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Abstract: For the first time, a composite of ferroelectric antimony sulfoiodide (SbSI) nanowires and
non-ferroelectric titanium dioxide (TiO2) nanoparticles was applied as a pyroelectric nanogenerator.
SbSI nanowires were fabricated under ultrasonic treatment. Sonochemical synthesis was performed
in the presence of TiO2 nanoparticles. The mean lateral dimension da = 68(2) nm and the length
La = 2.52(7) µm of the SbSI nanowires were determined. TiO2 nanoparticles served as binders in
the synthesized nanocomposite, which allowed for the preparation of dense films via the simple
drop-casting method. The SbSI–TiO2 nanocomposite film was sandwiched between gold and indium
tin oxide (ITO) electrodes. The Curie temperature of TC = 294(2) K was evaluated and confirmed
to be consistent with the data reported in the literature for ferroelectric SbSI. The SbSI–TiO2 device
was subjected to periodic thermal fluctuations. The measured pyroelectric signals were highly
correlated with the temperature change waveforms. The magnitude of the pyroelectric current was
found to be a linear function of the temperature change rate. The high value of the pyroelectric
coefficient p = 264(7) nC/(cm2·K) was determined for the SbSI–TiO2 nanocomposite. When the rate
of temperature change was equal dT/dt = 62.5 mK/s, the maximum and average surface power
densities of the SbSI–TiO2 nanogenerator reached 8.39(2) and 2.57(2) µW/m2, respectively.

Keywords: antimony sulfoiodide; titanium dioxide; nanowires; pyroelectric effect; nanogenerator;
renewable energy

1. Introduction

Efficiency in thermal energy harvesting is an important challenge to produce green
energy for sustainable development. Most of the waste heat generated in industry is avail-
able at low temperatures, generally below 373–503 K [1]. Low-temperature waste heat is
especially difficult to recover successfully using currently available technologies [2]. Ther-
mal energy can be converted into electric energy by applying electrochemical systems [3],
thermogalvanic cells [4,5], thermoelectric [6–8], thermomagnetic [9,10], and pyroelectric
generators [11–13]. However, all mentioned technologies suffer from low efficiency and
limited reliability. Therefore, new materials and engineering concepts must be proposed
and developed in the field of low-temperature waste heat recovery to ensure their future
large-scale and commercial application.

Inorganic ferroelectric crystals or ceramics [14,15], ferroelectric polymers [16], and
non-ferroelectric compounds [17] are three main groups of materials commonly used
to construct pyroelectric generators. Material morphology is a key factor affecting the
pyroelectric performance of the device. The efficiency of thermal energy conversion to
electrical power can be enhanced through quantum confinement in pyroelectric nanomateri-
als [18]. Thus, there is growing interest in the development and examination of pyroelectric
nanogenerators based on thin films [19], nanowires [20,21], or nanoparticles [22].

Antimony sulfoiodide (SbSI) is a ternary compound that possesses ferroelectric prop-
erties with a Curie temperature of 295 K [23]. The first report on the pyroelectric properties
of SbSI single crystals was provided by Imai et al. [24]. The large pyroelectric coefficient
(1.2 µC/(cm2·K)) of bulk single crystals of SbSI was measured over a temperature range
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encompassing the ferroelectric phase transition [25]. The significantly much lower pyro-
electric coefficients of 8.06 pC/(cm2·K) and 180 nC/(cm2·K) were determined for SbSI
films grown by flash evaporation [26] and physical vapor deposition [27], respectively.
However, the pyroelectric properties of SbSI nanowires have not been investigated so far.
Recently, nanowires of SbSI and other compounds that belong to the chalcohalide family of
materials have received a great amount of attention due to the fact of their possible applica-
tions in piezoelectric nanogenerators for mechanical energy harvesting [28,29], underwater
ultrasounds sensors [30], photovoltaic devices [31,32], piezo- and photocatalysis [33,34].

Many different techniques have been proposed till now to fabricate antimony sulfoio-
dide films including electron beam evaporation [35], flash evaporation [36,37], physical
vapor deposition [27], pulsed laser deposition [38,39], molecular beam epitaxy [40], solution
processing [41], and combined solution and vapor processes [42,43]. The majority of the
aforementioned techniques possess serious drawbacks such as complexity or the need
to use high-temperature treatments. A typical way to fabricate continuous films of SbSI
nanowires is based on the application of a binding polymer matrix, e.g., polyacrylonitrile
(PAN) [32]. As a result, the electrical properties of such a prepared composite can be worse
in comparison to the electrical properties of pristine SbSI nanowires. Ye and co-workers [44]
presented sol-gel fabrication of thin films and bulk solids of SbSI micro-crystallite-doped
organically modified TiO2. The optical absorption spectrum of this material exhibited an
evident quantum confinement effect [44], whereas the electrical properties of the mate-
rial were not examined. It should be noted that the application of TiO2 nanoparticles in
composites for pyroelectric nanogenerators has been reported in the literature as a factor
improving pyroelectric performance [45].

In this paper, a facile fabrication of the SbSI–TiO2 nanocomposite in one step is
presented for the first time. TiO2 nanoparticles were used as binders in the synthesized
nanocomposite. The dense film of the SbSI–TiO2 nanocomposite was prepared using a
simple drop-casting method and sandwiched between the electrodes. Such a device was
applied as a pyroelectric nanogenerator.

2. Materials and Methods
2.1. Material Synthesis and Nanogenerator Fabrication

Figure 1 presents the preparation of the pyroelectric nanogenerator. In the first stage,
the chemical elements (i.e., antimony, sulfur, and iodine) were weighted in a stoichiometric
ratio. The reagents (i.e., 868 mg of Sb, 227 mg of S, and 921 mg of I2) were mixed with
titanium dioxide (TiO2) nanoparticles purchased from Merck KGaA. According to the data
provided by the material manufacturer, the average size of the TiO2 nanoparticles was
21 nm. The mass of TiO2 (860 mg) was adjusted to constitute approximately 30% of the
total mass of the nanocomposite. The mixture was added to the beaker containing 10 mL
of pure ethanol (Figure 1a). Such a prepared suspension of the reagents was subjected to
ultrasonic irradiation, generated by the VCX-750 ultrasonic reactor (Sonics & Materials,
Inc., Newtown, CT, USA) as shown in Figure 1b. The material synthesis was carried out
at a temperature of 323 K over 4 h. After the synthesis was completed, the orange gel
of the SbSI–TiO2 nanocomposite was drop-casted onto an indium tin oxide (ITO) coated
polyethylene terephthalate (PET) substrate as depicted in the Figure 1c. The drop-casting
deposition of the material was performed in several steps using an electronic pipette. The
sample was then placed on a hot plate and dried at a temperature of 333 K (Figure 1d).
When the sample drying was finished, the 200 nm thick gold electrode was sputtered on
the top side of the SbSI–TiO2 nanocomposite (Figure 1e) by applying a Q150R ES rotary
pumped coater (Quorum Technologies Ltd., Laughton, United Kingdom). Finally, the
prepared SbSI–TiO2 nanogenerator was connected to the external measurement circuit
(Figure 1f).
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Figure 1. Schematic fabrication process flow of the SbSI–TiO2 pyroelectric nanogenerator. A detailed
description is given in the text.

2.2. Structural and Chemical Characterization of the SbSI–TiO2 Nanocomposite

The morphology and chemical composition of the SbSI–TiO2 nanocomposite were
investigated using scanning electron microscopy (SEM) and energy-dispersive X-ray spec-
troscopy (EDS), respectively. The experiments were performed using a Phenom Pro X
microscope (Thermo Fisher Scientific, Waltham, MA, USA) integrated with an EDS spec-
trometer. The SEM studies were carried out at the acceleration voltage of 10 kV, whereas
the EDS survey was accomplished at 15 kV. The EDS data were analyzed using the ProSuite
Element Identification computer program (Thermo Fisher Scientific).

2.3. Electrical Measurements

The SbSI–TiO2 nanocomposite was inserted into the SH-242 environmental test cham-
ber (Espec) to examine its electrical properties. All experiments were carried out at a
constant relative humidity (RH) of 50%. The sample was tested under dark conditions to
eliminate the influence of excess carries photogeneration on the measured electric signals.
The change in temperature was achieved via air flow inside the chamber. The measure-
ments were performed at a standard atmospheric pressure (1 atm). It was confirmed for the
SbSI nanowires that their electrical properties are sensitive to the various gases including
oxygen and hydrogen [46]. However, the air circulation inside the chamber was closed.
Thus, the gas composition of the air remained the same. As a result, the effect of the gas on
the electrical properties of the sample was eliminated. Before pyroelectric investigations,
the SbSI–TiO2 nanocomposite was poled to align the electric dipoles in the SbSI nanowires
and enhance the pyroelectric output of the nanogenerator. It was conducted by cooling the
device below the Curie temperature and applying an external electric field of 12 kV/m,
which is higher than the coercive field of SbSI [23]. The pyroelectric response of the SbSI–
TiO2 nanocomposite was registered for different rates of temperature change (dT/dt) in
the range from 1.8 to 62.5 mK/s. The low values of dT/dt were chosen to avoid possible
interference caused by the thermoelectric effect [47]. The electric output of the SbSI–TiO2
nanocomposite was measured with the 6430 Sub-Femtoamp Remote SourceMeter (Tek-
tronix, Beaverton, OR, USA). Data acquisition was performed using a PC computer with
a GPIB bus and an appropriate program in LabView (National Instruments, Austin, TX,
USA).
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3. Results and Discussion

Figure 2a presents the prepared pyroelectric nanogenerator based on the SbSI–TiO2
nanocomposite sandwiched between the Au electrode and ITO-coated PET. A typical SEM
micrograph of the SbSI–TiO2 nanocomposite is shown in Figure 1b. This material consisted
of randomly distributed one-dimensional nanocrystals of SbSI and agglomerations of TiO2
nanoparticles. The concentrations of the chemical elements were averaged over the sample.
The EDS survey proved that titanium dioxide constituted 29.9% of the total mass of the
nanocomposite, which is in good agreement with the initial amount of TiO2 (30%) used for
material preparation. TiO2 nanoparticles served as fillers in the synthesized nanocomposite,
which allowed for preparing dense films via a facile drop-casting method. Many attempts
have been made to fabricate films containing only SbSI nanowires. However, they were
not successful. The presence of voids in the layers of pure SbSI nanowires (without TiO2
nanoparticles) resulted in the formation of the short-circuited samples after sputtering of
the gold electrodes. Another way to fabricate a continuous film of SbSI nanowires is by
applying a polymer as a binder [32]. Such a method possesses a significant drawback. It was
found in [32] that the increase in polymer concentration in the SbSI–PAN nanocomposite
led to an undesirable reduction in its electrical conductivity and photovoltaic performance.

Figure 2. The layer structure of the pyroelectric nanogenerator (a), SEM micrograph of the SbSI–TiO2

film (b), and a selected nanowire (c).

The elemental atomic ratio of 0.37:0.36:0.27 for Sb, S, and I averaged over nanocom-
posite volume was close to the stoichiometric composition of SbSI (Table 1). The theoretical
values should be 0.33 for each of the elements in this ternary compound. No other el-
ements were detected in the sample. The small amount of material was deposited on
the Si substrate. An individual SbSI nanowire was separated from the nanocomposite to
examine its chemical composition (Figure 2c). The EDS signal for Si was subtracted from
the atomic concentrations evaluated for other components. The elemental atomic ratio
registered for spot 1 in Figure 2c corresponded to the chemical composition expected for
antimony sulfoiodide (Table 1). The values of atomic concentrations determined for spot
2 in Figure 2c indicate the presence of agglomerated TiO2 nanoparticles and slight traces
of antimony. It should be noted that an excess amount of Sb is frequently reported in the
literature for nanowires [32,34], nanocrystals [33], and thin films [27] of SbSI. This effect
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can be attributed to the fact that the surface of crystalline SbSI nanowires is surrounded by
fuzzy shells, which have a chemical composition that may be different from the concen-
trations of elements in the core of the nanowire [32]. Atomic concentrations of titanium
and oxygen are in agreement with the theoretical values for stoichiometric TiO2 (Table 1).
Since titanium dioxide exhibits excellent chemical stability [48,49], it should be resistant to
ultrasonic treatment.

Table 1. The chemical composition determined for the areas of the sample shown in Figure 2b,c.

Chemical Element
Atomic Concentration, %

Area in Figure 2b Spot 1 in Figure 2c Spot 2 in Figure 2c

Sb 15.6 36.8 13.8
S 14.9 30.4 0
I 11.1 32.8 0

Ti 18.5 0 28.8
O 39.9 0 57.4

The prepared material was characterized with scanning electron microscopy to de-
termine the average diameter and length of the SbSI nanowires as presented in Figure 3.
Manual image analysis was performed on 250 randomly selected nanowires. The diameters
and lengths vary in the wide ranges, reaching up to 220 nm and 8.2 µm, respectively. One
can see that the distribution of nanowires sizes followed a log-normal function [50,51]:

f (x) =
A√

2π·σ·x
exp

−
[
ln
(

x
xa

)]2

2σ2

, (1)

where A is a constant, x means the size of the nanowires (diameter or length), xa denotes the
average value of the nanowire size, and σ is its standard deviation. It should be underlined
that the log-normal function is frequently reported in the literature as a relation describing
size distributions of nanowires [50–52] and nanoparticles [53–55]. The mean diameter
da = 68(2) nm and the length La = 2.52(7) µm of the SbSI nanowires were determined. The
obtained value of da is equal within the measurement uncertainty to the average diameter
(69(3) nm) of the SbSI nanowires reported in [32].

Figure 3. Distributions widths (a) and lengths (b) of SbSI nanowires in the SbSI–TiO2 nanocomposite.
The black lines represent log-normal functions expected for the nanoscale object size distribution
described by Equation (1). The values of the fitted parameters of Equation (1) are given in the text.

The influence of temperature on the electric current flowing through the SbSI–TiO2
nanocomposite under constant bias voltage is shown in Figure 4a. The rise in temperature
leads to a sharp enhancement of the electric current. It is a typical behavior for a semicon-
ducting material. Moreover, when the temperature increases, the reduction in the grain
boundary resistance can result in the reduction in the barrier for the mobility of charge
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carriers participating in grain boundary conduction [56]. Taking into account the geomet-
rical dimensions of the investigated sample, the electric conductance of the SbSI–TiO2
nanocomposite was calculated (Figure 4b). It is well known that in the case of ferroelectric
material, the Arrhenius plot of an electric conductance consists of two linear curves with
different slopes corresponding to the paraelectric and ferroelectric phases [56,57]. Thus, a
change in activation energy is observed near Curie temperature (TC) [58–60]. This effect
was also documented in the literature for thin films of SbSI [35,61]. Two different theoretical
curves were least squares fitted to the experimental results, shown in Figure 4b, using a
well-known relation [56,57]:

σ(T) = σ0· exp
(
− EA

kBT

)
, (2)

where σ0 is the pre-exponential coefficient, EA means an activation energy, and kB de-
notes the Boltzmann constant. The values of activation energies of EA = 0.537(1) eV and
EA = 0.271(2) eV were determined for the paraelectric and ferroelectric phases, respectively.
They could not be compared with the literature data for SbSI due to the fact that these pa-
rameters are thickness dependent [61]. Finding the intersection of the linear dependencies
in the Arrhenius plot of an electric conductance (Figure 4b) allowed for the estimation of
the Curie temperature of the examined material (TC = 294(2) K). The obtained value was
consistent with the data from the literature for ferroelectric SbSI listed in Table 2.

Figure 4. The temperature dependence of the electric current registered under a constant bias voltage
of 0.1 V (a) and the Arrhenius plot electrical conductance of the SbSI–TiO2 nanocomposite (b). The
solid red and blue lines in (b) represent the best fitted theoretical dependence (2) in the paraelectric
and ferroelectric phases, respectively. The green, dashed line indicates the reciprocal value of the
determined Curie temperature. The values of the fitted parameters of Equation (2) are given in the
text.

Table 2. A comparison of the determined Curie temperature of the SbSI–TiO2 nanocomposite with
literature data for SbSI.

Material Preparation Method TC, K Reference

bulk crystal of SbSI 295 [23]
bulk crystal of SbSI vapor phase growth 292–293 [24]

bulk crystal of SbSI Bridgman method and vapor
transport technique 293 [25]

SbSI film physical vapor deposition 295 [27]
SbSI film electron beam evaporation 294 [35]
SbSI film flash evaporation 293 [37]
SbSI film pulsed laser deposition 292 [38]
SbSI film pulsed laser deposition 290–294 [39]

SbSI nanowires sonochemical synthesis 291(2) [62]
SbSI–TiO2

nanocomposite sonochemical synthesis 294(2) this paper



Sensors 2022, 22, 69 7 of 15

The sample of the SbSI–TiO2 nanocomposite was subjected to periodic temperature
fluctuations as presented in Figure 5a,c. The experiments were performed for different
amplitudes of temperature changes. A rectangular-shaped transient characteristic of py-
roelectric current was observed (Figure 5b,d) when the triangular temperature waveform
was applied to the SbSI–TiO2 nanogenerator. Such behavior is well documented in the
literature for other pyroelectric materials, e.g., PVDF–TiO2 composite [45], PVDF–ZnO
nanocomposite [63], Bi0.5Na0.5TiO3–P(VDF–TrFE) nanocomposite [64], P(VDF–TrFE) [65],
PbTiO3–P(VDF–TrFE) [66], LiNbO3–polypropylene [67], CeO2-doped Na0.5Bi0.5TiO3 ce-
ramics [68], BaZr0.2Ti0.8O3/Ba0.7Ca0.3TiO3 heterostructures [69], and CdS nanorods [47].
This proves that the measured electric response of the SbSI–TiO2 nanocomposite was due
to the true pyroelectric effect. It should be noted that only SbSI nanowires contributed to
the pyroelectric response of the nanocomposite. The non-ferroelectric inclusion of TiO2
cannot be polarized, since its net dipole moment is almost zero [45]. A slight decrease in
the amplitude of the pyroelectric response, shown in Figure 5d, can be attributed to the
so-called “aging effect” [70].

Figure 5. Cyclic changes in temperature (a,c) and corresponding output current (b,d) of the SbSI–TiO2

pyroelectric nanogenerator. The green horizontal line represents the value of the Curie temperature
TC = 294(2) K.

The only positive pyroelectric response of the SbSI–TiO2 nanogenerator is observed
(Figure 5b,d) due to the fact that the rectifying p–n heterojunction was formed between the
SbSI nanowires and the ITO electrode as well between the SbSI nanowires and the TiO2
nanoparticles. Usually, SbSI is regarded as p-type semiconductor [31,37,61,71,72], whereas
both ITO [73] and TiO2 [74] exhibit n-type electrical conductivity. The work functions of
ITO, TiO2, and SbSI were 4.4–4.5 eV [75], 4.2–4.7 eV [76], and 5 eV [31,71,72], respectively.
Accordingly, since the work function of p-type SbSI is higher than that of n-type ITO and
n-type TiO2, a built-in electric field was formed in the ITO/SbSI and TiO2/SbSI interfaces.
When the temperature increased (dT/dt > 0), a positive pyroelectric potential was formed.
Thus, the ITO/SbSI and TiO2/SbSI interfaces were forward-biased pn junctions. In such a
case, the electrons could flow freely across the interfaces, and the pyroelectric current was
measured in the external circuit. When the device cooled down (dT/dt < 0), the ITO/SbSI
and TiO2/SbSI interfaces were reversely biased barriers, leading to almost zero electric
output of the nanogenerator. This is the process of creating, separating, preserving, and
accumulating charges [77]. As a result, the device generated a rectified electric output. The
same effect is observed in the case of direct-current generators based on p–n [78–82] or
Schottky [77,83–85] junctions. Morozovska et al. [20] proposed that the rectification effect
of the junction barrier allows the application of a ferroelectric nanowire array fixed between
flat electrodes as the direct current generator. Moreover, one should remember that the
built-in electrical field of a p–n junction barrier can create a polar axis in the solid [86].
The pyroelectric effect can be enhanced, as the electric dipole moment, due to the charge
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separation at the junction, depending on the temperature mainly through the temperature
dependence of the dielectric constant [86].

The magnitude of the pyroelectric current depends on the rate of temperature change
(dT/dt). It is described by the following equation [11–13]:

Ip =
dQ
dt

= pA
dT
dt

, (3)

where Q represents a pyroelectric charge, p denotes the pyroelectric coefficient, and A
means the electrode area. The pyroelectric current density (Jp = Ip/A) is presented as a
function of the rate of temperature change in Figure 6a. One can see that the experimental
results followed a linear dependence. According to Equation (3), the slope of Jp versus
dT/dt was equal to the pyroelectric coefficient. The value of the pyroelectric coefficient
of p = 264(7) nC/(cm2·K) was determined for the SbSI–TiO2 nanocomposite by fitting the
theoretical Formula (3) to the experimental data in the graph in Figure 6a.

Figure 6. The output pyroelectric current density (a) and the surface power density (b) of the SbSI–
TiO2 pyroelectric nanogenerator as a function of the temperature change rate. The red line in Figure
(a) represents the best fit dependence (3). The red and blue experimental points in Figure (b) show
the values of the maximum and average surface power density, respectively.

The maximum power density (PSmax) of the SbSI–TiO2 nanogenerator was calculated
using the peak values of the output pyroelectric current (Ip max), voltage (Umax), and
electrode area of the device (A):

PSmax =
Umax·Ip max

A
. (4)

One can see that the maximum surface power density is proportional to the maximum
value of the pyroelectric current density. The average values of the surface power density
(PSavr) were determined using the following equation:

PSavr =
Pavr

A
=

1
A·∆t

·
∫ ∆t

0
U·Ipdt, (5)

where ∆t represents the period time of a heating–cooling cycle. Figure 6b shows that the
increase in the temperature change rate resulted in the obvious rise of PSmax and PSavr.
The pyroelectric coefficient, the maximum and average power densities, calculated for the
SbSI–TiO2 nanocomposite, were compared with the values of these parameters reported in
the literature for other pyroelectric materials (Table 3). They were divided into five main
groups, i.e., non-ferroelectric materials, inorganic ferroelectric bulk crystals or ceramics,
pure ferroelectric polymers, ferroelectric thin films or nanomaterials, and ferroelectric
composites. It should be underlined that the SbSI–TiO2 nanocomposite had the highest
values for the pyroelectric coefficient and surface power density among all the ferroelectric
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composites as listed in Table 3. Furthermore, the pyroelectric performance of the SbSI–TiO2
nanocomposite was much better than that achieved for the thin films of SbSI [26,27] and
nanowires of antimony selenoiodide (SbSeI) [87], which is an isostructural material for
SbSI [88]. It is expected that the incomplete coverage of the TiO2 on the SbSI nanorods
should lead to the formation of pores between these two different materials. A matrix–void
composite with low permittivity is desired for pyroelectric applications, exhibiting a high
figure of merit [89,90]. Therefore, the high pyroelectric performance of the SbSI–TiO2
nanocomposite can be attributed to the good pyroelectric properties of SbSI as well as to
the incomplete coverage of the TiO2 on the SbSI nanorods.

Table 3. Comparison of the pyroelectric performance achieved for the SbSI–TiO2 nanocomposite and
other materials (BCs—bulk ceramics; BNT—Bi0.5Na0.5TiO3; NPs—nanoparticles; NRs—nanorods;
NWs—nanowires; p—pyroelectric coefficient; PS—surface power density; PVC—poly(vinyl chloride);
PVDF polyvinylidene difluoride; P(VDF–TrFE)—poly(vinylidenefluoride-co-trifluoroethylene); PZT—
lead zirconate titanate; SC—single crystal; TFs—thin films). The abbreviations “max” and “avr” refer
to the maximum and average surface power densities, respectively.

Group of Materials Material p, nC/(cm2·K) PS, µW/m2 Reference

non-ferroelectric
materials

ZnO NWs 1.5 [91]
ZnO TFs 1.0–1.4 [92]
CdS NRs 470 [47]

inorganic
ferroelectric bulk

crystals or ceramics

PZT BCs 53.3 3700 max [93]
PZT BCs 20 13.6 avr [94]

BaTiO3 BCs 10 2240 max [95]
BaTiO3 BCs 16 [96]
LiNbO3 SC 5–8 219 max [97]

SbSI SC 1200 [25]

pure ferroelectric
polymers

PVDF 1.94 [45]
PVDF 4 108 max [98]
PVDF 0.13 max [99]

P(VDF–TrFE) 2.4 [65]
P(VDF–TrFE) 4.39 128 max [100]

ferroelectric thin
films or

nanomaterials

Ba0.8Sr0.2TiO3 TFs 25 [101]
KNbO3 NWs 0.8 [102]

SbSI TFs 0.008 [26]
SbSI TFs 180 [27]

SbSeI NWs 44(5) 0.59(4) max [87]

ferroelectric
composites

BaTiO3–PVC 10.6 [103]
PVDF–diamond NPs 8.7 [104]

PVDF–TiO2 2.45 [45]
PVDF–ZnO NPs ~2.9 [63]

PVDF–CH3NH3PbI3 0.004 1.75 max [105]
P(VDF–TrFE)–BNT NPs 5 [64]

P(VDF–TrFE)–PbTiO3 NPs 4 [66]

SbSI NWs–TiO2 NPs 264(7) 8.39(2) max

2.57(2) avr this paper

Electrical energy (∆EV) generated by a unit of the volume (V) of the SbSI–TiO2
nanocomposite during the time interval (t) was evaluated applying a formula given below:

∆EV =
1
V
·
∫ t

0
U·Ipdt. (6)

Figure 7 presents a time dependence of the volume energy density generated by
the SbSI–TiO2 device during three periodic thermal input cycles. An increase in the
rate of temperature change leads to an enhancement of the ∆EV. When the temperature
difference (∆T) was equal to 25 K, the electrical energy produced per unit volume of the
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SbSI–TiO2 nanocomposite per cycle amounted to 15.2 µJ/cm3. This value was lower than
∆EV = 230 µJ/cm3 achieved for the PVDF film per single thermal cycle at the temperature
change ∆T = 23 K [93].

Figure 7. Volume energy density generated by the SbSI–TiO2 device during three periodic thermal
input cycles measured for different rates of temperature change (• 1.8 mK/s; • 9.3 mK/s; • 9.7 mK/s;
• 62.5 mK/s).

The probable impact of the size of the TiO2 nanoparticles on the pyroelectric efficiency
of the SbSI–TiO2 nanocomposite can be explained as follows. A decrease in a TiO2 nanopar-
ticle’s size leads to a reduction in the electrical conductivity of this nanomaterial [106]. Wei
and co-workers [107] presented that lower conductivity of the ceramic inclusion in the
ferroelectric composite results in higher polarization, which is favorable to the poling of the
composite. Therefore, the enhancement of the pyroelectric performance of the SbSI–TiO2
nanocomposite should be observed with the decrease of the TiO2 nanoparticle’s size.

4. Conclusions

For the first time, a method of fabrication of the SbSI–TiO2 pyroelectric nanogenerator
was described. It involved the sonochemical preparation of the SbSI–TiO2 nanocomposite
in a single step and its drop-casting deposition on ITO-coated PET. TiO2 nanoparticles
served as fillers in the synthesized nanocomposite, which were crucial to obtain dense films
with the desired morphology. It is a new alternative approach to fabricate devices based
on nanowires. This method eliminates the need for application of a polymer matrix as a
binder. The proposed technology is simple and universal. It can be used for preparation of
nanogenerators from other one-dimensional chalcohalide nanostructures.

The SEM and EDS studies of the SbSI–TiO2 nanocomposite confirmed the formation of
stoichiometric SbSI nanowires with an average diameter and length of 68(2) nm and 2.52(7)
µm, respectively. The Curie temperature of 294(2) K was determined for the examined
material, which is in good agreement with the data reported in the literature for ferroelectric
bulk crystals, thin films, and pristine nanowires of SbSI.

The SbSI–TiO2 nanocomposite sandwiched between the ITO and Au electrodes was
subjected to periodic temperature fluctuations. The registered pyroelectric response was
well correlated to the temperature changes. The measured signal originated from the
pyroelectric properties of SbSI nanowires. Non-ferroelectric TiO2 nanoparticles were unable
to contribute to the electric output of the nanogenerator, since they cannot be polarized.
The pyroelectric current density was found to be a linear function of the rate of temperature
change. The large pyroelectric coefficient of 264(7) nC/(cm2·K) was determined for the SbSI–
TiO2 nanocomposite. This value was higher than the pyroelectric coefficient reported in the
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literature for many different pyroelectric materials including ZnO nanowires, PZT bulk
ceramics, BaTiO3 bulk ceramics, LiNbO3 single crystal, PVDF polymers, SbSI thin films,
and nanowires of SbSeI, which is an isostructural material to the SbSI. The maximum and
average surface power densities of the SbSI–TiO2 nanogenerator reached 8.39(2) and 2.57(2)
µW/m2, respectively. The electrical energy produced per unit volume of 15.2 µJ/cm3 was
obtained per one thermal cycle for which the temperature change was equal to 25 K. It is
expected that the values of the aforementioned parameters can be enhanced by adjusting
the weight concentration of the titanium dioxide in the nanocomposite. Such investigations
will be performed in the near future. The results, presented in this paper, demonstrate
that the ferroelectric SbSI–TiO2 nanocomposite has great potential for use in pyroelectric
sensors and thermal energy harvesters.
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