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Electrocardiography is a valuable tool to aid in medical understanding and treatment

of heart-related ailments, specifically atrial fibrillation (AF) and other irregular car-

diac behavior. Although signs of AF will manifest in conventional electrocardiogram

(ECG) recordings, interpretation and localization of AF sources require significant

clinical expertise. In this vein, electrocardiographic imaging has emerged as an

important medical imaging modality that provides reconstructions of the heart’s elec-

trical activity from non-invasive multi-lead body-surface ECG and anatomical x-ray

computed tomography images. In this paper, we present a nonlinear inversion model

for computing this mapping to improve upon the reconstruction performance of cur-

rent methods. While contemporary techniques typically determine an inverse solution

by discretizing and inverting an underdetermined linear system of partial differential

equations governing the relationship between voltage potentials of the heart and

torso, the presented technique re-casts this problem as a task in function approxima-

tion and provides a direct parameterization of the inverse operator using a polyno-

mial neural network. That is, the outlined nonlinear inversion technique is a

generalization of contemporary reconstruction techniques which allows geometrical

and material parameterizations of the forward-model to be optimized using real

experimental data collected from patients suffering from AF, as to better represent

the inverse operator with respect to reconstruction metrics applicable to electrophysi-

ology. The accuracy of our model is evaluated against a dataset of real-patient record-

ings to demonstrate its validity, and mathematical analysis is provided to support the

polynomial expansion used in our inversion model. VC 2018 Author(s). All article
content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://

doi.org/10.1063/1.5038046

I. INTRODUCTION

Mapping of electronic cardiac potentials remains an important tool in electrophysiology, par-

ticularly for diagnosing and treating various types of cardiac arrhythmias including premature

ventricular contractions (PVC), ventricular tachycardia (VT), atrial flutter, and atrial fibrillation

(AF). While a majority of arrhythmia cases can be identified from multi-electrode body-surface

electrocardiogram (ECG) measurements, clinicians performing interventions often rely on more

local electronic mappings of the cardiac tissue (e.g., using multi-probe catheters) to classify the

type of arrhythmia, localize its source, and determine whether an intervention procedure such as

an ablation is recommended for the patient.1,2 Unfortunately, the physical contact between the

catheter probes and the epicardial or endocardial tissue is typically a requisite to build these

descriptive 3D cardiac potential maps, forcing clinicians to perform these procedures during

planned surgical interventions. From a diagnostic perspective, studying the time-resolved 3D
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cardiac map of a patient prior to surgery can improve patient outcomes by helping clinicians

identify and localize dominant AF or PVC sources, determine whether an ablation procedure

would be an effective treatment (e.g., for long-standing AF or when AF sources cannot be local-

ized), and monitor patients’ electrophysiology conditions over time and during regular physical

activity.3,4 In this vein, the goal of this paper is to outline a new noninvasive technique that can

aid in the construction of these cardiac potential maps.

This problem is known in the field as electrocardiographic imaging (ECGi) and has been

studied extensively by a number of research groups.5–7 The core mathematical problem of

ECGi can be thought of as a special case of the more-general inverse scattering problem of

electromagnetics, which involves determining characteristics of an object (in this case, the

potentials of the heart), based on data of how it scatters incoming radiation.

Even in linear homogeneous media, however, the problem is often ill-posed because the

number of measurements is small relative to the number of unknown physical or geometric

parameters required in the model. To this end, various groups have approached this problem by

(1) modeling the forward electromagnetic problem using computationally efficient linear formu-

lations, such as the boundary-element method, (2) “inverting” the transformation to represent

the inverse solution, and (3) adding a regularization constraint on the solution to both mitigate

the ill-posed nature of the problem and help find a unique solution.8,9 Although such methods

have shown promise in a number of imaging applications, including ECGi, the reconstruction

accuracy has (empirically) been limited by the complexity of the forward and inverse models.

Said another way, the reconstruction accuracy in these applications is typically reflective of the

chosen forward and inverse models’ ability to capture the intricate relationship between cardiac

source-potentials and body-surface measurements and is thus degraded when assumptions (e.g.,

of linearity, homogeneity, and source-free regions) are violated. In particular, in patient-specific

applications, where it is common for a number of the materials and geometries to be estimated

with high uncertainty or entirely unknown, simple forward models of linear homogeneous

media and the corresponding inverse models are often only sufficient as a first-order reconstruc-

tion heuristic10,11 and largely insufficient for accurately reconstructing higher-order spatial and

temporal harmonics.

While these simplifying assumptions in the forward model have historically been integral

to the formulation of classical imaging techniques and the field of Fourier optics, in this paper,

we demonstrate how a direct, non-linear parameterization of the inverse problem can lead to

more accurate reconstructions of cardiac potentials from torso measurements. That is, while the

majority of previous ECGi studies have focused on developing the forward and inverse maps

from idealized material geometries, we instead cast the problem of inverse imaging as a task in

function approximation, where the material parameters can be either postulated or entirely

unknown. In line with techniques used in non-linear optics, the described technique relies on an

approximation of the inverse map using a high-degree polynomial but whose gradient is

bounded. The parameters of this model are found by “training” or optimization using historical

data of cardiac potentials (measured using catheter probes), corresponding body-surface poten-

tials, and their relative 3D location on the surface of real patients who underwent surgical inter-

ventions. In general, these historical data can include reconstruction parameters extracted from

previous measurements of the same patient or from a database of different patients with varying

torso and cardiac geometries. The idea here is to replace the classically simple but rigid geo-

metrical models of the torso with more flexible parametrizations that can adapt to more realistic

patient geometries involving multiple dielectric media, even when these are not explicitly

known in the forward model.

In this vein, we note that the presented inversion technique can be used in two modes: (1)

for initialization and fine-tuning of the inverse map from body-surface (BS) potentials to endo-

cardial potentials and (2) for non-invasive electronic imaging of cardiac tissue. Mode (1) can

be used, for example, to study the properties of the interstitial tissue between the torso and the

endocardium (e.g., density and permittivity). However, mode (2) would be used at a later time,

when such catheters are removed from the patient, and only BS potentials are available to study

cardiac activity (e.g., accurate localization of the site of the origin of PVC or focal VT) and for
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personalized procedure planning (e.g., ablation or other surgical interventions). While current

ECGi methods provide this capability in a number of ways,12 they have been limited in their

reconstruction accuracy, limiting their effectiveness in understanding and non-invasively local-

izing the source of AF, PVC, and VT.13 To this end, the presented algorithms attempt to

increase the accuracy of reconstructed endocardial potentials by incorporating a learning frame-

work with a naturally parametrized nonlinear reconstruction model. The resulting system is

capable of using an array of electrocardiogram (ECG) signals (with the corresponding electrode

locations), target mesh locations, and a parametric reconstruction model (summarized as a poly-

nomial network with variable coefficients), to produce an accurate 3D cardiac potential map.

From a practical viewpoint, we believe that our approach can improve the analysis capabil-

ities of cardiologists and electrophysiology specialists who are interested in studying cardiac

events in live patients. Compared with linear formulations, the presented approach provides

enhanced spatio-temporal resolution and reconstruction accuracy, which can help in identifying,

localizing, and characterizing dominant sources of AF and PVC including higher-order temporal

harmonics from high-quality localized maps of cardiac potentials rather than simple projections

of this information.7,12,14

II. RESULTS

To evaluate the proposed approach, a set of medical data was analyzed to determine the

effectiveness of the presented reconstruction technique with respect to other contemporary

methods, such as formulations based on the boundary element method (BEM). The accuracy of

our inverse solution is strongly dependent on the precision of historical measurements that are

used to optimize our inverse operator. Due to this dependency, we identified a curated open-

source data archive of high-quality in vivo measurements collected for physiological and medi-

cal studies of the cardiovascular system. For this experimentation, the electrical measurements

were acquired with precision medical instrumentation to ensure high accuracy, and other medi-

cal imaging data were also collected to supplement the ECG data.7 In this section, we highlight

our results through visualizations of imaging and reconstruction results, as well as the accuracy

of the reconstructions.

A. Non-invasive imaging and reconstruction of endocardial potentials

The inverse model was optimized on the set of body-surface potential measurements

(BSPM) and invasive endocardial measurements that were used to reconstruct the endocardial

potential map, as described in Sec. IV A. Given that both these measurements were recorded

simultaneously for the given dataset, sufficient information was available to train a model to

estimate this inverse function. To achieve this with the limited data source, the body surface

and endocardial measurements were separated into two disjoint sets. From the original data,

time samples were randomly chosen to serve as the training data. After the training data were

used to optimize the inverse network, the remaining data were used to test the reconstruction

accuracy. Because the time samples were chosen at random sample instances, the learned

inverse model is implicitly time invariant.

With the catheter endocardial measurements available, we were able to compare our recon-

struction estimate to a “ground truth” measurement. Furthermore, with the geometry of the atria

obtained from x-ray computed tomography (XRCT) imagery, the reconstructed endocardial

potentials were mapped to spatial positions on the endocardial surface for an accurate visualiza-

tion of the voltage spatial profile as in Fig. 1. The reconstructed potential is compared to the

ground truth measured potentials again, and close correspondence between the two mappings is

clear. The spatial-potential information here is a useful tool to determine and isolate concentra-

tions of electrical activity in the atria, to further aid in the noninvasive study of the electrophys-

iology of the cardiovascular system.

Two important factors under consideration when interpreting inverse mappings of BSPM to

endocardial potentials are preservation of temporal features such as harmonic content and wave-

form shape and also the smoothness of the spatial profile of the voltage pattern of the heart’s
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surface. A temporal plot of the endocardial reconstructed voltage signal at multiple points on

the heart’s surface can be seen in Fig. 2, which can be used to develop intuition into how the

inversion model reconstructs the signal. The reconstructed signal accurately tracks slowly

changing features in ground truth signals over the 7-s measurement interval. The low-frequency

content indicates accurate preservation of lower order harmonics by the inversion model, which

is an important feature for the spatio-temporal understanding of the physiology of AF.

Furthermore, the relative magnitude and scale are also preserved in the reconstruction without

the need for estimated scaling parameters, so as to provide interpretable results for users not

familiar with the specific inversion method. The reconstructed signals in Fig. 3 are also repre-

sentative of this qualitative analysis.

FIG. 1. Reconstruction of the endocardial potentials (a) and measured ground truth endocardial potentials (b) on the heart.

(a) (b)

(c) (d)

FIG. 2. Shown here are small-window time-domain reconstructions of endocardial potentials from body-surface potentials

via the presented nonlinear imaging technique.
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B. Accuracy of reconstructed endocardial voltage potentials

The performance of the reconstruction model was evaluated using several statistics. The

mean absolute error, mean relative error, and their standard deviation are displayed in Table I.

The average absolute error over the entire test dataset was found to be 0.327 mV, which

yielded a 12.47% average relative error with respect to the recorded data. Additionally, the

training results are of similar accuracy to the reconstruction results, indicating that the model is

robust to new test data and has not been over-fitted to the training data, which is an important

quality for any inversion approach.

These results indicate that a high degree of confidence may be placed in the reconstruction

of the endocardial potential distribution using the proposed methodology. As a comparison in

Table I, we list the accuracy of the inverse computed BEM results reported in Ref. 7. Here, it

should be noted that relative accuracy was reported for the normalized voltage signals of the

endocardium due to numerical scaling issues when computing BEM inverse solutions. This

metric describes how well the inversion procedure preserves the overall shape of the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. The presented nonlinear imaging technique produces high-quality time-domain reconstructions of endocardial

potentials at various catheter positions.

TABLE I. Reconstruction performance.

Absolute error (mV) Relative error (%)

Training results 0.310 6 0.321 12.07

Reconstruction results 0.327 6 0.221 12.47

Normalized reconstruction results 0.327 6 0.146 12.43

Normalized BEM results7 … 35.8
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endocardial waveform, if not the true scale. Here, our proposed reconstruction method notice-

ably outperforms the BEM solution on average over the entire dataset.

The average reconstruction error for each sensor was also averaged across the entire time

series, as can be seen in Fig. 4. Here, the average error does not exceed 0.7 mV over the vari-

ous sensor positions, indicating that the reconstruction model does not suffer from any spatial

bias. Therefore, at any point in time, given body surface potential measurements, this model

could be used to accurately reconstruct endocardial voltage potentials of the heart to within a

prescribed tolerance.

III. DISCUSSION

The results summarized here demonstrate the potential of a flexible inverse model that can be

optimized with real, high-quality measured data. The optimization can help mitigate the effects of

unknown physical quantities and parameters typically associated with inverse problems. The accu-

racy of the reconstructed cardiac potentials in the spatial-temporal domain is indicative of the valid-

ity of our optimized inverse model in comparison to other techniques. This is an important finding

given that our inversion method differs from the direct inversion of the forward model problem and

suggests that improvements can be made on the simplified physical models that are typically used.

Boundary-element method (BEM) solutions to the inverse problem have shown some success in

the reconstruction of relatively smooth cardiac potential maps. However, if the potential map is highly

varying over time, the regularization introduced in the inversion will tend to smooth out complex fea-

tures that are exhibited during AF events and thus decrease accuracy. Given that our inversion model

was optimized over BSPMs and endocardial data acquired from a patient being treated for AF, these

complex patterns in the potential maps are properly reproduced by our model [Fig. 5(c)].

While our inverse model exhibited the high accuracy in voltage potentials in the time

domain, there were some observed limitations in the spectral accuracy of the reconstruction.

Specifically, low amplitude, high frequency transients were difficult to estimate with the model.

This type of feature was observed in the original data, as can be seen in Fig. 5(d) along with

our reconstruction result. This limitation is due to the small error contributed to the overall

objective function measured over the entire dataset. The optimization will instead reconstruct a

mean constant value during these events which still yields a low-average error for the entire

duration of the signal. In this respect, the proper fidelity of the high frequency content of the

endocardial signals continues to be a limitation faced by other inverse solutions.15

The acceptance of a particular solution to inverse solutions in ECGi is still contested in

the field.10 The debate focuses on identifying and defining the optimal features in cardiac

potential mappings that best serve clinical and diagnostic goals. In general, spatio-temporal

accuracy is almost universally regarded as critical for successful inversion of BSPMs, as

FIG. 4. The average reconstruction error (a) is small over the spatial area where ground truth data were collected, with a

maximum absolute error less than 0.70 mV. This figure is compared in the context of the average signal level (b), which

varies by as much as 12 mV over the different catheter sites.
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invasive techniques used in ablation procedures mainly rely on surgeons manually probing the

endocardium and/or epicardium in real-time to identify sources of AF. Although our approach

optimized error in the temporal potential maps, other waveform constraints could easily be incor-

porated in our objective functions to help detect features of interest. This could be achieved, for

example, by including a generalized Tikhonov regularization in addition to the Sobolev-norm reg-

ularization that was used, e.g., via a non-uniformly weighted-norm or band-pass filter.

Finally, we note that while the presented methods have demonstrated quantitative improve-

ments in the time-domain-independent reconstruction of cardiac potential maps from BS poten-

tials, the ultimate utility of this application depends on the clinical and diagnostic needs of elec-

trophysiologists who would rely on such information to refine patient prognosis. In particular,

the presented approach to non-invasive cardiac mapping provides a promising outlook for the

use of non-invasive ECGi to monitor and study cardiac disease because it offers a flexible

learning-based framework that leverages previous measurements to refine features of cardiac

reconstructions that hold diagnostic value.

IV. METHODS

The authors state that an ethics approval is not required.

A. Experimentation and data collection

The experimental data in this paper were provided through the Consortium for Electro-

cardiographic Imaging (CEI), a group of engineers, scientists, and clinicians who develop clini-

cally and physiologically meaningful tools for simulation, modeling, statistical, and comparison

(a) (b)

(c) (d)

FIG. 5. Time-domain reconstructions using a standard BEM method can produce significant error in the voltage signal (a)

and (b). The presented polynomial reconstruction technique can both recover a significant portion of the missing large-

signal information (c) and still exhibit some temporal inaccuracies in the small-signal reconstruction due to the inherent

time-invariant nature of the model (d). (a) Catheter No. 8 Time Reconstruction (b), Catheter No. 8 Time Reconstruction

Zoomed (c), Catheter No. 8 Time Reconstruction, and (d) Catheter No. 8 Time Reconstruction Zoomed.
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studies of electrocardiographic imaging. The experiments were conducted at the Hospital

General Universitario Gregorio Maranon in Madrid, Spain, in collaboration with the Universitat

Politecnica de Valencia in Valencia, Spain. In this paper, we examine electrical measurements

of one male patient (aged between 40 and 50 years old), who was admitted for drug-refractory

paroxysmal atrial fibrillation. The voltage measurements were composed of both body surface

(BS) potential mappings and endocardial surface potentials. The body surface potential maps

were obtained on the surface of the patient’s torso with a custom made electrocardiographic

vest, and the endocardial potentials were measured through an electrical catheter probe in con-

tact with the surface of the atria.7,14

Non-invasive reconstruction of the potential maps on the atria’s surface requires mapping

of the body surface potential across the subject. To measure the body surface potential maps

(BSPMs), multiple electrocardiograms (ECGs) were measured at discrete positions on the

patient’s torso. A total of 54 ECGs were measured with body surface leads placed on the torso

surface and electrically referenced to the Wilson Central Terminal (WCT). To determine the

locations of the BS leads, a 3D model of the patient was constructed from multiple optical

images captured prior to the data collection. Additionally, the surface geometry of the patient’s

torso and atria was obtained from pre-scanned XRCT images with a resolution of 5 mm. These

CT images were then co-registered to the optically generated 3D models to ensure that the BS

lead locations, torso surface, and atria surface geometries were also referenced to the same

coordinate system.16,17 It can be noted that the proposed reconstruction method does not explic-

itly require high accuracy positional information.

Similar to the BSPMs, multiple endocardial potentials were also recorded internally at dif-

ferent spatial positions. These electrical signals were acquired with a 64-pole basket catheter

(Constellation, Boston Scientific, Natick, MA), surgically placed in contact with the surface of

the atria. The position of the catheter leads was recorded through the catheter’s internal body

navigation system. The positional accuracy of the leads was reported to be < 10 mm with

respect to the geometry of the atria’s surface. A rendering of the torso’s surface mesh and heart

surface mesh along with the locations of the electrical leads can be seen in Fig. 6. The ECG

recordings for both the endocardial leads and BS leads were acquired simultaneously at a fixed

sampling rate of 2035.5 Hz. A total length of 7.4 s of data was recorded from all channels,

which was used to help construct our inversion model as discussed in more detail in Sec. IV B.

FIG. 6. The surface mesh of the torso (a) and heart (b) is shown here, along with the corresponding locations of the electri-

cal leads.
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B. Inverse function modelling

As mentioned, conventional approaches to ECGi have considered inversion techniques

based on simplifications of the more general inverse scattering problem, e.g., by assuming line-

arity, the number and geometry of dielectrics, and the distribution of excitation sources within

the endocardium. To a large extent, these approaches to the linear inverse problem can be sum-

marized as modeling the relationship between the potentials on the atrial surface UA and poten-

tials on the torso UT as

UT ¼ M � UA; (1)

where M represents a linear operator that can be constructed in a number of ways from the

assumed geometry, material parameters (e.g., permittivities and permeabilities), governing equa-

tions of the medium (e.g., Maxwell’s equations and Coulomb’s law), and the chosen discretiza-

tion and associated approximation scheme (e.g., diffeo-integral equation formulation as

boundary-elements, finite-volumes, or finite-differences). While in general M represents an

infinite-dimensional operator, in practice, it is realized as a finite-dimensional operator Mk rep-

resenting a subset of the corresponding rows of M. However, for clarity in our presentation, we

will use M to refer to Mk.

Of course, to a large extent, the materials and geometries of the torso can be estimated

with considerable accuracy, using noninvasive techniques such as x-ray computed tomography

(XRCT) and magnetic resonance imaging (MRI) techniques, as well as historical anatomical

measurements from cadavers. In fact, these are often used to initialize discretized models of M
used in the forward formulation, even though the condition-number of this matrix is typically

large, resulting in large changes to the unknown UA with respect to relatively small perturba-

tions of the known UT. This property is reflective of the inherent ill-posed nature of the inverse

problem and is typically handled by addition of a regularization parameter that is computed as

a part of the reconstruction. For example, in medical imaging, the zero-order Tikhonov method,

which is a type of L2 regularization, is used as

UA ¼ ðMT �M þ kIÞ�1MTUT ; (2)

where the regularization parameter k is chosen heuristically during the image formation pro-

cess, and the choice k ¼ 0 corresponds to the usual least-squares solution to a discrete form

of Eq. (1).

In this work, we consider a simple modification to this formulation that allows us to opti-

mize and reduce uncertainty in the material parameters and geometries that arise in discrete

matrix M based on historical data of patients, thereby resulting in a lower overall reconstruction

error. In short, we consider the replacement of the Moore-Penrose operator used in the least-

squares solution, by a power-series expansion. For example, if A¼M is a finite-dimensional

square invertible matrix, its inverse can be written down exactly as

pðAÞ ¼ An þ cn�1An�1 þ � � � þ c1Aþ ð�1ÞndetðAÞIn; (3)

where the coefficients ci are given by elementary symmetric polynomials of the eigenvalues of

A, and these polynomials can be re-written using Newton identities in terms of the power sum

symmetric polynomials of the eigenvalues sk ¼
Pn

i¼1 kk
i ¼ trðAkÞ as

A�1 ¼ ð�1Þn�1

det A
ðAn�1 þ cn�1An�2 þ � � � þ c1InÞ

¼ 1

det A

Xn�1

k¼0

ð�1Þnþk�1 An�k�1

k!
Bkðs1;�1!s2; 2!s3;…; ð�1Þk�1ðk � 1Þ!skÞ; (4)

where Bk represent the Bell polynomials of order-k and n is the dimension of A.
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Besides allowing for better numerical control over the inverse, using this expansion also

enables us to directly optimize parametrizations of the matrix M, i.e., by finding more suitable

dielectric parameters, attenuation, or absorption coefficients, which minimize the maximum

residual error between ground truth measurements of UA and transformations of the input UT,

denoted as ÛA. In practice, we truncate the series at a smaller number p< n for run-time effi-

ciency, even though a slightly higher number is typically used during the optimization phase

for optimal results.

C. Polynomial neural network

We generalize this scheme to scenarios where M is slightly non-square,18,19 by introducing

additional weighting parameters that are used as a surrogate for the determinant computation

(i.e., scaling), and empirically mitigate the effects of series truncation. In particular, by noticing

that the expansion in Eq. (4) represents an (n – 1)-th order polynomial expression in A, we can

re-interpret the reconstruction algorithm as a high-dimensional polynomial approximation algo-

rithm or a neural network.20,21 That is, we can generalize Eq. (4) as

A�1 �
Xn�1

k¼0

xkðAÞ � An�k�1; (5)

�
Xp

k¼0

x̂kðAÞ � Ak; (6)

where we have intentionally absorbed both the geometry dependent and independent coeffi-

cients of the summation into the parameters x̂k and truncated the series to a summation of the

first p powers of A. The benefit of this formulation is that it can be easily expanded to mimic

even more general polynomial approximation algorithms. For example, in our experiments, we

naturally expanded this formulation [Eq. (6)] by composition as

ÛA ¼
Xp

k¼0

xk � ðM � UTÞk; (7)

where � represents the element-wise Schur-product and ÛA is the reconstructed Rm�1 potential

map. We allow xk 2 Rm for M 2 Rm�n, and we empirically chose p¼ 3 in our experiments.

We note that when xk ¼ 0 8 k 6¼ 0 and x0 ¼ em, the reconstruction algorithm is exactly equiva-

lent to the linear case. From a practical point of view, we believe that this initialization yields

desirable improvements in the overall accuracy even when trained with only simple descent

strategies, as described in the following.

D. Regularized gradient descent with line search

As mentioned in our experiments, the parameters of M were found via optimization using

instantaneously corresponding pairs of body-surface (torso) potential UT and endocardial poten-

tial UA which were measured in vivo. Starting from an initial estimate of the parameters (based

on simple forward/inverse models of the problem), gradient descent with line search was used

to optimize our inverse model with respect to the available patient training data. That is, the

“optimal” parameters of M can be found by minimizing the objective

M̂ ¼ arg min
M

E ¼ arg min
M
jjÛA � UAjj22; (8)

where ÛA was computed from Eq. (7) and UA represents the ground truth atrial voltage signal.

To mitigate the effects of limited data (e.g., small aperture size), discretization, and modeling
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errors during reconstruction, we augment this objective with a Sobolev-norm regularization

term as

M̂ ¼ arg min
M

E ¼ arg min
M
jjÛA � UAjj22 þ kjjrUT

ÛAjjss; (9)

which provides a bound on the roughness of the reconstruction algorithm with respect to the

input data. The Sobolev-norm is known in approximation theory to be a natural surrogate for

conventional L2 regularization such as total-variation (TV) or Tikhonov regularization, which

are often sensitive to the choice of k.22,23 Instead, weighting the objective function by the

Sobolev-norm of the differentiable inverse map allows practitioners to analytically tune the sen-

sitivity of the reconstruction algorithm to the input data rather than using perceptual image-

quality metrics on the output reconstruction (e.g., graphical L-curve method).24,25 It is worth

noting that in this formulation, regularization is applied only during the “training phase” and

not during reconstruction.

In our experiments, different values of M were found and evaluated via the update strategy

Mtþ1 ¼ Mt þ ctrME; (10)

where rME represents the normalized direction of the gradient of the objective function with

respect to the parameters of M, and ct 2 ½�1; 1� is the step-size that was selected to minimize

the objective at training iteration t. In practice, ct is selected from a discrete set of r trials, by

applying updates along the gradient direction (with different magnitudes), evaluating the objec-

tive at these various points as Et;rðMÞ, and selecting the update that yields the lowest error.

E. Measurement of errors

In the described experiments, we used the raw BS and endocardial measurements available

in the described dataset, with little to no pre- or post-processing. The reported absolute and rel-

ative errors were computed directly from the output of the polynomial network at each discrete

time-point k and averaged as follows:

e k½ � ¼ jU k½ � � Û k½ �j; (11)

Mean Absolute Error mV½ � ¼ 1

T

XT

k

e k½ �; (12)

r k½ � ¼ jU k½ � � Û k½ �j2

U k½ �
8U k½ � 6¼ 0; (13)

Mean Relative Error %½ � ¼ 1

T0

XT0

k

r k½ � 8 k 2 T0 s:t:U k½ � 6¼ 0: (14)

In particular, we note some measurements (a total of 6 time-points over the entire dataset)

were excluded from the relative error computation (i.e., when the recorded endocardial potential

value was effectively 0) for interpretability. Measuring both the absolute and maximum error

ameliorates the missing data in these cases.
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