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IN TER LEUK IN -10 (IL-10) is a cytokine derived from CD4
+

T-helper type 2 (TH2 ) cells identified as a suppressor
of cytokines from T-helper type 1(TH1 ) cells. Inter-
leukin-12 (IL-12) is produced by B cells, macrophages
and dendritic cells, and primarily regulates TH1 cell
differentiation, while suppressing the expansion of
TH 2 cell clones. Interferon- g (IFN- g ) is a product of
TH 1 cells and exerts inhibitory effects on TH 2 cell
differentiation. These cytokines have been implicated
in the pathogenesis of asthma and allergies. In this
context, IL-12 and IFN-g production in asthma have
been found to be decreased, and this may reduce their
capacity to inhibit IgE synthesis and allergic inflam-
mation. IL-10 is a potent inhibitor of monocyte/
macrophage function, suppressing the production of
many pro-inflammatory cytokines. A relative under-
production of IL-10 from alveolar macrophages of
atopic asthmatics has been reported. Therapeutic
modulation of TH 1 /TH 2 imbalance in asthma and
allergy by mycobacterial vaccine, specific immuno-
therapy and cytolineÐguanosine dinucleotide motif
may lead to increases in IL-12 and IFN-g production.
Stimulation of IL-10 production by antigen-specific
T-cells during immunotherapy may lead to anergy
through inhibition of CD28-costimulatory molecule
signalling by IL-10s anti-inflammatory effect on baso-
phils, mast cells and eosinophils.
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Introduction

The chronic airway inflammation of asthma is charac-
terised by infiltration of the airway wall by diverse
effector cells, including T lymphocytes, eosinophils,
monocytes/macrophages, mast cells, and occasion-
ally, neutrophils.1– 3 The airway wall undergoes
chronic structural changes labelled as remodelling,
which include thickening of the airway smooth
muscle due to hypertrophy and hyperplasia, myofi-
broblast activation with increase in subepithelial
basement membrane collagen deposition, angiogene-
sis and increase in submucosal blood vessels and an
increase in goblet cell numbers in the airway epithe-
lium.4,5 The mobilisation, activation and trafficking of
effector cells to the airway are controlled by a
complex cytokine milieu derived from activated
CD4+ THelper (TH ) cells and also from other resident
airway cells including airway smooth muscle and
epithelial cells. THelper cells of type 2 variety (TH2 )
secrete a TH2 profile of cytokines, after cognate
stimulation of the näõ ve T-cell by antigen presenting
cells, such as the dendritic cell and the alveolar
macrophage. TH2 cytokines include IL-4, IL-5, IL-9, IL-
10 and IL-13. These cytokines promote various
elements of allergic inflammation including propaga-

tion of the TH2 phenotype, isotype-switching from
IgG1 to IgE synthesis, eosinophil mobilisation, matura-
tion and activation and mast cell activation.6 Chronic
airway structural changes too are variably influenced
by TH2 cytokines, and certain growth factors.

TH1 cells form a natural counterbalance to TH2 cells
driving protective cell-mediated immunity, and are
induced on exposure to foreign agents including
protozoa, bacteria and viral particles. TH1 responses
are characterised by the induction of cell mediated
immune responses and the synthesis of IgG2a , while
TH2 responses are of humoral-type, inciting the
production of IgE and IgG4 TH1 responses inhibit TH2

responses through the production of cytokines such
as IL-12 and IFN- g . There is evidence for a preferential
skewing to the expansion of the CD4+ TH2 lympho-
cyte subset in allergic processes, while CD4+ TH1

responses may be subdued and this is a likely crucial
forerunner to development of allergic asthma. In this
context, the TH1 cytokines, IL-12 and IFN- g , may be
considered to be ‘anti-inflammatory’ in that they
inhibit certain responses attributable to TH2 cell
activation, while the TH2 cytokine, IL-10, under
certain circumstances, may inhibit pro-inflammatory
activation of certain cells. The manipulation of the
immune allergic system to promote TH1 responses
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involves the upregulation of IL-12 and INFg , and
under certain circumstances, of IL-10, which can
prevent the establishment of allergy and of various
manifestations of allergic inflammation.

In this review, the important roles of IFN- g , IL-10
and IL-12 in inducing the therapeutic benefits of
various immune therapies for allergy and asthma will
be examined first, followed by a systematic review of
these anti-inflammatory cytokines.

Immunological imbalance of TH1 & TH2
cells

The vast majority of asthmatics have an atopic
background, in whom the inflammatory process of
asthma may be driven following sensitisation and
exposure to common aeroallergens to which they
become sensitised to. Allergen-derived peptides are
usually taken up by specialised cells on mucosal
surfaces such as dendritic cells, and subsequently
processed and presented to näõ ve T-cells. The activa-
tion of näõ ve T-cells requires direct signalling by 2
distinct pathways: firstly via the CD4+ T-cell receptor
through the antigen-presenting cell (APC)-bound
antigen to MHC-II complex and, secondly, via the co-
stimulatory pathway linked by the B7 family and
T-cell bound CD28.7 T-cells stimulated via the T-cell
receptor (TCR) in the absence of co-stimulatory
signalling are incapable of IL-2 secretion and sub-
sequent activation and therefore enter an anergic
state.8 CD28 itself has 2 major ligands, B7.1 which
inhibits TH2 cell activation and development, and
B7.2, which induces T-cell activation, and TH2 devel-
opment. An important third ligand, CTLA4, is
expressed on activated T cells, binds CD28 with
enhanced avidity and acts as a negative regulator of
T-cell function by inhibiting TH2 differentiation.9,10 In
those who later develop an allergic response, näõ ve
T cells differentiate into the TH2 subtype. This
differentiation is induced by cytokines themselves,
and may be secreted by antigen-stimulated T cells
themselves, or by other cells that become activated
by T cell cytokines. IFN- g secreted by TH1 cells
activate macrophages and dendritic cells, and in turn
induces them to produce IL-12, the main TH1-
inducing cytokine. TH1 and TH2 cells produce cyto-
kines that cross-regulate and antagonise each other’s
activity and development. IL-4 can inhibit IL-12
production, and TH2 cytokines (IL-4, –10 and –13)
antagonise the macrophage-activating properties of
TH1 cytokines. IFN- g is involved in the TH1 inhibition
of the effects of TH2 cells, such as bronchial hyper-
esponsiveness, eosinophilia and mucus goblet cell
hyperplasia.11,12

T-cell profiles in the newborn demonstrate a TH2

bias suggesting that prenatal influences are involved
in T-cell priming.13 During the course of maturation of
the normal infant, however, increased TH1 expression

occurs and the TH2 imbalance is overcome.14 Delay or
failure of this TH1 response may result in TH2

persistence and atopy or atopic disease, and in infants
destined to become atopic, circulating lymphocytes
have impaired production of IFN- g .15 Recently, a
‘hygiene hypothesis’ has been put forward stating that
a diminished induction of TH1 responses is a potential
explanation for the rising prevalence of atopy and
asthma.13,16 Cross-sectional surveys have identified
inverse relationships between prior microbial expo-
sure and development of atopy.15,17 Further, respira-
tory allergy appears less frequently in those heavily
exposed to orofaecal and foodborne microbes.16

Improved hygiene, early infection and antibiotic use,
and a westernised or semi-sterile diet may facilitate
atopy by influencing exposure to commensals and
pathogens that stimulate immune cell populations
such as gut-associated lymphoid tissue.18,19 Thus,
early environmental exposure may be a determinant
of the development of atopy in the adult.20 The
identification of ways to prevent, control or even
reverse the process of TH2 immunodeviation has
become a focus for the development of new strategies
to control asthma and allergies.

Therapeutic TH1/TH2 modulation: roles of
IL-10, IL-12 and IFN- g

The potential therapeutic roles of IL-10, IL-12 and
IFN-g in allergies and asthma are well illustrated by
various potential treatments. Specific immunother-
apy (SIT) by administration of allergen extracts is a
treatment aimed at the induction of specific unre-
sponsiveness, or anergy, in peripheral T-cells to
peptide epitopes. This treatment has been success-
fully used in asthma and allergic rhinitis and for
venom allergy,21,22 but is usually most useful in
subjects allergic to single allergens such as grass
pollens, and in subjects with mild forms of allergic
diseases.23,24. Peripheral T-cells following SIT are
characterised by reduced IL-4 and IL-5, and
increased IFN- g production by CD4+ T cells25 –27 and
by attenuated proliferative responses to specific
allergens.28 This process is initiated by an autocrine
effect of IL-10 produced by antigen-specific
T-cells.29 –31 IL-10 induces anergy by inhibition of
CD28-costimulatory molecule signaling,32,33 and also
by anti-inflammatory effects on basophils, mast cells
and eosinophils. There are reduced levels of IL-4 and
IL-5 and increased IFN- g production, indicating a
shift of the T cells towards an increased TH1

response at the expense of TH2 responses.25,26 After
successful grass pollen immunotherapy, there is also
an increase in IL-12 and IFN- g mRNA expression in
tissues.34,35

The potential benefit of the mycobacterial vaccine,
Bacille-Calmette-Guerin (BCG) (Mycobacterium
bovis) vaccination, in atopic diseases was suggested
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by the association between BCG vaccination and
diminished incidence of atopy and allergic disease in
Japanese schoolchildren, indicating a role for early
mycobacterial exposure in the subsequent develop-
ment of atopic responsiveness.15 Mice vaccinated
with BCG prior to allergen sensitisation had increased
IFN-g and decreased IL-4 and IL-5 expression along
with reduced levels of airway T-cells and eosinophilia
and bronchial reactivity.36,37 Local production of IFN-
g induced by the BCG vaccine was the major cytokine
involved in blocking atopic disease in the lung.36

Mycobacterium vaccae is ubiquitously present in the
soil as a saprophyte and can evoke a strong produc-
tion of IFN- g . Suppression of TH2 activation has been
demonstrated using heat-killed M. vaccae in
mice.38 –40

The cytosine–guanosine dinucleotide repeat,
when present in a particular base context, is known
as a CpG motif and is an important prokaryotic
immunomodulatory effector whose role is probably
that of a warning or priming agent against bacterial
infection.41 This motif is expressed at very low
frequency in vertebrates, in a non-functional methyl-
ated form, and hence is without function. CpG
vaccination directly induces antigen-presenting cells
and B-lymphocytes to release IL-12, IL-18 and TNF g
effectively, suppressing TH2 responses by inducing
the TH1 phenotype. These CpG oligodinucleotides
(ODN) prevent the development of eosinophilic
airway inflammation, allergen-induced elevation of
serum IgE and bronchial hyper-responsiveness in
murine asthma models,42 and can also reduce estab-
lished inflammation.42 –44 The protective effects of
CpG-ODN appear to be due to an induction of IL-12
and IFN-g .42,45 Other mechanisms may also be
involved.46

Specific cytokine profiles

Interleukin-10

Synthesis and release.
IL-10, previously known as cytokine synthesis inhib-
itor factor (CSIF), was originally identified as a
product of murine T helper (TH2 ) clones that sup-
pressed the production of cytokines by TH1 clones
responding to stimulation of antigen.47 In humans,
TH0 , TH1 , and TH2 -like CD4+ T cell clones, cytotoxic
T-cells, activated monocytes and peripheral blood T
cells including CD4+ and CD8+ T-cells have the
capacity to produce IL-10.48,49 An autocrine action of
IL-10 with increased production of IL-10 by antigen-
specific cells may be responsible for the induction of
anergy.31 Mast cells also have the capacity to produce
IL-10. Constitutive IL-10 secretion occurs in the
healthy lung with the major source being the alveolar
macrophage; however, the circulating monocyte elab-
orates more IL-10 than the alveolar macrophage.50

Receptors and signalling pathways.
IL-10R has been characterised and cloned from a
human lymphoma cell line,51 and is expressed in
several lymphoid and myeloid cells,52 and also on NK
cells.53 The IL-10R is made up of 2 subunits, which
belong to the same class of receptor family that also
contains receptors for IFN- g .54 The IL-10 receptor
a -chain (110 kDa) mediates high-affinity ligand bind-
ing and signal transduction,51,55 while the b subunit
(40 kDa) is required for signalling.56 The functional IL-
10R complex is a tetramer consisting of 2 IL-10
a -chains and 2 IL-10 b -chains. Activation of IL-10R
leads to the activation of JAK-STAT signalling pathway,
with activation of JAK-1 by the a chain and TYK2 by
the b chain. These kinases then phosphorylate
specific tyrosine residues on the intracellular domain
of the IL-10R a chain. Once phosphorylated, these
tyrosine residues serve as temporary docking sites for
the latent transcription factors STAT1, STAT3 and
STAT5.57,58 STAT3 is directly recruited to the IL-10R a
and becomes phosphorylated by receptor-associated
JAK kinases. STAT1 is also activated in macrophages.
Upon phosphorylation, STAT1 and STAT3 homo/
heterodimerise and translocate to the nucleus where
they bind with high affinity to STAT-binding elements
in the promoters of various IL-10-responsive genes.
One of these genes, SOCS-3 (suppressor of cytokine
signalling-3) is a member of a newly identified family
of genes that inhibit JAK/STAT-dependent signalling.
The ability of IL-10 to inhibit gene expression in
monocytes is associated with its ability to rapidly
induce the synthesis of SOCS-3.

Effects.
IL-10 is a pleiotropic cytokine that can exert either
immunosuppressive or immunostimulatory effects on
a variety of cell types. IL-10 is a potent inhibitor of
monocyte/macrophage function, suppressing the pro-
duction of a number of pro-inflammatory cytokines,
including TNF- a , IL-1 b , IL-6, MIP-1 a and IL-8,59 –61

although the release of MCP-1 is increased.61 IL-10
inhibits monocyte MHC Class II, B7.1/B7.2 and CD23
expression and accessory cell function. Accessory
signals mediated by B7 molecules through CD28 on
the surface of T-cells are essential for T-cell activation.
Expression of IL-10 by antigen-presenting cells may be
an established pathway for the induction of antigen-
specific tolerance, such as that to allergens.62 By
contrast, IL-10 up-regulates the monocyte expression
of IL-1ra, another antiinflammatory cytokine.63 IL-10
suppresses the synthesis of superoxide anions and
NO by activated monocytes/macrophages.64 An IL-10
antibody enhances the release of cytokines from
activated monocytes, suggesting that this cytokine
may play an inhibitory role when the cell is stimu-
lated.60 IL-10 inhibits the stimulated release of
RANTES and IL-8 from human airway smooth muscle
cells in culture.65,66
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IL-10 inhibits the production of IFN- g and IL-2 by
TH1 lymphocytes,47 and IL-4 and IL-5 production by
TH2 cells by interfering with B7-CD28-dependent
signals.67,68 IL-10 inhibits the proliferative T cell
response in peripheral blood mononuclear cells to
various antigens, and the superantigen staphyloccocal
enterotoxin B. IL-10 selectively inhibits the anti-CD28
stimulated proliferation of purified CD45RO+ T cells.
There is a constitutive association of CD28 with the
IL-10 receptor, and IL-10 acts directly on the CD28
signalling pathway to inhibit CD28 tyrosine phos-
phorylation and binding to phosphatidylinositol
3-kinase.69 IL-10 also inhibits eosinophil survival and
IgE synthesis induced by IFN- g . On the other hand, IL-
10 acts on B-cells to enhance their viability, cell
proliferation, immunoglobulin secretion with the
isotype switch and class II MHC expression. IL-10
decreases IL-4-induced IgE switch in peripheral blood
mononuclear cells, but potentiates IgE production in
B-cells that are already switched to produce IgE.70 IL-
10 is also a growth co-stimulator for thymocytes and
mast cells,71 as well as an enhancer of cytotoxic T cell
development.72 IL-10 increases Bcl-2 expression and
survival of primary human CD34+ progenitor cells
committed to the myeloid lineage.73 IL-10 also acti-
vates the transcription of genes for mast-cell derived
proteases. IL-10 enhances the production of the tissue
inhibitor of metalloproteinases of monocytes and
tissue macrophages while decreasing metalloprotei-
nase biosynthesis.74

Role in allergy and asthma.
There is significantly less IL-10 mRNA and protein
expressed in alveolar macrophages of asthmatic
subjects compared to those from non-asthmatic
individuals.75,76 Triggering of CD23 molecule by anti-
CD23 monoclonal antibodies induces IL-10 produc-
tion by human monocytes.77 An IL-10 polymorphism
on the transcription initiation site could be responsi-
ble for reduced IL-10 release.75 Another polymor-
phism upstream from this site was associated with
elevated total serum IgE.78 Inhaled corticosteroid
therapy restores the reduced IL-10 release from
macrophages of asthmatics76 and theophylline increa-
ses IL-10 secretion.79 On the other hand, other studies
indicate that there are increased number of macro-
phages and T-cells expressing IL-10 mRNA in bron-
choalveolar lavage fluid of patients with asthma.80

Studies regarding the role of IL-10 in allergic mouse
models have provided some conflicting results. Co-
instillation of IL-10 by the intranasal route significantly
inhibits the peritoneal and lung eosinophilia induced
by ovalbumin in immunised mice;81–83 however, IL-10
augmented airway responsiveness. Concurrent
expression of IL-10 and GM-CSF in the airway
epithelium led to a suppression of GM-CSF-driven
ovalbumin-specific eosinophilic inflammation with
decreased IL-4, IL-5 and TNF g expression. However, in

IL-10 gene knock-out mice, allergen-induced eosino-
philic inflammation, IL-5 production and airway
hyper-responsiveness were inhibited.84 –86 These stud-
ies in mice indicate that IL-10 may augment or
decrease allergic inflammatory responses, but could
worsen airway responsiveness.

IL-10 is involved in the induction of specific anergy
in peripheral T cells during specific immunotherapy,
characterised by suppressed proliferative and cyto-
kine responses. IL-10 administration before allergen
exposure induces antigen-specific T cell tolerance.31

IL-10-derived regulatory CD4+ T cells producing IL-10
but not IL-2 and IL-4 suppresses antigen-specific T cell
response in vitro and prevented antigen-induced
murine colitis.87 Administration of IL-10 to normal
volunteers induced a fall in circulating CD2, CD3,
CD4 and CD8 lymphocytes with suppression of
mitogen-induced T-cell proliferation and reductions in
TNF-a and IL-1b production from whole blood
stimulated with endotoxin ex-vivo.88

Interferon- g

Synthesis and release.
IFN-g was originally identified as a product of
mitogen-stimulated T lymphocytes that inhibited viral
replication in fibroblasts. The known sources of IFN- g
are CD4+ and CD8+ T-cells and NK cells.

Receptors and signalling.
The receptor is expressed on T-cells, B-cells, mono-
cytes/macrophages, dendritic cells, granulocytes and
platelets. Epithelial and endothelial cells also express
these receptors. IFN- g receptor consists of an a -chain
(90 kDa) which is the major ligand binding subunit,
and of a b chain (65 kDa) which increases the affinity
of the a chain for its ligand, but is obligatory for
transducing the IFN- g signal.89,90 Signalling through
the IFN- g receptor is mediated through JAK1 and
JAK2, which are constitutively associated with spe-
cific membrane proximal residues on the cytoplasmic
domain of the receptor.91,92 Activated JAKs phosphor-
ylate a specific tyrosine residue, to which STAT-1
binds through its SH2 domain.93 STAT-1 is in turn
phosphorylated by receptor-associated JAKs and hom-
odimerisation of 2 STAT-1 proteins form a protein
complex, GAF (gamma-activated factor).94 STAT-1
homodimer translocates to the nucleus where it binds
to a consensus sequence leading to modulation of the
expression of many genes. The recently identified
SOCS (suppressors of cytokine signalling) family of
proteins inhibits IFN- g signalling through the preven-
tion of JAK kinase activation.95

Effects.
IFN-g has extensive and diverse immunoregulatory
effects on various cells. It is produced by TH1-cells and
exerts an inhibitory effect on TH2-cells.96 IFN-g
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inhibits antigen-induced eosinophil recruitment in
the mouse.97 However, IFN- g may also have proin-
flammatory effects and may activate airway epithelial
cells to release cytokines and express adhesion
molecules.98 IFN-g has an amplifying effect on the
release of TNF- a from alveolar macrophages induced
by IgE triggering or by endotoxin99,100 and increases
the expression of class I and class II MHC molecules
on macrophages and epithelial cells. IFN- g is a
powerful and relatively specific inhibitor of IL-
4-induced IgE and IgG4 synthesis by B-cells.

IFN-g increases the production of IL-1, PAF and
H2O2 from monocytes, in addition to down-regulat-
ing IL-2-induced IL-8 mRNA expression.101–103 IFN-g
also synergises the effects of TNF- a in the produc-
tion of RANTES from airway smooth muscle cells.65

On the other hand, IFN- g inhibits IL-10 production
from monocytes,104 which in turn leads to an up-
regulation of TNF- a transcription.105 Thus, IFN- g
promotes cell-mediated cytotoxic responses, while
inhibiting allergic inflammation and IgE synthesis.
IFN-g up-regulates class II molecules on monocytes/
macrophages and dendritic cells, and induces
de novo expression on epithelial, endothelial and
other cells, thus making them capable of antigen
presentation.

Role in allergy and asthma.
There is reduced production of IFN- g by T-cells of
asthmatic patients and this correlates with disease
severity.106,107 No polymorphism of the IFN- g gene
has been associated with asthma.108 Administration of
exogenous IFN- g prevents the airway eosinophilia and
hyper-responsiveness following allergen exposure in
mice.109,110 Liposome-mediated gene transfer of IFN- g
to the pulmonary epithelium in sensitised mice
before secondary antigen exposure also inhibited the
pulmonary allergic response.111 IFN- g receptor
knock-out mice develop a prolonged airway eosino-
philia in response to allergen.112 IFN- g inhibits
allergic eosinophilia109,113 and airway hyper-respon-
siveness, probably by inducing the formation of IL-10.
These studies indicate that IFN- g has a potential
modulating effect on allergen responses. The inhibi-
tion of the effects of allergen-specific TH2 cells, such
as eosinophilia, mucus goblet cell hyperplasia and
bronchial hyper-responsiveness, by allergen-specific
TH1 cells is mediated by IFN- g .11,12 Allergen immuno-
therapy of asthmatic patients results in increased
production of IFN- g by circulating T-cells114 and in an
increase in IFN- g producing T-cells in nasal biop-
sies.115 Corticosteroid treatment also increases IFN- g
expression in asthmatic airways,116 but in corticoste-
roid-resistant patients IFN- g is unexpectedly
reduced.117 In asthmatic patients, nebulised IFN- g
reduces the number of eosinophils in bronchoalveo-
lar lavage, indicating its therapeutic potential in
asthma.118

Interleukin-12

Synthesis and release.
IL-12 was initially recognised as a cytokine capable of
synergising with IL-2 to increase cytotoxic
T-lymphocyte responses, and also as an inducer of
IFN-g synthesis by resting human peripheral blood
mononuclear cells in vitro. IL-12 is secreted by
antigen-presenting cells, including B lymphocytes,
monocytes/macrophages and dendritic cells.119,120 IL-
12 mRNA has been localised to eosinophils in
bronchoalveolar lavage fluid and in peripheral
blood.121

Receptors and signalling.
The IL-12 receptor is composed of two subunits ( b 1
and b 2),which are members of the haemopoietin
receptor superfamily with strong homology to the
gp130 receptor.122 The b 1 receptor is not able to
transduce an IL-12-mediated signal, while the b 2
subunit when co-expressed with the b 1 subunit forms
a high-affinity receptor for IL-12 and results in
signalling.123 IL-12R b 2 expression is differentially
regulated in TH1 as opposed to TH2 cells,124 while TH1

cells but not TH2 cells express the b 2 subunit.125 On
binding of IL-12 to IL-12R, activation of JAK kinases
occurs, leading to phosphorylation of the receptor,
which become binding sites for STATs that are rapidly
recruited to the receptor and tyrosine-phosphory-
lated by JAK kinases. Tyrosine phosphorylation of
STAT proteins induces their dimerisation and trans-
location to the nucleus where they bind to specific
sequences and regulate transcription. IL-12 stimula-
tion causes TYK2 and JAK2 phosphorylation, and
interaction of TYK2 with IL-12R b 1 subunit and
interaction of JAK2 with the IL-12R b 1 subunit.126,127

In TH1 cells and NK cells, IL-12 induces STAT4 to be
tyrosine phosphorylated and activated.126,128 STAT1,
STAT3 and STAT5 can also be activated by IL-
12.128,129

Effects.
IL-12 enhances the growth of activated T-cells and NK
cells130 –133 and enhances cytotoxic T-cell and NK
activity.130,134,135 IL-12 stimulates NK cells and T-cells
to produce IFN- g , 134,136 –138 promotes in vitro
differentiation of mouse and human T-cells that
secrete IFN- g and TNF-a ,132,136,139,140 and inhibits the
differentiation of T cells into IL-4 secreting cells.139,140

IL-12 indirectly inhibits IL-4-induced human IgE res-
ponses by IFN- g -dependent and -independent mecha-
nisms in vitro.141 Thus, IL-12 can primarily regulate
TH1 cell differentiation, while suppressing the expan-
sion of TH2 cell clones,139 by early priming of
undifferentiated TH cells for IFN- g secretion.142

Together with IL-18, IL-12 induces anti-CD40 acti-
vated B cells to produce IFN- g , which inhibits IL-4
dependent IgE production.143 Thus, IL-12 may direct
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the development of TH1 -like T-cell responses against
intracellular pathogens, whilst inhibiting the develop-
ment of TH2-like responses and IgE synthesis. IL-12
may also regulate airway eosinophilia.144 IL-12 may
play an important role in inhibiting inappropriate IgE
synthesis and allergic inflammation as a result of
allergen exposure.

Role in allergy and asthma.
A decreased number of IL-12 mRNA positive cells in
airway mucosal biopsies from patients with asthma
has been reported.145 Corticosteroid treatment led to
a reduction in the number of IL-12 mRNA expressing
cells in steroid-sensitive asthmatics, but had no effect
in steroid-resistant asthmatics.145 IL-12 production
from whole blood cultures from patients with allergic
asthma was reduced when compared to those from
nonatopic control subjects, together with a reduction
in IL-12-dependent IFN- g production.146 Similarly, the
percentage of peripheral blood eosinophils from
asthmatic subjects expressing IL-12 mRNA was lower
compared to nonatopic controls.121

IL-12 may play an important role in inhibiting
inappropriate IgE synthesis and allergic inflammation
as a result of allergen exposure. Thus, IL-12 treatment
of mice during active sensitisation reduced antigen-
induced influx of eosinophils in bronchoalveolar
lavage fluid, inhibited IgE synthesis, and abolished
antigen-induced bronchial hyperresponsiveness.147

Once an inflammatory response is established, IL-12
inhibits antigen-induced bronchial hyperresponsive-
ness and inflammation.148 These effects of IL-12 are
largely mediated by IFN- g .149 In mice, IL-12 admin-
istered at the time of allergic sensitisation decreased
specific IgE, tracheal ring responsiveness to acetyl-
choline and eosinophilia in bronchoalveolar lavage
fluid after allergen challenge, together with IL-5 and
IL-10 down-regulation; IL-12 administered after sensi-
tisation did not alter specific IgE levels, had little
effect on tracheal ring responsiveness and only a
modest effect on the recruitment of eosinophils.150

Similarly, in a murine model of house dust mite (Der
p 1) sensitisation, IL-12 during the sensitisation
period increased Der p 1-specific serum IgG2a while
decreasing the levels of IgG1 and IgE antibodies
following multiple allergen challenges, together with
downregulation of IL-5 production, without affecting
eosinophilia; IL-12 administration after active sensiti-
sation down-regulated IL-5 production, increased IFN-
g production, and abolished recruitment of eosino-
phils.151 Thus, the effect of IL-12 was dependent on
the timing of its administration in relation to active
sensitisation.

Mucosal gene transfer of IL-12 to the lungs pre-
vented the development of allergic sensitisation and
airways hyper-responsiveness dependent on IFN- g
expression and suppressed established allergic dis-
ease, and reversed the suppression of local antiviral

cell mediated immunity responses to vaccinia virus
resulting in rapid resolution of virus infection.152

Similarly, concurrent expression of IL-12 and GM-CSF
in the airway led to inhibition of GM-CSF enhance-
ment of ovalbumin-induced effects in the mouse,
namely ovalbumin-specific IgE synthesis and airway
eosinophilia, partly due to the expression of IFN- g .153

In another study, the suppressive effect of IL-12 on
antigen-specific TH2-like cell development, IgE up-
regulation, airway hyperresponsiveness and eosino-
philia in bronchoalveolar lavage fluid in an allergen-
sensitised mouse model was only observed in
combination with IL-18.154 In mild allergic atopic
asthmatics, IL-12 caused a reduction in allergen-
induced blood eosinophilia, but did inhibit allergen-
induced late phase responses.

The production of IL-12 and of IL-12-induced IFN- g
release is reduced in whole blood cultures from
patients with allergic asthma compared to normal
subjects.155 There is a reduction of IL-12 mRNA
expression in airway biopsies of patients with allergic
asthma compared to normal subjects, but following
oral corticosteroid treatment, the levels of IL-12
mRNA increased in corticosteroid-sensitive asthmat-
ics, while no significant changes were observed in
corticosteroid-resistant asthmatics.145 This contrasts
with the inhibitory effects of corticosteroids on IL-12
production in human monocytes in vitro.156 Allergen
immunotherapy results in an increase in IL-12 expres-
sion.34 PGE2 , b 2 -agonists and corticosteroids inhibit
IL-12 production from monocytes.156 –158
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