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A B S T R A C T   

The study focuses on identifying and screening natural products (NPs) based on their structural similarities with 
chemical drugs followed by their possible use in first-line treatment to COVID-19 infection. In the present study, 
the in-house natural product libraries, consisting of 26,311 structures, were screened against potential targets of 
SARS-CoV-2 based on their structural similarities with the prescribed chemical drugs. The comparison was based 
on molecular properties, 2 and 3-dimensional structural similarities, activity cliffs, and core fragments of NPs 
with chemical drugs. The screened NPs were evaluated for their therapeutic effects based on their predicted in- 
silico pharmacokinetic and pharmacodynamics properties, binding interactions with the appropriate targets, and 
structural stability of the bound complex using molecular dynamics simulations. The study yielded NPs with 
significant structural similarities to synthetic drugs currently used to treat COVID-19 infections. The study 
proposes the probable biological action of the selected NPs as Anti-retroviral protease inhibitors, RNA-dependent 
RNA polymerase inhibitors, and viral entry inhibitors.   

1. Introduction 

Viral infections play an important role in human diseases, and their 
regular outbreaks repeatedly underlined the need for their prevention in 
safeguarding public health [1]. The recent outbreak of COVID-19 dis-
ease was declared a ‘public health emergency of international concern’ 
by World Health Organization (WHO) in view of its severity [2]. The 
Coronavirus disease (COVID-19), previously known as ‘2019 novel 
coronavirus’ or ‘2019-nCoV′, is an infectious disease caused by a newly 
discovered coronavirus; severe acute respiratory syndrome coronavirus 
2 or SARS-CoV-2 [3]. The SARS-CoV-2 is a member of the Coronavirinae 
family belonging to the Betacorona genus [4]. Structurally it is spherical 
or pleomorphic in shape, with a diameter of about 60–140 nm. All ages 
are susceptible to COVID-19 infection, and its clinical manifestations 
range from asymptomatic to mild to severe and even to death depending 
on the underlying health conditions of individuals [5,6]. The most 
commonly reported symptoms are fever, chills, headache, body aches, 
dry cough, fatigue, pneumonia, and complicated dyspnea. The virus 
transmits from person to person via the nasal, oral, eye, and mucosal 
secretions of the infected patient and direct transmission through the 
inhalation of droplets released during the patient’s cough or sneeze [7, 
8]. 

Fig. 1 describes some of the most widely used vaccines currently 
developed against COVID-19. The other potential treatment strategies 
include inhibition of RNA-Dependent RNA Polymerase activity, viral 
protease inhibition, viral entry inhibition, immune modulation, mono-
clonal antibodies, janus kinase inhibitors, nutritional supplements, and 
conventional plasma therapy (Table S1) [9]. The developmental status 
of different antiviral drugs to treat COVID-19 conditions is shown in 
Fig. 2. 

Natural products and traditional medicines have been serving as the 
greatest source for modern drug discovery. Their derivatives have been 
recognized for many years as the source of therapeutic potential and 
structural diversity. There are over 200,000 compounds reported in the 
scientific literature. NPs are more often structurally complex, with well- 
organized structure and steric properties offering efficacy, efficiency, 
and selectivity of molecular targets [10]. However, their utilization on 
many health conditions is well documented; it is in the hands of existing 
traditional practitioners and herbologists to define their applications for 
newly emerging diseases. The biological activities reported from 
different plant extracts often narrow down to pre-reported molecules 
rather than novel compounds [11], creating a real challenge to medic-
inal chemists. In this avenue, the search for new therapeutic molecules is 
the need of the hour to combat new health challenges. 
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The biological activity of any molecule is attributed to its structural 
arrangements. If two molecules have a similar structure, they will 
probably have a similar biological effect [12–14] (Fig. 3). The compu-
tational chemists successfully exploit this principle for the construction 
of diverse compound libraries and select compounds for 
high-throughput screening experiments [12]. Computational advance-
ments with the introduction of parallel processing clusters, cloud-based 
computing, and highly effective graphical processing units (GPUs), 
tremendous success has been achieved in the field of modern drug dis-
covery [15]. The knowledge of natural products and ligands, earlier 
used as starting points for drug discovery, has greatly influenced 
computational biology techniques [16]. These advancements have been 
speeded up by the creation of new algorithms for more accurate pre-
dictions, simulations, and interpretations [17–22]. The extensive mo-
lecular dynamics (MD) simulations can provide insights into the 
host-virus interactions, disease spread, and possible regu-
lative/preventive mechanisms [23]. In this avenue, the present study 
proceeds to exploit these developments to identify natural products as 
potential drug leads targeting some of the most widely used antiviral 
drugs currently being used against SARS-CoV-2. The identified mole-
cules envisage to be potential drug leads and, with critical screening and 
trials, could be used in the first-line treatment for COVID-19 infections. 

2. Material and method 

2.1. Dataset collection and library construction 

An in-house natural product library consisting of 26,311 natural 
product structures was constructed using natural products information 
from different databases like Dr. Duke’s database (https://phytochem. 
nal.usda.gov/phytochem/search) [24], Phytochemical Interactions 
Database (http://www.genome.jp/db/pcidb), and Natural product ac-
tivity and species source database (NPASS) (http://bidd.group/NPASS/ 
index.php) [25]. The plant’s secondary metabolites are classified into 
various classes according to their chemical structures [26]. Their 

classification as phenolics, alkaloids, Flavonoids, Tannins, Coumarins, 
terpenes, Lignans, etc., with polyphenols further classified into flavans, 
flavones, and isoflavonoids are of particular interest to medicinal 
chemists due to their diverse therapeutic effects [27,28]. Therefore, the 
polyphenols from the natural product library were further categorized as 
flavans (339), flavones (193), and isoflavonoids (457), and the rest of 
the molecules as a general group. The broad-spectrum antiviral drugs 
currently under investigation to treat COVID-19 conditions were 
collected from the drugvirus.info server (https://drugvirus.info). For 
comparison, the small molecule synthetic drugs were categorized into 
molecules present in Pubchem COVID-19 portal (306) [29] (https://pu 
bchem.ncbi.nlm.nih.gov/#query=covid-19), and molecules present at 
different stages of clinical trials (138) (As of 31st August 2020) based on 
the available information from ClinicalTrials.gov database [30] 
(https://www.clinicaltrials.gov/ct2/home). Further, the study was 
extended to compare the most promising investigational drugs like 
Remdesivir, Arbidol, Lopinavir, and Ritonavir. The top 10 structures 
with structurally most similar to investigational drugs were selected for 
in-silico PK/PD analysis and HTVS (high throughput virtual screening) 
studies. 

2.2. Structure-based screening of natural products 

The non-redundant natural product libraries were compared against 
chemical drugs currently under prescription/study to treat COVID-19 
infection. The comparison was based on 2 and 3-dimensional struc-
tural similarities, activity cliffs (ACs), and core fragments (CFs). The 
structural similarities were assessed based on the number of fragments 
that both molecules have to the number of fragments found in any two 
structures [31]. The structural scaffolds (SSs) were analyzed based on 
plane ring system to determine the sub-structures. ACs, CFs, and SSs 
were determined employing Osiris DataWarrior V.4.4.3 software [31].  

a Pharmacophore based comparison of natural products with their 
synthetic drugs counterparts: 

Fig. 1. Most widely used vaccines currently developed against COVID-19.  
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Fig. 2. The broad-spectrum antiviral drugs currently being investigated to treat the COVID-19 condition.  
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To find structurally similar compounds rather than compounds 
sharing a common sub-structure, core fragment-based SAR analysis was 
performed by considering the most central ring structure. The similar-
ities between the fragments were assessed based on the number of 
fragments that both molecules have in common, divided by the number 
of fragments being found in any of the two structures [31–33]. The 
structures were further analyzed for structural scaffolds based on plane 
ring system to determine the substructures and to define the similarity 
cut-off during the structure comparison. The molecular properties, ac-
tivity cliff, core fragments, and structural scaffolds were predicted using 
Osiris DataWarrior V.4.4.3 software [31,34].  

b Similarity score cut-off limit: 

Natural products exist in many of their stable analogs forms in na-
ture. Even with minor structural variations, the analogous forms of 
natural products can exert unique biological effects [35]. Therefore, 
there was a need to set an appropriate limit to filter natural products and 
their analogous structures. Due to their complex structures, at higher 
cut-off limits, such derivatives are expected to exclude, while at lower 
cut-off limits, the analogous structures become inclusive (Table S2). By 
considering such variations, a similarity cut-off limit of 60% was fixed 
for the comparison [34]. 

2.3. Molecular properties based PK/PD analysis 

Natural products are the major source of oral drugs ‘beyond Lip-
inski’s rule of five’ [36–38]. The drug-likeness assessment, pharmaco-
kinetic (PK), and pharmacodynamics (PD) of NPs were determined 
based on their molecular properties like molecular weight, cLogP, 
hydrogen atom donors, hydrogen atom acceptors, and rotatable 
hydrogen bonds. These properties are used as filtering parameters to 
estimate the oral bioavailability, solubility, and permeability of new 
drug candidates [36,38,39]. The natural products obtained from 

structural comparison were considered as hits for in-silico PK/PD 
assessment to analyze mutagenicity, tumorigenicity, reproductive 
effectiveness, irritant properties, and drug likeliness. Molecular prop-
erties were predicted using Osiris Data warrior V.4.4.3 software [31]. 
The admetSAR server [40] was used to predict solubility, permeability, 
GPCR ligand, ion channel modulator, protease inhibitor, kinase inhibi-
tor, enzyme inhibitor, nuclear receptor inhibitor, aqueous solubility, 
TPSA (Topological polar surface area), blood-brain barrier penetration, 
human intestinal absorption, Caco-2 permeability, AMES toxicity, car-
cinogenicity and acute oral toxicity of the selected molecules [38,21]. 

2.4. Molecular interactions studies using automated docking 

Automated docking was performed to deduce the binding in-
teractions of selected natural products with appropriate target proteins. 
Broyden-Fletcher-Goldfarb-Shanno algorithm implemented in the 
AutoDockVina was employed to study proper binding modes of the 
selected natural products in different conformations [42]. The antiviral 
drugs currently being prescribed for COVID-19 first-line treatment were 
retrieved from the drugvirus.info server, and their action mechanisms 
were studied using the Inxight: Drugs database (https://drugs.ncats.io/) 
(Table S1). 

Based on the action mechanism of the standard drugs, HIV-1 prote-
ase I50V isolate, influenza virus hemagglutinin, SARS-CoV NSP12 po-
lymerase, and HIV-1 protease A02 isolate were selected for the docking 
studies. The protein structures were retrieved from protein databank 
(https://www.rcsb.org/) and were prepared for docking studies. For 
each target, residues forming the binding site were retrieved using the 
PDBsum server. The antiviral drug; Lopinavir and its related natural 
products were docked against anti-retroviral protease inhibitor (I50V 
isolate) (PDB ID 3OXV), Ritonavir and its related natural products were 
docked against anti-retroviral protease inhibitor (A02 isolate) (PDB ID 
4NJV), Remdesivir, and its related natural products were docked against 
anti-retroviral protease inhibitor (PDB ID 7BV2), and Arbidol and its 

Fig. 3. A comparison describing the structural similarities with variations highlighted inside the ellipse between thymidine, a naturally occurring nucleotide base, 
and zidovudine, a synthetic drug used to treat HIV patients. Structurally both the molecules share >93% identity. 
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Table 1 
Natural products (with NPASS accession) that are structurally similar to prescribed COVID-19 drugs and their similarity score.  

Synthetic drug and the identified NPs Molecular structure Similarity score 

Remdesivir 

12,28-Oxa-8-Hydroxy-Manzamine A (NPC471891) 0.7676 

Marineosin A (NPC141377) 0.7558 

Bis(Gorgiacerol)Amine 
(NPC128683) 

0.8107 

Methylstemofoline (NPC477986) 0.7645 

Chetracin B (NPC470488) 0.7877 

Oxyprotostemonine (NPC173173) 0.7644 

Stemocurtisine (NPC43648) 0.7569 

(continued on next page) 

S.J.A
. Rao and N

.P. Shetty                                                                                                                                                                                                                   

http://bidd.group/NPASS/compound.php?compoundID=NPC471891
http://bidd.group/NPASS/compound.php?compoundID=NPC141377
http://bidd.group/NPASS/compound.php?compoundID=NPC128683
http://bidd.group/NPASS/compound.php?compoundID=NPC477986
http://bidd.group/NPASS/compound.php?compoundID=NPC470488
http://bidd.group/NPASS/compound.php?compoundID=NPC173173
http://bidd.group/NPASS/compound.php?compoundID=NPC43648


MicrobialPathogenesis165(2022)105497

6

Table 1 (continued ) 

Synthetic drug and the identified NPs Molecular structure Similarity score 

Munroniamide (NPC176245) 0.7705 

Alstolobine A (NPC277350) 0.7598 

Discorhabdin H (NPC477417) 0.7665 

Arbidol 

Phellibaumin A (NPC29411) 0.6838 

Difloxacin (NPC318183) 0.7363 

Lamellarin D (NPC129897) 0.7175 

Lamellarin Gamma Acetate (NPC476995) 0.6682 

Hydroxy-6-Methylpyran-2-One Derivative (NPC470989) 0.6822 

(continued on next page) 
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Table 1 (continued ) 

Synthetic drug and the identified NPs Molecular structure Similarity score 

Cyathuscavin C (NPC474779) 0.7363  

Cyathusal B (NPC317781) 0.7135 

Clausarin (NPC83535) 0.6770 

Cyathuscavin B (NPC474763) 0.7135 

Pulvinatal (NPC327652) 0.7010 

Lopinavir 

Hexahydrodipyrrolo trione derivative (NPC122886) 0.7458 

Beauvericin (NPC89923) 0.7478 

Chaetocin (NPC128582) 0.7615 

(continued on next page) 
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Table 1 (continued ) 

Synthetic drug and the identified NPs Molecular structure Similarity score 

Mollenine A (NPC285622) 0.7462  

Chetracin B (NPC470488) 0.7877 

Beauvericin H1 (NPC157311) 0.7549 

Dragonamide A (NPC222466) 0.7703 

Chetracin D (NPC470491) 0.7892 

Dimethyl-3-Oxodecanamide derivative (NPC324081) 0.7569 

Symplocamide A (NPC473450) 0.7481 

Ritonavir 

(continued on next page) 
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r-

Table 1 (continued ) 

Synthetic drug and the identified NPs Molecular structure Similarity score 

Bionectin B (NPC475859) 0.7146 

Luteoalbusin A (NPC470731) 0.6906 

Bionectin A (NPC165743) 0.7122 

Oidioperazine A (NPC297642) 0.7153 

Holstiine (NPC11149) 0.6876 

Chetracin B (NPC470488) 0.7142 

Mollenine A (NPC285622) 0.6796 

Methaniminium derivative (NPC194699) 0.7274 

Verticillin E (NPC191817) 0.7181 

(continued on next page) 
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elated natural products were docked against anti-retroviral protease 
inhibitor (PDB ID 5T6S). During molecular docking, the energy range 
was set to 3, exhaustiveness to 8, and the number of modes to 9. For the 
ligand molecules, all the torsions were allowed to rotate during docking. 
The in-silico studies were performed on a local machine equipped with 
AMD Ryzen 5 six-core 3.4 GHz processor, 8 GB graphics, and 16 GB RAM 
with Microsoft Windows 10 and Ubuntu 16.04 LTS dual boot operating 
systems. 

2.5. Molecular dynamic simulations to predict the protein structural 
stability 

The structural stability of the free and bound targets was assessed 
using MD simulations run for a time scale of 20 ns [43,44] by employing 
the GROMOS96 54a7 [45] force field implemented in the 
GROMACS-2018 package [46]. A periodic cubic solvated box was 
created around the target proteins with at least 10 Å distance from the 
edge of the box and solvated using the simple point charge (SPC) model 
[47] and neutralized using sodium or chloride ions. The energy mini-
mization was done using the steepest descent method. The system was 
equilibrated with a temperature coupling at 300K using V-rescale ther-
mostat [48] in NVT ensemble and pressure coupling at 105 Pa using 
Parrinello-Rahman barostat [49] in NPT ensemble for a period of 500 ps. 
Bond parameters were adjusted using the LINCS algorithm [50], and the 
particle mesh Ewald method (PME) [51] was used to evaluate electro-
static interactions. A cut-off at 1.0 nm was set for the long-distance in-
teractions as MD simulation accurately predicts properties of the system 
for a larger cut-off distance [52]. The final MD trajectories were pre-
pared for a time scale of 20ns at a time step of 2fs with trajectory co-
ordinates updated at 10ps intervals. The final trajectories were analyzed 
using gmx energy, gmx rms, gmx rmsf, gmx gyrate, gmx do_dssp, and gmx 
sasa modules of GROMACS along with interaction energies in terms of 
electrostatic and van der Waals energy between the ligand and the 
macromolecule. 

2.6. Biding free energy calculations using g_mmpbsa 

For Molecular mechanics/Poisson-Boltzmann surface area 
(MMPBSA) calculations, trajectory files were created from the final 
production MD trajectory with coordinates updated every 200ps. The 
g_mmpbsa package was used for binding energy calculations [53]. The 
g_mmpbsa package uses the following equation to calculate the binding 
energy of the protein-ligand complex;  

ΔG Binding = G Complex − (G Protein + G Ligand)                                      (I) 

The ‘G’ term can be further decomposed into the following 
components  

ΔG = ΔE MM + ΔG Solvation - TΔS = ΔE (Bonded+Non-bonded) + ΔG (Polar+Non- 

polar) - TΔS                                                                                     (II) 

Where,  

G Complex = total free energy of the binding complex, 
G Protein and G Ligand = total free energies of protein and ligand, 
respectively. 
EMM = vacuum potential energy; G Solvation = free energy of solvation 

3. Results 

3.1. Structure-based screening of natural products 

The natural product library consisting of 26,311 structures was 
screened against the local Pubchem COVID-19 library of COVID-19 
prescribed drugs and COVID-19 clinical trials drug library. Among the 
total number of molecules screened, 17,798 natural product structures Ta
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were found to have more than 60% structural similarities against the 
Pubchem COVID-19 library entries, of which 41 molecules were flavans, 
41 were flavones, and 272 were isoflavonoids. The comparison against 
clinical trials drug library yielded 14,689 natural products with more 
than 60% structure similarity consisting of 30 flavans, 18 flavones, and 
78 isoflavonoids. The study was extended to compare the complete 
natural product library against the most promising investigational 
drugs, viz. Remdesivir, Arbidol, Lopinavir, and Ritonavir molecules. 
This comparison yielded a total of 35 natural product structures with 
more than 60% structural similarity. The natural products with struc-
tural similarities to respective investigational drugs are detailed in 
Table 1. 

3.2. Molecular properties based PK/PD analysis 

Molecular properties and Pharmacokinetics prediction of natural 
products were predicted using Osiris data warrior software and the 

admetSAR server. The drug-likeness estimated based on the molecular 
properties of the selected structures indicated that out of 35 molecules, 
23 molecules with positive scores indicated their potential drug-like 
effects (Table 2A). Gastrointestinal (GI) absorption is an important 
parameter to screen orally administered drugs. A positive value shown 
in Table 2A for gastrointestinal (GI) absorption suggests a high proba-
bility of success for absorption into the intestinal tract [54]. While the 
blood-brain barrier (BBB) penetration indicates the potential of a drug to 
cross into the brain, it can bind to specific receptors and activate specific 
signaling pathways. Therefore, the prediction of BBB penetration is 
crucial in the drug development pipeline [55]. In the present study, 33 
molecules were found to penetrate the human intestine barrier, 17 
molecules penetrating the blood-brain barrier. None of them was the 
substrate for Cytochromes P450 group of isozymes that regulates drug 
metabolism, indicating a high possibility of their bioavailability 
(Table 2A). Further, out of 35 molecules, 34 were predicted to be 
non-mutagenic, non-tumorigenic, and non-irritant, with 10 molecules 

Table 2A 
) Molecular properties and Pharmacokinetics prediction of natural products filtered in for screening against COVID-19 condition.  

Identified NPs Bioavailability and Druglikeness In silico Pharmacokinetics 

cLogP Mol. wt H- 
Acceptors 

H- 
Donors 

Rotatable 
Bonds 

Total 
Surface 
Area 

Polar 
Surface 
Area 

Druglikeness Human 
intestinal 
absorption 

Caco-2 
permeability 

Blood- 
brain 
barrier 

CYP2D6 
substrate 

12,28-Oxa-8-Hydroxy- 
Manzamine A 

5.2547 562.755 6 2 1 414.34 60.33 − 2.227 0.696+ 0.541- 0.800+ 0.671- 

Alstolobine A 2.4707 398.457 7 1 6 297.41 80.86 − 8.1671 0.988+ 0.566- 0.896+ 0.816- 
Beauvericin 5.2239 783.96 12 0 9 610.8 139.83 4.3764 0.991+ 0.661+ 0.678+ 0.825- 
Beauvericin H1 5.3247 801.95 12 0 9 617.15 139.83 3.0364 0.990+ 0.599+ 0.786+ 0.829- 
Bionectin A 2.9631 450.542 7 3 1 282.66 139.27 5.5488 0.889+ 0.508+ 0.608+ 0.831- 
Bionectin B 2.6488 494.595 8 4 2 311.68 159.5 5.0182 0.900- 0.525- 0.832- 0.838- 
Bis(Gorgiacerol)Amine 5.4399 757.83 13 3 10 560.06 183.97 − 19.005 0.965- 0.616- 0.932- 0.848- 
Chaetocin 2.7962 696.852 12 4 3 409.82 246.96 5.8356 0.900+ 0.626- 0.661- 0.801- 
Chetracin B 1.092 760.916 14 6 3 437.49 312.72 5.4873 0.885+ 0.574- 0.816- 0.805- 
Chetracin D 0.3976 788.99 14 6 7 496.04 287.42 5.6124 0.922+ 0.589- 0.869- 0.805- 
Clausarin 5.9768 380.482 4 1 4 295.44 55.76 − 5.9217 0.975+ 0.840- 0.825+ 0.867- 
Cyathusal B 0.5256 346.29 8 3 3 243.75 122.52 − 4.326 0.915+ 0.592+ 0.767- 0.909- 
Cyathuscavin B 0.5053 376.316 9 3 4 264.22 131.75 − 4.7328 0.878+ 0.627+ 0.775- 0.894- 
Cyathuscavin C 0.0774 362.289 9 4 3 248.31 142.75 − 2.2479 0.868+ 0.592+ 0.767- 0.909- 
Difloxacin 1.251 399.396 6 1 3 283.48 64.09 5.1997 0.985+ 0.879+ 0.968- 0.911- 
Discorhabdin H − 10.123 762.664 10 3 5 337.61 198.19 2.7192 0.734+ 0.603- 0.903- 0.795- 
Dragonamide A 3.7111 653.905 10 2 18 539.59 125.32 − 3.0172 0.969+ 0.543- 0.628- 0.783- 
Hexahydrodipyrrolo 

trione derivative 
0.2123 427.456 9 3 2 288.36 119.41 6.7335 0.946+ 0.615- 0.978- 0.802- 

Holstiine 1.5964 382.458 6 1 0 270.15 70.08 5.6428 0.972+ 0.631+ 0.567+ 0.784- 
Hydroxy-6-Methylpyran- 

2-One Derivative 
5.228 500.586 8 4 11 387.58 141.36 − 13.889 0.984+ 0.563+ 0.660- 0.866- 

Lamellarin D 4.3105 499.474 9 3 4 352.71 119.09 1.8379 0.983+ 0.604+ 0.606+ 0.448- 
Lamellarin Gamma 

Acetate 
5.3 573.596 10 1 8 423.68 106.84 2.3739 0.987+ 0.683+ 0.747+ 0.628- 

Luteoalbusin A 3.1416 464.569 7 3 2 295.59 139.27 5.9847 0.890+ 0.581- 0.575+ 0.812- 
Marineosin A 4.6896 409.572 5 2 2 323.4 62.4 − 2.232 0.986+ 0.638- 0.824+ 0.764- 
Methaniminium 

derivative 
− 0.4649 910.463 21 10 14 679.31 329.1 6.1103 0.795+ 0.647- 0.976- 0.831- 

Methylstemofoline 0.9975 345.394 6 0 1 220.03 57.23 4.0559 0.922+ 0.670+ 0.679+ 0.741- 
Mollenine A 3.3511 368.475 5 1 4 275.46 58.64 3.6919 0.980+ 0.516- 0.608+ 0.824- 
Munroniamide − 0.4894 597.663 12 2 7 419.88 166.86 − 8.9989 0.940+ 0.628- 0.500+ 0.808- 
Oidioperazine A 1.9865 538.647 9 3 4 357.08 167.78 6.2082 0.843+ 0.510- 0.807- 0.506- 
Oxyprotostemonine 1.004 431.483 8 0 2 289.89 83.53 2.3627 0.890+ 0.648+ 0.549+ 0.803- 
Phellibaumin A 2.8483 352.297 7 4 2 248.17 120.36 0.0022 0.952+ 0.828- 0.725+ 0.905- 
Pulvinatal 0.9535 360.317 8 2 4 259.66 111.52 − 6.9354 0.919+ 0.627+ 0.775- 0.894- 
Stemocurtisine 1.4247 347.41 6 0 1 239.64 57.23 2.9196 0.922+ 0.668+ 0.758+ 0.744- 
Symplocamide A 0.6976 1052.03 23 11 18 763.41 359.52 1.3524 0.915+ 0.634- 0.959- 0.830- 
Verticillin E 1.7482 752.872 14 4 3 439.8 281.1 4.5639 0.895+ 0.536- 0.836- 0.825-  
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predicted to have reproductive effects (Table 2B). Among the 35 struc-
tures, 29 compounds were non-AMES toxic, 34 non-carcinogens, and 34 
were not readily biodegradable. 

3.3. Molecular interactions studies using automated docking 

The in-silico molecular interaction studies were used to predict the 
most effective natural product drug to bind to the appropriate target 
involved in the regulation of virus entry, replication, assembly, and 
release, as well as host-specific interactions. In the present study, the 
docking studies were carried out for synthetic antiviral agents as well as 
their structurally similar natural products against different targets pro-
teins of SARS-CoV-2 to deduce the structural insight of molecular in-
teractions. The study yielded natural products being effectively bound to 
their respective targets (Table 3). The results were expressed in terms of 
docking energy (kcal/mol). Many selected natural products have dis-
played docking energies lower than their structurally similar standard 
drug counterparts. The natural products similar to Remdesivir interact 
with SARS-CoV NSP12 polymerase with docking energies comparably 
lower than the standard drug. The natural products tested as influenza 
virus hemagglutinin inhibitors are also bound to the target with docking 
energies lower than the standard drug arbidol. The binding interactions 
of natural products tested as viral protease inhibitors were compared 
with standard drugs Lopinavir and Ritonavir. The effectiveness of these 

binding of natural products with the highest interaction energy in each 
group was selected for protein stability assessment using molecular 
dynamics simulations (Fig. 4). 

3.4. Molecular dynamic simulations to predict the protein structural 
stability 

In the present study, united-atom MD simulations were performed to 
confirm the accuracy of binding resulting from docking studies [56]. The 
result of the MD simulation displayed the conformational changes ac-
quired by different target proteins of SARS-CoV-2 upon binding and 
inferred the structural insight on molecular stability (Fig. 5). 

The RMSD analysis was done to understand the deviation of Cα 
atoms of the protein from its backbone, and RMSF analysis was done to 
study the fluctuations associated with the amino acid residues of the 
protein during the simulation. The average RMS deviations and RMS 
fluctuations were calculated from the MD trajectories of natural product, 
and synthetic drug bound HIV-1 protease (I50V isolate), Influenza virus 
hemagglutinin, SARS-CoV NSP 12 polymerase, and HIV-1 protease (A02 
isolate) and were compared with their respective unbound structures 
(Table 4). The RMSD plots indicate that Remdesivir bound SARS CoV 
NSP 12 polymerase (Fig. 4a) and Arbidol bound Influenza virus hem-
agglutinin (Fig. 4b) displayed lesser deviations than their structurally 
similar natural products, Hydroxy Manzamin A and Phellibaurin_A 

Table 2B 
) In-silico Pharmacodynamics prediction of natural products selected for screening against COVID-19 condition.  

Identified NPs Mutagenic Tumorigenic Reproductive 
effective 

Ocular 
irritancy 

Aerobic 
biodegradibility 

Ames tooxicity 
score 

Carcinogen 

12,28-Oxa-8-Hydroxy-Manzamine A NONE NONE NONE 0.946- 1.00- 0.707- 0.607- 
Alstolobine A NONE HIGH NONE 0.979- 1.00- 0.714- 0.573- 
Beauvericin NONE NONE NONE 0.925- 0.912- 0.772- 0.622- 
Beauvericin H1 NONE NONE NONE 0.922- 0.996- 0.776- 0.536- 
Bionectin A NONE NONE NONE 0.972- 0.986- 0.733- 0.609- 
Bionectin B NONE NONE NONE 0.965- 0.988- 0.870- 0.611- 
Bis(Gorgiacerol)Amine NONE NONE HIGH 0.901- 0.623- 0.573- 0.487- 
Chaetocin NONE NONE NONE 0.918- 0.994- 0.645- 0.623- 
Chetracin B NONE NONE NONE 0.911- 0.973- 0.679- 0.644- 
Chetracin D NONE NONE NONE 0.904- 0.996- 0.678- 0.627- 
Clausarin NONE NONE HIGH 0.607+ 0.993- 0.506- 0.472- 
Cyathusal B NONE NONE HIGH 0.561- 0.937- 0.707+ 0.465- 
Cyathuscavin B NONE NONE HIGH 0.590- 0.966- 0.712+ 0.515+
Cyathuscavin C NONE NONE HIGH 0.574- 0.937- 0.707+ 0.465- 
Difloxacin NONE NONE NONE 0.949- 1.00- 0.885+ 0.610- 
Discorhabdin H NONE NONE NONE 0.960- 1.00- 0.593- 0.532- 
Dragonamide A NONE NONE NONE 0.922- 1.00- 0.812- 0.678- 
Hexahydrodipyrrolo trione derivative NONE NONE NONE 0.927- 1.00- 0.658- 0.597- 
Holstiine NONE NONE NONE 0.986- 0.951- 0.572- 0.501- 
Hydroxy-6-Methylpyran-2-One 

Derivative 
NONE NONE NONE 0.732- 0.500+ 0.815- 0.723- 

Lamellarin D NONE NONE HIGH 0.833- 0.993- 0.586- 0.389- 
Lamellarin Gamma Acetate NONE NONE HIGH 0.989- 0.995- 0.880- 0.599- 
Luteoalbusin A NONE NONE NONE 0.986- 0.987- 0.670- 0.630- 
Marineosin A NONE NONE NONE 0.972- 1.00- 0.655- 0.651- 
Methaniminium derivative NONE NONE NONE 0.905- 0.962- 0.615- 0.570- 
Methylstemofoline NONE NONE NONE 0.891- 1.00- 0.755- 0.470- 
Mollenine A NONE NONE NONE 0.986- 0.997- 0.572- 0.528- 
Munroniamide LOW HIGH LOW 0.978- 1.00- 0.512- 0.562- 
Oidioperazine A NONE NONE NONE 0.987- 0.997- 0.670- 0.606- 
Oxyprotostemonine NONE NONE NONE 0.943- 0.994- 0.681- 0.440- 
Phellibaumin A HIGH NONE HIGH 0.528- 0.911- 0.550+ 0.419- 
Pulvinatal NONE NONE HIGH 0.547- 0.966- 0.712+ 0.515+
Stemocurtisine NONE NONE NONE 0.914- 0.995- 0.781- 0.420- 
Symplocamide A NONE NONE NONE 0.901- 0.945- 0.644- 0.594- 
Verticillin E NONE NONE HIGH 0.900- 0.986- 0.763- 0.610-  
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bound structures. However, the macromolecular structures HIV-1 pro-
tease (I50V isolate) (Fig. 4c) and HIV-1 protease (A02 isolate) (Fig. 4d) 
displayed lesser RMS deviations upon binding with respective natural 
products compared to their synthetic drug counterparts. It can also be 
seen from these plots that the deviations in the macromolecular struc-
tures are relatively low after 5ns in both conditions. From the RMSF 
plots (Fig. 4e–h), it can be inferred that, though the residues displayed 
minor fluctuations at certain positions, all proteins were able to retain 
their secondary structure’s packability. This was inferred based on the 
Rg plots (Fig. 5i-l), where the structures were found to be very tightly 
packed, as the secondary structure elements like α-helix, β-sheet, and 
turn were remodeled at each time step of the MD simulation. The SASA 
plots (Fig. 5m–p) also supported these findings. 

The binding free energy calculations performed using the g_mmpba 
module displayed better binding of natural products with their respec-
tive target proteins. The binding free energies of natural products, 

12,28-Oxa-8-Hydroxy-Manzamine A (− 57.17 kJ/mol), Phellibaumin A 
(− 60.86 kJ/mol), and Bionectin B (− 161.08 kJ/mol) were found to be 
encouraging in deducing their interactions with their respective targets. 
However, their structurally similar synthetic drug counterparts viz. 
Remdesivir (− 63.68 kJ/mol), Arbidol (− 104.39 kJ/mol), and Ritonavir 
(− 180.45 kJ/mol) displayed higher binding free energies towards their 
respective targets. Nevertheless, the binding free energy of the natural 
product Hexahydrodipyrrolo trione derivative (− 93.53 kJ/mol) was 
found to be higher than its structurally similar standard drug counter-
parts; Lopinavir (− 77.59 kJ/mol). The associated terms for binding free 
energy calculations along with the calculated MD parameters for un-
bound and ligand-bound targets detailing RMSD, RMSF, Rg, SASA, 
Secondary structure, Coul-SR energy, and LJ-SR energy are detailed in 
Table 4. 

Table 3 
Molecular interactions between the selected natural products with targets of their structurally similar chemical drugs expressed as docking energies along with their 
structure similarity score. The table also details the number of hydrogen bonds formed between the Natural product and the amino acid residues from the target 
molecule.  

Target protein Synthetic drug and the identified NPs Docking Energya H-bonds Receptor residues involved in H-bond formation 

SARS-CoV NSP12 POLYMERASE Remdesivir − 7.2 03 ILE23, LEU126, GLY48 
12,28-Oxa-8-Hydroxy-Manzamine A − 10.4 02 GLY130, ALA38 
Marineosin A − 7.9 00 – 
Bis(Gorgiacerol)Amine − 7.8 02 ILE23, GLY130 
Methylstemofoline − 7.7 02 SER128, ALA129 
Chetracin B − 7.5 01 PHE156 
Oxyprotostemonine − 7.5 02 SER128, ALA129 
Stemocurtisine − 7.5 01 GLY48 
Munroniamide − 6.9 05 VAL49, ILE131, GLY48, GLY130, LEU126 
Alstolobine A − 6.8 03 PHE156, ASP157, ALA154 
Discorhabdin H − 6.7 02 GLY48, ASP22 

INFLUENZA VIRUS HEMAGGLUTININ Arbidol − 7.1 01 GLU64 
Phellibaumin A − 9.4 04 ASP280, SER290, LYS58, ILE288 
Difloxacin − 8.4 03 LYS58, LEU292, PRO293 
Lamellarin D − 8.4 02 LYS58, CYS305 
Lamellarin Gamma Acetate − 7.8 01 GLU57 
Hydroxy-6-Methylpyran-2-One Derivative − 7.6 03 THR59, GLU57, THR59 
Cyathuscavin C − 7.5 02 GLU57, PRO306 
Cyathusal B − 7.4 02 GLU57, PRO306 
Clausarin − 7.3 02 GLU64, ARG85 
Cyathuscavin B − 7.3 00 – 
Pulvinatal − 7.3 01 THR59 

HIV-1 PROTEASE I50V ISOLATE Lopinavir − 6.5 03 GLY49, GLY51, GLY52 
Hexahydrodipyrrolo trione derivative − 8.4 03 PRO81, ASP25, GLY48 
Beauvericin − 7.2 01 GLY49 
Chaetocin − 7.1 06 THR74, ASN88, GLN92, ASP30, ILE72, GLY73 
Mollenine A − 7.1 00 – 
Chetracin B − 6.9 00 – 
Beauvericin H1 − 6.6  VAL50, GLY51, THR80 
Dragonamide A − 6.3 02 ASP30, VAL50 
Chetracin D − 6.2 04 THR74, ARG87, ASP29, GLY73 
Dimethyl-3-Oxodecanamide derivative − 5.6 03 VAL50, GLY51, PHE53 
Symplocamide A − 4.6 00 – 

HIV-1 PROTEASE A02 ISOLATE Ritonavir − 7.7 04 ASP29, ASP30, GLY48, GLY49 
Bionectin B − 8.1 03 ILE50, THR82, GLY51 
Luteoalbusin A − 8.0 04 GLY51, GLY52, PRO81, PRO79 
Bionectin A − 7.7 02 THR96, ASN98 
Oidioperazine A − 7.7 02 ILE50, ASP25 
Holstiine − 7.1 00 – 
Chetracin B − 7.0 02 ARG87, LUE97 
Mollenine A − 6.9 00 – 
Methaniminium derivative − 6.6 01 PRO81 
Verticillin E − 6.6 02 THR74, ASN88 
Chaetocin − 6.4 02 ARG08, THR26  

a kcal/mol. 
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4. Discussion 

Viral infections have always created challenges in human healthcare 
research. Identifying efficacious and cost-effective antiviral drugs in the 
absence of potential vaccines or standard therapies thus holds utmost 
importance. Due to the advancements in virology, molecular biology, 
and computational biology, we can now decipher the pathophysiology 
of many viral diseases, including COVID-19 infection [57]. Natural 
products have been playing an important role as complementary med-
icine to combat viral infections, and herbal medicines have been an 

excellent source for modern drug research programs for a long time 
[58]. Their origin, availability, safety, and cost-effectiveness make them 
a reliable choice alongside modern medicine [59]. 

With the advancements in computational techniques, new strategies 
have been designed to predict the interactions of potential human target 
proteins with specific viral strains [60]. These models rely on the 
available interaction information to predict the novel host-virus in-
teractions. These predictions have been reliable in the past in under-
standing the infection mechanism of SARS-CoV [61], MERS-CoV [61], 
Ebola virus [62], and Zika virus [63]. However, these computational 

Fig. 4. Docking interaction between Remdesivir (a), and 12,28-Oxa-8-Hydroxy-Manzamine A (b) with SARS-CoV NSP12 polymerase, Arbidol (c), and Phellibaumin 
A (d) with influenza virus hemagglutinin, Lopinavir (e), and Hexahydrodipyrrolo trione derivative (f) with HIV-1 protease I50V isolate and Ritonavir (g), and 
Bionectin B (h) with HIV-1 protease A02 isolate. 
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methods play a significant role in modern drug research; the experi-
mental verifications of virus-host interactions are needed to substantiate 
the potential interactions [64–66]. Along with this, the availability of 
verified interactions and relevant information is a prerequisite for 
computational drug discovery methods. Most of the chemical structure 
search and identification methods today rely on the conventional string 
search to modern data structure module-based approaches [67–70]. The 
structural comparison and screening based on physiochemical proper-
ties, topological indices, molecular graphs, pharmacophore features, 
molecular shapes, molecular fields, and quantitative measures are 

expected to reduce false-positive results and yield more effective struc-
tures [13,14]. In the current investigation, we were able to shortlist 
some of the natural products as potential drug-like molecules based on 
their structural similarities with synthetic chemical drugs. The screening 
is based on the central foundation of medicinal chemistry that the 
structurally similar molecules will have similar biological effects [12, 
14]. The yielded structures were docked to the binding site of the target 
protein of their respective structurally similar synthetic drugs. To 
confirm the structural stability, molecular dynamic simulation studies 
were performed, and the results were compared with unbound and 

Fig. 5. RMSD (a–d), RMSF (e–h), Rg (i–l) and SASA (m–p) plots obtained from MD trajectories analysis of native, Natural product bound, and chemical drug bound 
structure of SARS-CoV NSP12 polymerase, influenza virus hemagglutinin, and HIV-1 protease of I50V isolate and A02 isolate. 

S.J.A. Rao and N.P. Shetty                                                                                                                                                                                                                   



Microbial Pathogenesis 165 (2022) 105497

16

synthetic drug-bound macromolecular structures. The results identified 
the selected natural products as potential drug leads, and with critical 
screening, could serve as promising molecules in the first-line treatment 
for COVID-19 infections. Several studies have also shown the thera-
peutic potentials of natural products and their interactions with the key 
viral proteins associated with virulence [9,71–74]. Nevertheless, the 
future studies comprising in-vitro studies targeting specific proteins 
followed by their in-silico structure stability assessment with nano and 
microsecond simulations will validate their use as potential therapeutic 
molecules. 

Ethics approval and consent to participate 

Not applicable. 

Funding 

This work is an extension of a research project supported by the 
Department of Science and Technology (DST)- Science and Engineering 
Research Board (SERB), Govt. of India (Grant number: PDF/2018/ 
00237). 

Consent for publication 

Not applicable. 

Availability of data and materials 

All the data used during the current study are available from the 
corresponding author on reasonable request. 

CRediT authorship contribution statement 

S.J. Aditya Rao: Conceptualization, Investigation, Methodology, 
Software, Validation, Writing – original draft, Writing – review & edit-
ing. Nandini P. Shetty: Formal analysis, Supervision, Writing – review 
& editing. 

Declaration of competing interest 

The authors declare that, the above mentioned manuscript has not 
been published and is not under consideration for publication else-
where. The authors are aware of the submission and have no conflicts of 
interest to disclose. 

Data availability 

Data will be made available on request. 

Acknowledgment 

The authors thank the Department of Science and Technology (DST) - 
Science and Engineering Research Board (SERB), Govt. of India for their 
financial support. 

Abbreviations 

ADME Absorption, Distribution, Metabolism, and Excretion 
APBS Adaptive Poisson-Boltzmann Solver 
HTVS High Throughput Virtual Screening 
MD Molecular Dynamics 
MM Molecular mechanical 
MMPBSA Molecular mechanics/Poisson-Boltzmann surface area 
NCATS National Center for Advancing Translational Sciences 
NPASS Natural product activity and species source database 
NPs Natural products Ta

bl
e 

4 
Ca

lc
ul

at
ed

 M
D

 p
ar

am
et

er
s 

fo
r 

na
tiv

e 
an

d 
lig

an
d-

bo
un

d 
SA

RS
 C

oV
2 

dr
ug

 ta
rg

et
s 

ob
ta

in
ed

 fr
om

 th
e 

M
D

 s
im

ul
at

io
n 

al
on

g 
w

ith
 b

in
di

ng
 e

ne
rg

ie
s 

an
d 

th
e 

co
nt

ri
bu

tin
g 

en
er

gy
 te

rm
s 

of
 th

e 
pr

es
cr

ib
ed

 d
ru

gs
 a

nd
 th

ei
r 

m
os

t 
si

m
ila

r 
na

tu
ra

l p
ro

du
ct

 c
al

cu
la

te
d 

us
in

g 
g_

m
m

pb
sa

 m
od

ul
e.

   
 

SA
RS

-C
oV

 N
SP

12
 P

O
LY

M
ER

A
SE

 
IN

FL
U

EN
ZA

 V
IR

U
S 

H
EM

A
G

G
LU

TI
N

IN
 

H
IV

-1
 P

RO
TE

A
SE

 I5
0V

 IS
O

LA
TE

 
H

IV
-1

 P
RO

TE
A

SE
 A

02
 IS

O
LA

TE
 

G
ro

m
ac

s 
M

od
ul

es
  

N
at

iv
e 

Pr
ot

ei
n 

Re
m

de
si

vi
r 

12
,2

8-
O

xa
-8

- 
H

yd
ro

xy
-M

an
za

m
in

e 
A

 

N
at

iv
e 

Pr
ot

ei
n 

A
rb

id
ol

 
Ph

el
lib

au
m

in
 

A
 

N
at

iv
e 

Pr
ot

ei
n 

Lo
pi

na
vi

r 
H

ex
ah

yd
ro

di
py

rr
ol

o 
tr

io
ne

 
de

ri
va

tiv
e 

N
at

iv
e 

Pr
ot

ei
n 

Ri
to

na
vi

r 
Bi

on
ec

tin
 

B 

Po
te

nt
ia

l E
ne

rg
y 

(x
 1

0−
6 ) 

−
0.

63
8 

−
0.

63
8 

−
0.

63
7 

−
4.

60
5 

−
4.

60
4 

−
4.

60
4 

−
0.

43
6 

−
0.

43
4 

−
0.

43
6 

−
0.

51
9 

−
0.

51
8 

−
0.

51
8 

RM
SD

 (
nm

) 
0.

21
3 

0.
19

5 
0.

18
6 

0.
48

1 
0.

42
9 

0.
54

9 
0.

24
7 

0.
27

0 
0.

25
4 

0.
26

5 
0.

44
7 

0.
28

7 
RM

SF
 (n

m
) 

0.
10

5 
0.

05
5 

0.
09

9 
0.

17
6 

0.
21

6 
0.

23
1 

0.
13

0 
0.

14
1 

0.
13

0 
0.

14
0 

0.
14

4 
0.

13
9 

Rg
 (n

m
) 

1.
55

8 
1.

52
3 

1.
52

4 
2.

80
2 

2.
83

5 
2.

76
3 

1.
31

6 
1.

30
7 

1.
34

2 
1.

34
3 

1.
48

8 
1.

35
2 

SA
SA

 (
nm

2 ) 
92

.9
5 

85
.0

0 
87

.1
3 

17
5.

24
 

17
6.

47
 

17
7.

43
 

59
.5

7 
60

.0
5 

60
.9

2 
64

.8
3 

71
.8

4 
64

.4
4 

Se
co

nd
ar

y 
St

ru
ct

ur
e 

21
0.

49
 

22
1.

97
 

21
9.

29
 

28
3.

92
 

29
5.

63
 

28
5.

29
 

11
9.

47
 

11
2.

07
 

11
8.

78
 

11
7.

81
 

11
7.

54
 

12
0.

51
 

Co
ul

-S
Ra 

– 
−

47
.2

2 
−

3.
84

 
– 

−
9.

45
 

−
65

.8
0 

– 
−

40
.2

9 
−

30
.2

4 
– 

−
83

.4
7 

−
66

.9
0 

LJ
-S

Ra 
– 

−
92

.7
2 

−
64

.1
5 

– 
−

10
9.

61
 

−
11

4.
98

 
– 

−
11

3.
62

 
−

10
9.

54
 

– 
−

32
6.

78
 

−
16

0.
13

 
M

M
PB

SA
 

M
od

ul
e 

Bi
nd

in
g 

En
er

gy
a 

– 
−

63
.6

8 
−

57
.1

7 
– 

−
10

4.
39

 
−

60
.8

6 
– 

−
77

.5
9 

−
93

.5
3 

– 
−

18
0.

45
 

−
16

1.
08

 
SA

SA
 E

ne
rg

ya 
– 

−
19

.3
6 

−
8.

68
 

– 
−

14
.0

3 
−

13
.6

2 
– 

−
14

.1
1 

−
13

.8
4 

– 
−

34
.9

1 
−

16
.5

2 
Po

la
r 

So
lv

at
io

n 
En

er
gy

a 
– 

14
6.

39
 

35
.2

7 
– 

43
.2

7 
13

2.
86

 
– 

97
.2

0 
67

.1
1 

– 
17

9.
49

 
73

.5
0 

El
ec

tr
os

ta
tic

 
En

er
gy

a 
– 

−
36

.0
9 

−
3.

27
 

– 
−

6.
71

 
−

51
.2

8 
– 

−
29

.4
5 

−
17

.7
7 

– 
−

49
.1

1 
−

32
.7

3 

va
n 

de
r 

W
aa

ls
 

En
er

gy
a 

– 
−

15
4.

62
 

−
80

.4
8 

– 
−

12
6.

92
 

−
12

8.
81

 
– 

−
13

1.
22

 
−

12
9.

03
 

– 
−

37
5.

91
 

−
18

5.
33

  

a
kJ

/m
ol

. 

S.J.A. Rao and N.P. Shetty                                                                                                                                                                                                                   



Microbial Pathogenesis 165 (2022) 105497

17

PD Pharmacodynamics 
PDB Protein Data Bank 
PK Pharmacokinetics 
PME Particle Mesh Ewald method 
Rg Radius of Gyration 
RMSD Root Mean Square Deviation 
RMSF Root Mean Square Fluctuation 
RO5 Rule-of-Five 
SASA Solvent Accessible Surface Area 
SMILES Simplified Molecular Input Line Entry System 
SPC Simple Point Charge 
TPSA Topological polar surface area 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.micpath.2022.105497. 
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