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Abstract: Acanthamoeba keratitis (AK) can occur in healthy individuals wearing contact lenses and itis a
painful, blinding infection of the cornea caused by a free-living ameba Acanthamoeba. Current treatment
for AK relies on a combination of chlorhexidine, propamidine isethionate, and polyhexamethylene
biguanide. However, the current regimen includes an aggressive disinfectant and in 10% of cases
recurrent infection ensues. Therefore, development of efficient and safe drugs is a critical unmet
need to avert blindness. Acanthamoeba sterol biosynthesis includes two essential enzymes HMG-CoA
reductase (HMGR) and sterol 14-demethylase (CYP51), and we earlier identified a CYP51 inhibitor
isavuconazole that demonstrated nanomolar potency against A. castellanii trophozoites. In this study,
we investigated the effect of well-tolerated HMGR inhibitors and identified pitavastatin that is active
against trophozoites of three different clinical strains of A. castellanii. Pitavastatin demonstrated
an ECs of 0.5 to 1.9 uM, depending on strains. Combination of pitavastatin and isavuconazole is
synergistic and led to 2- to 9-fold dose reduction for pitavastatin and 11- to 4000-fold dose reduction
for isavuconazole to achieve 97% of growth inhibition. Pitavastatin, either alone or in combination
with isavuconazole, may lead to repurposing for the treatment of Acanthamoeba keratitis.
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1. Introduction

Painful blinding keratitis is caused by the free-living ameba Acanthamoeba and can occur in healthy
individuals wearing contact lenses [1]. Acanthamoeba keratitis (AK) is a rare but serious infection of
the eye that causes inflammation in the clear front surface of the eye (the cornea) and can result in
permanent visual impairment or blindness. Acanthamoeba is common in nature and can be found
in soil, air and water, including insufficiently chlorinated pools, hot tubs, tap and shower water.
In unfavorable environments, the ameboid form of the organism called a ‘trophozoite’ transforms into
a drug-resistant double-walled cyst. Cyst resistance to therapeutic agents, and recurrence of infection
due to Acanthamoeba excystment, remain a challenge for disease prevention and cure.

AK is most common in people who wear contact lenses, but anyone can develop the infection [2—4].
The incidence of the disease in the United States has been conservatively estimated at approximately
one to two cases per million contact lens users [5]. However, it is possible that the infection is
underdiagnosed, as a retrospective study from a single center in lowa showed that the average number
of new AK cases per year among Iowa residents doubled during 20102017 [6]. About 85% of American
patients affected with Acanthamoeba are contact lens wearers [1]. In other countries such as India,
Acanthamoeba infections are widely reported in non-contact lens wearers [7]. Infection recurrence
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due to Acanthamoeba excystment occurs in approximately 10% of cases. Complications of AK include
dacryoadenitis, corneal melting and scarring, severe secondary glaucoma, and chronic anterior segment
inflammation [8]. Scleral inflammation, often referred to as sclerokeratitis, may also develop [9].
Because of the rapid increase in the case number, AK has been listed by the National Institutes of
Health as an Emerging Infectious Disease.

Current treatment of AK involves an aggressive disinfectant chlorhexidine, in combination
with diamidines, polyhexamethylene biguanide, (PHMB) and neomycin, and can last up to a year.
Combination therapies have proven more successful than single-drug therapies [10-12]. Corticosteroids
are applied topically to control corneal inflammation, pain, and scleritis, particularly following
keratoplasty [13]. Despite advances in combination therapies and surgery, recurrence of infection
remains a challenge that is yet to be addressed [14]. Therefore, the development of efficient drugs is a
critical unmet need to avert blindness.

Since ergosterol is one of the major sterols in the membrane of free-living amebae [15-18] and
both trophozoites and cysts of Acanthamoeba require sterols [18], disruption of isoprenoid and sterol
biosynthesis by small-molecule inhibitors may be an effective intervention strategy against AK.
To perform ergosterol synthesis, A. castellanii, among other enzymes, encodes for a CYP51 enzyme,
which has ~31-35% sequence identity to fungal CYP51 [19]. The genome of A. castellanii also contains
gene encoding 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGR), which
catalyzes the conversion of HMG-CoA to mevalonate, one of the early precursors for the production
of isoprenoids and subsequently ergosterol. Earlier, we identified isavuconazole as the most potent
CYP51 inhibitor tested against A. castellanii trophozoites and isavuconazole suppressed excystment of
preformed Acanthamoeba cysts into trophozoites [20]. In this study, we tested the effect of different
HMGR inhibitors, also known as statins, against trophozoites of three clinical strains of A. castellanii and
investigated the effect of the combination of the two most potent inhibitors of two essential enzymes in
the Acanthamoeba sterol biosynthesis, HMGR and CYP51.

2. Results and Discussion

2.1. In Vitro Activity of HMGR Inhibitors against Clinical Strains of A. castellanii

HMGR catalyzes the conversion of HMG-CoA into mevalonate [21]. HMGR inhibitors developed
as cholesterol lowering drugs, also known as statins, prevent the conversion of HMG-CoA to mevalonate,
resulting in the inhibition of the isoprenoid biosynthesis and the downstream sterol biosynthesis [22].
Although inhibition of Acanthamoeba HMGR and parasite growth was evaluated elsewhere using siRNA
and statins [23,24], none of the previously tested statins [23,24] showed potency against A. castellanii
comparable to chlorhexidine, a disinfectant currently used for the treatment of AK. Amebicidal effect
demonstrated earlier [23,24] by selected statins encouraged us to systematically assess this drug class
for inhibition of A. castellanii.

We tested six statins, fluvastatin, atorvastatin, simvastatin, rosuvastatin, pravastatin and
pitavastatin, against A. castellanii trophozoites of Ma strain. While fluvastatin, atorvastatin and
rosuvastatin exhibited similar ECsg, ranging from 10 to 12.5 uM, we demonstrated that the HMGR
inhibitor pitavastatin (marketed as LIVALO™) was equipotent (ECsy = 1.9 uM) to chlorhexidine and
superior to PHMB and all previously tested statins. We also tested pitavastatin against two other
clinical strains of T4 genotype, CDC:V240 and MEEI 0184, and found that both strains were equally
susceptible to pitavastatin (EC5g of 1 uM and 0.5 uM) (Table 1). Fluvastatin, atorvastatin, simvastatin
and pravastatin were tested earlier against A. castellanii T4 genotypes [24]. Although a different
assay method, 96-h time point and different clinical strains were used by Martin-Navarro et al. [24]
to determine the ECsj of these four statins, the activity of fluvastatin, atorvastatin and pravastatin
reported earlier [24] was comparable to the ECs obtained in our study. Our study, on the other hand,
identified pitavastatin as the most potent statin against A. castellanii and is favorably comparable to the
current standard of care chlorhexidine.
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Table 1. ECs5; values of HMG-CoA reductase (HMGR) inhibitors against trophozoites of A. castellanii.

HMGR Inhibitors Strain ECs¢ (uM) Mean + SE

Fluvastatin Ma 11 +0.04
Atorvastatin Ma 9.6 £ 0.04
Simvastatin Ma 52.8 +0.2
Rosuvastatin Ma 125+23
Pravastatin Ma Not active
Ma 1.9 +0.03

Pitavastatin CDC:V240 1+0.03
MEEI 0184 0.5+ 0.01

Standards of Care

Ma 2 +0.07
Chlorhexidine [20] CDC:V240 1.1+0.1
MEEI 0184 1+0.05
Ma 7.2 +0.06
PHMB [20] CDC:V240 11.8 £ 0.02
MEEI 0184 4.6 +0.03

Since pitavastatin is an FDA-approved drug, the safety data of pitavastatin are widely available.
No apparent cytotoxicity was observed when pitavastatin was tested at 10 uM against human T
lymphocytes [25]. It demonstrated an ECsg of about 20 pM in HepG2 and HEK293 cells. This provides
a selectivity index of 1040, depending on cell types and on the strains of A. castellanii [26]. Clinically,
there may be some concerns about the reported cataractogenic effect of statins. According to the
LIVALO® (Pitavastatin) label, cataracts and lens opacities were seen in dogs treated for 52 weeks.
Binding studies of pitavastatin using lens protein of various species (including humans) showed that
the dog lens had a higher level of binding than other species and therefore it is less likely that humans
are at risk of developing cataracts. Furthermore, recent analysis of correlations between statin use and
cataracts did not find evidence that statins increase the risk of cataracts [27]. Finally, considering a
shorter treatment schedule for AK, we would expect the minimum adverse effects of pitavastatin on
lens transparency.

2.2. Effect of Combination of Pitavastatin and Isavuconazole

Blocking two essential enzymes in the sterol pathway is more detrimental for unicellular organisms
than inhibiting one [17,28]. In a recent study, we identified isavuconazole with nanomolar potency
against different A. castellanii clinical strains of the T4 genotype [20]. In this study, we determined
the synergistic effect of pitavastatin (HMGR inhibitor) and isavuconazole (CYP51 inhibitor) at fixed
concentration ratios. The dose—effect relationships between two drugs were assessed by classical
isobolograms built to calculate Chou-Talalay combination indices and dose-reduction indices, using the
CompuSyn software [29]. The calculated parameters indicated synergy (CI values from 0.2 to 0.7) at
different drug ratios. Thus, 97% growth inhibition with 2- to 9-fold dose reduction for pitavastatin and
11- to 4000-fold dose reduction for isavuconazole was achieved at 4:1, 8:1, 16:1, 32:1, 2000:1, and 4000:1
ratio of pitavastatin and isavuconazole (Table 2). FDA-approved isavuconazole (marketed as a prodrug
Cresemba™) has a good safety profile and is well-tolerated in humans [30]. Isavuconazole CCsj
against human A549 lung carcinoma cells was found > 10 uM [31]. This provides a selectivity index of
about 400 to 10,000, depending on the strains of A. castellanii. Since the concentrations of pitavastatin
and isavuconazole required to show synergism are lower than the concentrations that exhibit toxicity
against mammalian cells, we believe that the concentrations used in the combination study will not
produce significant toxicity on mammalian cells.
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Table 2. Summary of synergism assay with pitavastatin and isavuconazole, shown for 97% growth
inhibition of A. castellanii trophozoites.

Pitavastatin: % Growth ~ Combination Dose Reduction Index (DRI) Dose Required to Achieve 97%
Isavuconazole Ratio Inhibition Index (CI) Inhibition (uM)

Pitavastatin Isavuconazole Pitavastatin Isavuconazole

4000:1 97 02+0.1 43+02 4077.8 £2.1 22+0.1 0.0005 + 0.0001

2000:1 97 05+0.1 26+06 1630.6 + 114 42+04 0.002 + 0.0001
32:1 97 0.7+0.1 20+05 20.0 £12.0 54+0.6 0.2 +0.04
16:1 97 0.5+0.1 2.8+0.2 128 £3.8 33+04 0.2 +0.01
8:1 97 04+01 48+05 11.5+45 20+£04 0.3 £0.06
4:1 97 03+0.1 92+13 11.1+£5.6 1.1+01 0.3 +0.02

Although topical administrations in human are not currently available for pitavastatin and
isavuconazole, pitavastatin is rapidly absorbed after oral administration and reaches peak plasma
concentrations in human within 1 hr. The elimination half-life of pitavastatin is approximately 12 h [32]
and it is mainly distributed in the liver [33]. Maximum plasma levels of isavuconazole were detected
2-3 h after oral administration and it has a prolonged half-life (100-130 h) [34-36]. Isavuconazole is
widely distributed in liver, lungs, eyes, kidneys, bone, nasal mucosa, and brain [30]. Statins have
been used in a wide range of eye disorders like indistinct soft drusen [37] and vasodilation in retinal
venules and arterioles [38]. Precedents of topical administration of statins in mouse models include
simvastatin for host protection against cutaneous leishmaniasis caused by Leishmania major [39] and as
an antibacterial agent against methicillin-resistant Staphylococcus aureus infection [40]. Formulation
for aqueous and oil suspension and preparations for topical and local application of statins are
available [41]. Ophthalmic formulation has also been developed to topically administer econazole
having poor aqueous solubility [42]. These studies lend support to the potential use of HMGR and
CYP51 inhibitors as topical agents in the treatment of AK.

2.3. Microscopy Study to Determine the Effect of Combination of Pitavastatin and Isavuconazole

The combination of pitavastatin and isavuconazole that generated the highest synergy was
further analyzed by microscopy study to understand the effect of both these drugs on the growth
and morphology of A. castellanii. The pitavastatin-isavuconazole pair, combined at concentrations
of 2.2 and 0.001 pM, respectively, produced a CI value of 0.2 (Table 2). When combined at this ratio,
these two drugs caused almost no growth of cells at 48 h, cells were rounded and much smaller in
size. Trophozoites treated with the same concentration of pitavastatin alone or isavuconazole alone
grew normally, albeit at a slower rate than 0.5% DMSO-treated control cells which appeared normal
(Figure 1).

Statins and azoles are known to induce apoptosis in different mammalian cells [43,44]. An earlier
study also confirmed that atorvastatin, fluvastatin, simvastatin and voriconazole induced programmed
cell death (PCD) in A. castellanii [23]. Whether pitavastatin or isavuconazole, either alone or in
combination, leads to PCD in A. castellanii, requires further investigation.
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Figure 1. Synergistic effect of pitavastatin and isavuconazole. The phase contrast microscope images
show A. castellanii Ma trophozoites treated for 48 h with 0.5% DMSO and a combination of 2.2 uM
of pitavastatin and 0.001 uM of isavuconazole. The drug-treated A. castellanii cells are rounded,
and much smaller in size, whereas DMSO-treated cells are irregularly shaped with visible cytoplasm.
Magnification, x20.

3. Materials and Methods

3.1. In Vitro Activity of HMGR Inhibitors against Clinical Strains of A. castellanii

The trophozoites of the A. castellanii Ma strain (ATCC 50370), CDC:V240 strain (acquired from CDC,
Atlanta, GA, USA) and MEEI 0184 (acquired from Tufts University, Boston, MA, USA), belonging to T4
genotype [45], were cultured axenically in PYG medium supplemented with 1% penicillin-streptomycin
at 28 °C [20]. All experiments were performed with trophozoites harvested during the logarithmic
phase of growth.

A primary screen with HMGR inhibitors was performed in triplicate in three independent
biological replicates, at a single drug concentration, 50 uM, against A. castellanii Ma trophozoites
(5000 cells/well). For this experiment in a 96-well microtiter plate, 0.5 uL of the 10 mM stock solution
of fluvastatin, atorvastatin, simvastatin, rosuvastatin, pitavastatin, and pravastatin (MilliporeSigma,
St. Louis, MO, USA; Tocris, Minneapolis, MN, USA; LC Laboratories, Woburn, MA, USA), dissolved in
DMSO was added into each well to yield a final concentration of 50 uM in 0.5% DMSO. For a negative
control, 0.5% DMSO (MilliporeSigma, St. Louis, MO, USA) was used and 50 pM of chlorhexidine
(Fisher Scientific, Waltham, MA, USA) was used as a positive control. The statins were incubated
for 48 h in the presence of 5000 trophozoites in each well. The activity of each statin on trophozoites
was determined by measuring the ATP bioluminescence using CellTiter-Glo luminescence-based
viability assay (Promega, Madison, WI, USA) [46]. Hits showing > 80% inhibition were further tested
in triplicate in three independent experiments (biological replicates) to determine ECsj values.
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For ECsg determination in a 96-well plate, 20 mM stock of simvastatin and 10 mM stocks of
fluvastatin, atorvastatin, rosuvastatin, and pitavastatin were first serially diluted in a clear bottom
96-well working plate to yield a concentration range of 20 to 0.156 mM for simvastatin and 10 to
0.078 mM for other statins. 0.5 uL of each concentration of the compound in the working plate was
then transferred in triplicate to the respective row of the 96-well screening plate. A total of 99.5 uL of
A. castellanii Ma trophozoites (5000 cells) were added to the screening plate to yield final concentrations
ranging from 100 to 0.78 uM for simvastatin and 50 to 0.39 uM for other statins in 0.5% DMSO. Negative
and positive control wells in the screening plates contained 0.5% DMSO and 50 uM chlorhexidine,
respectively. The dose response of pitavastatin was also determined against CDC:V240 and MEEI
0184 strains. After incubation of assay plates for 48 h at 28 °C, 25 L of CellTiter-Glo luminescent cell
viability assay reagent (Promega, Madison, WI, USA) was added to each well of the 96-well plate.
Cell lysis was induced by shaking the plate at room temperature for 10 min. The plate was then kept in
the dark at room temperature for 5 min and the resulting ATP bioluminescence of the trophozoites
was measured by an EnVision plate reader (PerkinElmer, Waltham, MA, USA) [20]. All experiments
were conducted in triplicate. Statistical analysis of experiments and determination of EC5( values was
performed by using GraphPad Prism software 5.0 (GraphPad, San Diego, CA, USA).

3.2. Effect of Combination of Pitavastatin and Isavuconazole

We earlier showed that CYP51 inhibitor isavuconazole elicited potent activity against trophozoites
of different strains of A. castellanii [20]. Since both isavuconazole and pitavastatin inhibit enzymes
in the ergosterol biosynthetic pathway, we tested the activity of the combination of pitavastatin and
isavuconazole against A. castellanii Ma trophozoites and compared the effect of the combination of
these two drugs with the effect of a single drug. The growth inhibition was determined by CellTiter-Glo
assay (Promega, Madison, W1, USA). Briefly, 0.25 puL from 10 mM stock of pitavastatin and 0.25 puL
from 80 pM stock of isavuconazole were transferred to the combination well of the 96-well assay plate.
This provided a final concentration of 25 uM for pitavastatin and 0.2 uM for isavuconazole that induced
100% growth inhibition. Similarly, 0.25 uL each of serially diluted pitavastatin and isavuconazole was
transferred in each well of the 96-well assay plate in a checkerboard fashion. The plate with different
ratios of pitavastatin and isavuconazole also contained a column of pitavastatin alone, ranging from
25 t0 0.195 uM, and a column of isavuconazole alone, ranging from 0.2 to 0.00156 uM, to determine
the ECsg of individual drugs. Each plate contained 0.5% DMSO as a negative control and 50 pM of
chlorhexidine as a positive control. A total of 5000 A. castellanii Ma trophozoites in 99.5 uL of PYG
medium added in each well of the 96-well plate and the trophozoites were incubated for 48 h at 28 °C.
The growth inhibition of trophozoites in the presence of pitavastatin and isavuconazole, both alone
and in combination, was measured by CellTiter-Glo ATP bioluminescence assay (Promega, Madison,
WI, USA). All experiments were performed in triplicate. The effect of the combination of two drugs
was calculated by the Chou-Talalay Combination Index method using CompuSyn software [29].

3.3. Microscopy Study to Determine the Effect of Combination of Pitavastatin and Isavuconazole

To confirm the synergistic effect of pitavastatin and isavuconazole, as predicted by the CompuSyn
software, 5000 A. castellanii Ma trophozoites in PYG medium were incubated with 2.2 uM of pitavastatin
alone, 0.001 uM of isavuconazole alone, and a combination of 2.2 uM of pitavastatin and 0.001 uM
of isavuconazole in a 96-well clear bottom plate at 28 °C. Since a 4000:1 ratio of pitavastatin and
isavuconazole provided the best combination index in CompuSyn to achieve 97% growth inhibition,
we selected the pitavastatin-isavuconazole pair at this ratio in the microscopy study. Each plate
contained trophozoites treated with 0.5% DMSO as a negative control. The effect of pitavastatin
and isavuconazole, both alone and in combination, on trophozoites was imaged at 48 h under Zeiss
Axiovert 40 CFL phase contrast microscope (Carl Zeiss, White Plains, NY, USA).
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4. Conclusions

Our study identified a potent HMGR inhibitor pitavastatin that inhibited growth of trophozoites
of different clinical strains of A. castellanii representing the T4 genotype. Combination of pitavastatin
and isavuconazole led to a synergistic effect and allowed us to reduce concentrations of both drugs
by an order of magnitude to achieve 97% of growth inhibition. Since both HMGR and CYP51 are
‘druggable’ targets in A. castellanii [16,24] and isavuconazole suppressed excystment of Acanthamoeba
cysts into trophozoites [20], it is possible that combination of pitavastatin and isavuconazole at lower
concentrations may also prevent recurrence of infection caused by Acanthamoeba excystment. Future
studies will confirm the target of pitavastatin in A. castellanii and will investigate its effect on cysts,
either alone or in combination with isavuconazole.
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