. Furthermore, the study
showed an increased accumulation of the DMRs in chromo-
somes 1 and 2, while in chromosome 19, DMRs were lessened
[7]. In the current study, we found a total of 1415 DMRs in the
promoter regions of subjects with diabetes when compared
to control subjects and 81.7% of these were hypermethylated.
Similar to Dayeh et al.’s [7] report, the DMRs were mostly
accumulated in chromosomes 1 and 2 but were least in chro-
mosome 21 in subjects with diabetes compared to controls in
our study. We also observed similar finding between subjects
with prediabetes and controls showing higher accumulation
in chromosomes 1 and 2, while chromosomes 13, 16, 18, 20,
21, and 22 had less than 10 DMRs. A longitudinal study that
investigated hypomethylated DMRs showed that progression
from normoglycaemia to a worse glucose tolerance state
was associated with early differential methylation prior to
disease manifestation [15]. The authors analyzed methylation
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Figure 3: GO analysis of the differentially methylated genes in diabetes, prediabetes, and controls.The bars plot shows the top ten enrichment
score values of the significant enrichment terms. X-axis: GOID’s enrichment score value; it equals −log 10(P value); Y-axis: GO category. (a)
Hypomethylated diabetes versus controls. (b) Hypermethylated diabetes versus controls. (c) Hypomethylated diabetes versus prediabetes.
(d) Hypermethylated diabetes versus prediabetes. (e) Hypomethylated prediabetes versus controls. (f) Hypermethylated prediabetes versus
controls.

levels of candidate DMRs identified by whole epigenetic
profiling in 62 subjects with impaired glucose metabolism
and 64 controls who maintained a normal glucose toler-
ance status during follow-up and demonstrated significantly
lower percent of methylation before the appearance of the
disease in those that progressed [15]. Similarly, we have also
observed common DMRs as well as common pathways in
prediabetes and diabetes individuals’ inflammatory genes
including the lipid metabolism pathway, which appeared to
be progressively modified from prediabetes state to diabetes.
We observed that the arachidonic acid (AA) pathway was
hypomethylated and appeared to be modified in prediabetic
and diabetic states; however, different isoforms of the genes
were involved in each glycaemic state. For example, in
subjects with prediabetes versus controls, cytochrome P450,

family 4, subfamily F, polypeptide 3 (CYP4F3), CYP4F8,
Phospholipase A2, group IIC (PLA2G2C), and PLA2G4E
were differentiallymethylated, while in subjects with diabetes
versus prediabetes, CYP2E1 and PLA2G12A were involved.

Lipids are important components of all mammalian cells
and have a variety of biological functions, including serving
as energy reservoirs and mediators of inflammation known
as oxylipins. Oxylipins result from the oxygenation of PUFAs
by three types of enzymes, cyclooxygenases, lipoxygenases,
and cytochrome P [16]. The type of PUFA oxidized and
enzyme involved determine the production of oxylipins. The
arachidonic acid (AA) generates most of the inflammatory
molecules involved in cell signaling cascades and is a pre-
cursor of eicosanoids. Eicosanoids include prostaglandins
(PGAs), leukotrienes (LTs), and thromboxanes (TXAs) and
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Table 2: KEGG analysis of top ten enrichment score (− log 10(𝑃 value)) values of the significant enrichment pathway.

Pathway ID Definition Fisher’s 𝑃 value Enrichment score Genes
Hypomethylated diabetes versus control

hsa05143 African trypanosomiasis 0.0073 2.133882 F2RL1//HPR//THOP1
hsa05340 Primary immunodeficiency 0.0086 2.064522 AIRE//CD8A//IGLL1
hsa04640 Hematopoietic cell lineage 0.0200 1.697467 CD1B//CD5//CD8A//CD9
hsa04970 Salivary secretion, Homo sapiens 0.0216 1.665411 ADRB2//CST5//KCNN4//NOS1
hsa00670 One carbon pool by folate 0.0229 1.639815 ATIC//MTFMT
hsa04977 Vitamin digestion and absorption 0.0322 1.490856 SLC19A2//SLC23A1

Hypermethylated diabetes versus control

hsa00910 Nitrogen metabolism 0.0015 2.818773

CA13//CA5B//CA9//CPS1//GLU
D2
APLN//CHRNA1//CHRNA5//CH
RNB3//CNR1//EDN1//EDNRB//
FSHB//GABRA6//GABRG2//GA
BRR1//GCG//GHR//GPR156//G
RIA1//GRM4//HCRTR2//LGR4//
NMUR2//NPFF//NPY1R//P2RX6

hsa04080 Neuroactive ligand-receptor interaction 0.0207 1.683002 //P2RY14//PLG//RXFP1//TAC4

hsa00524 Butirosin and neomycin biosynthesis 0.0254 1.594577 GCK//HK2
Glycosaminoglycan biosynthesis, heparan EXT1//EXTL2//HS3ST5//XYLT

hsa00534 Sulfate/heparin 0.0361 1.441751
1
CACNB2//EDN1//IGF1//ITGA1//
ITGB1//MYH6//PRKAG2//PRK

hsa05410 Hypertrophic cardiomyopathy (HCM) 0.0362 1.441099 AG3//TPM1
hsa00750 Vitamin B6 metabolism 0.0368 1.433896 PDXP//PSAT1
hsa04950 Maturity onset diabetes of the young 0.0413 1.384024 GCK//HNF1A//NR5A2//PDX1

Hypomethylated diabetes versus prediabetes
hsa00770 Pantothenate and CoA biosynthesis 0.0137 1.86211 COASY//PANK2
hsa04640 Hematopoietic cell lineage 0.0141 1.850323 CD14//CD1A//CD1B//CD3E
hsa00590 Arachidonic acid metabolism 0.0304 1.516647 CYP2E1//GGT1//PLA2G12A
hsa03320 PPAR signaling pathway 0.0369 1.433374 ACSL4//NR1H3//PCK2
hsa00591 Linoleic acid metabolism 0.0378 1.42268 CYP2E1//PLA2G12A

Hypermethylated diabetes versus prediabetes

hsa05410 Hypertrophic cardiomyopathy (HCM) 0.0063 2.201901

CACNA1S//DMD//ITGA4//MY
H6//PRKAB2//PRKAG3//TGFB3
//TNF//TNNI3//TPM4
ACVR1B//CCR6//CCR8//CX3C
R1//CXCL1//CXCL9//EDAR//G
HR//IFNA2//IFNA21//IL18RAP//
IL3//IL3RA//IL4R//IL9//TGFB3//
TNF//TNFRSF10D//TNFRSF14//

hsa04060 Cytokine-cytokine receptor interaction 0.0085 2.071022 TNFRSF9//TNFSF18//TNFSF8

hsa03060 Protein export 0.0210 1.678045
SEC61G//SRP9//SRPR//SRPRB
ADCY4//CACNA1S//DMD//ITG
A4//MYH6//TGFB3//TNF//TNNI

hsa05414 Dilated cardiomyopathy 0.0251 1.600573

3//TPM4
ADCY4//ANAPC11//ATF1//ATF
3//CCNB2//CREM//HLA-
A//HLA-
E//IKBKB//KRAS//MAD2L1//M
RAS//MSX2//NFYB//TGFB3//T

hsa05166 HTLV-I infection 0.0382 1.418455 LN2//TNF//WNT16//WNT5B
ACSL6//IKBKB//PRKAB2//PRK

hsa04920 Adipocytokine signaling pathway 0.0455 1.342336 AG3//PTPN11//SOCS3//TNF
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Table 2: Continued.

Pathway ID Definition Fisher’s 𝑃 value Enrichment score Genes
Hypomethylated prediabetes versus control

hsa00590 Arachidonic acid metabolism 0.0026 2.593265 CYP4F3//CYP4F8//PLA2G2C//P
LA2G4E

hsa00592 Alpha-linolenic acid metabolism 0.0211 1.676649 PLA2G2C//PLA2G4E

hsa00591 Linoleic acid metabolism 0.0278 1.555232 PLA2G2C//PLA2G4E
MYLK3//PLA2G2C//PLA2G4E//

hsa04270 Vascular smooth muscle contraction 0.0301 1.521206 RAMP3
hsa04350 TGF-beta signaling pathway 0.0352 1.453226 LEFTY2//SP1//TGFB3

Hypermethylated prediabetes versus control
hsa05202 Transcriptional misregulation in cancer 0.0190 1.720526 CCNT1//ELK4//EYA1//RARA
hsa05221 Acute myeloid leukemia 0.0425 1.371986 CHUK//RARA

their role is dependent on the type of fatty acid from which
they are derived [17]. In this regard, we also observed dif-
ferentially methylated signals of cytochrome P450 and Phos-
pholipase A2 (PLA2). Inflammatory activation of the PLA2
enzyme promotes the release of AA from cell membranes
phospholipids, which in turn is metabolized by cyclooxy-
genases (COX), yielding eicosanoids [17]. Taken together,
the epigenetic modifications of oxylipins indirectly represent
a chronic inflammatory pathway involvement in diabetes
development. Because fatty acids are derived from the diet in
the formof linoleic acid, followed by desaturation and elonga-
tion into specific fatty acids, the elucidation of lipid pathway
epigenetics may contribute to the formulation of treatment
and prevention strategies. For instance, supplement studies
using AA, EPA, and/or ALA have demonstrated an effect on
the production of eicosanoids and inflammatory markers. In
a study comprising healthymales, 1.5 g of AA increased PGE2
and leukotriene LTB4 [18], while supplementation with fish
oil containing EPA and DHA decreased the generation of
TNF𝛼 and IL-1 by 70% and 78%, respectively [19]. Moreover,
epigenetic changes are reversible to an extent that in some
neurological diseases and cancers epigenetic drugs have been
proposed or are currently being used [20, 21]. In cancer,
for instance, methylation inhibiting drugs include cytidine
analogs such as 5-azacitidine [22] and zebularine [23]. In view
of the above, it is clear that epigenetics do offer tremendous
opportunities for treatment and management of diseases.

Considering the current published literature on the
epigenetics of type 2 diabetes globally, it is encouraging
to note that a few whole epigenomic studies have been
conducted in populations from Africa. These include studies
that investigated the effect of environment in Moroccans,
Ethiopians, and Egyptians [24–26], severe bladder damage in
Ghanaians [27], and exposure to famine in offspring from
Gambia [28]. Epigenetic determinants have been shown to
differ between populations. For example, in HapMap lym-
phoblastoid cell lines derived from individuals of European or
African ancestry, population-specific cytosine modifications
in samples derived fromYoruba people from Ibadan, Nigeria,
and Caucasian residents of European ancestry from Utah
were observed [29]. The differences between and within
population groups have been linked to population-disease-
specific single nucleotide polymorphisms (SNPs). In diabetes,

for instance, 17 of the 40 type 2 diabetes candidate genes
identified by genome-wide association studies (GWAS) were
differentially methylated in pancreatic islets of subjects with
diabetes [7]. Interestingly, in our study, KEGGpathway analy-
sis identified hypomethylatedDMRs in subjects with diabetes
that were associated with African trypanosomiasis pathway.
African trypanosomiasis is a sleeping sickness caused by
Trypanosoma species from Africa, suggesting a population-
specific selection of DNAmethylation in this populationwith
an African ancestry.

In this study, DNA methylation was investigated using
whole genome MeDIP sequencing (MeDIP-Seq); though
bisulfite sequencing is currently considered the gold stan-
dard for detecting DNA methylation, it does not dis-
tinguish between 5-methylcytosine (5mC) and 5-hydrox-
ymethylcytosine (5hmC). While MeDIP-Seq obviates the
need for bisulfite treatment of DNA, a limitation of the
technique is the inability to detect individual differentially
methylated CpG sites. A major limitation of this study is the
lack of verification of regions using other sequencing-based
DNAmethylation profilingmethods. However, a quantitative
comparison of four sequencing-based DNA methylation
methods including MeDIP-Seq demonstrated comparable
methylation calls of all four methods but differences in CpG
coverage, resolution, quantitative accuracy, efficiency, and
cost [30]. Other limitations of the study include the one
gender and small number of individuals investigated. The
pancreatic 𝛽-cells are believed to be the ideal tissue for type 2
diabetes epigenetics. We made use of peripheral white blood
cells and it has been shown that DNAmethylation is different
between blood cell types [31]; thus our findings should be
interpreted with caution. While we carefully matched the
participants, we take note that the smoking patterns were
not similar between the groups. Therefore, it is likely that
some of the DMRs observed are not necessarily due to
diabetes or prediabetes but perhaps nicotine. Similarly, all
participants were obese (BM1 > 30 kg/m2); we cannot dismiss
the fact that some DMRs are obesity related. Although the
population investigated is from Africa, it is noteworthy to
mention that this is a unique heterogeneous group, which is
of mixed genetic origin with contributions from Europeans,
South Asians, Indonesians, and a population genetically
close to the isiXhosa sub-Saharan Bantu population [32].
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Therefore we cannot rule out the possible role of genetic
ancestral components in the methylation patterns observed.
However, financial constraints and the technical complexity
of generating ancestry informative markers, particularly for
this South African population group, still remain a challenge.

In conclusion, our study provides basis for candidate
methylation analysis in Africa. Considering that GWAS
studies of diabetes involving populations from Africa are not
available, we recommend methylation quantitative trail loci
(meQTL) investigations coupled with ancestry informative
markers to account for population stratification.
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