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ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome-
coronavirus-2 (SARS-CoV-2), has spread over the world causing a pandemic which is still 
ongoing since its emergence in late 2019. A great amount of effort has been devoted to 
understanding the pathogenesis of COVID-19 with the hope of developing better therapeutic 
strategies. Transcriptome analysis using technologies such as RNA sequencing became a 
commonly used approach in study of host immune responses to SARS-CoV-2. Although 
substantial amount of information can be gathered from transcriptome analysis, different 
analysis tools used in these studies may lead to conclusions that differ dramatically from each 
other. Here, we re-analyzed four RNA-sequencing datasets of COVID-19 samples including 
human bronchoalveolar lavage fluid, nasopharyngeal swabs, lung biopsy and hACE2 
transgenic mice using the same standardized method. The results showed that common 
features of COVID-19 include upregulation of chemokines including CCL2, CXCL1, and 
CXCL10, inflammatory cytokine IL-1β and alarmin S100A8/S100A9, which are associated with 
dysregulated innate immunity marked by abundant neutrophil and mast cell accumulation. 
Downregulation of chemokine receptor genes that are associated with impaired adaptive 
immunity such as lymphopenia is another common feather of COVID-19 observed. In 
addition, a few interferon-stimulated genes but no type I IFN genes were identified to 
be enriched in COVID-19 samples compared to their respective control in these datasets. 
These features are in line with results from single-cell RNA sequencing studies in the field. 
Therefore, our re-analysis of the RNA-seq datasets revealed common features of dysregulated 
immune responses to SARS-CoV-2 and shed light to the pathogenesis of COVID-19.
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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new virus that causes 
coronavirus disease 2019 (COVID-19). Since late 2019 the virus started to spread over the 
world and caused a pandemic with unprecedented health and economic consequences. The 
World Health Organization has reported a total of 429,189,439 confirmed cases and 6,159,474 
confirmed deaths as of 7th of April 2022 (https://www.who.int/emergencies/diseases/novel-
coronavirus-2019). 11,054, 362,790 vaccine doses were administered worldwide by then. 
Individuals infected by SARS-CoV-2 showed a large variety of disease manifestations. Some 
infected individuals were asymptomatic or had only flu-like symptoms, whereas others 
needed supplemental oxygen or even succumbed to the disease (1,2). Quarantine, social 
isolation, and infection-control measures remain the main ways to prevent disease spread 
(3), highlighting the urgent need for effective therapies against the disease. Understanding 
virus-host interaction including how SARS-CoV-2 viruses damage host cells and tissues, how 
various components of the host immune system work cooperatively to control the spreading of 
the virus, and how dysregulated immune activation contributes the development of the disease 
will provide opportunities for development of therapeutic strategies against COVID-19.

Numerous studies on immune response after SARS-CoV-2 infection have demonstrated that 
severe COVID-19 disease is associated with elevated plasma levels of inflammatory cytokines/
chemokines and unrecoverable lymphopenia. For instance, analysis of forty-one COVID-19 
patients who had a history of direct exposure to the Huanan seafood market in Wuhan, 
China, Huang et al. (1) found that COVID-19 patients had higher plasma levels of various 
cytokines and chemokines including IL1β, IL1RA, IL-7, IL8, IL9, G-CSF, GM-CSF, IFNγ, IP10 
(CXCL10) and MCP1 (CCL2) compared to healthy adults. In addition, patients with severe 
symptoms requiring intensive care unit admission had higher concentrations of IL2, IL-7, 
IL-10, G-CSF, IP10, MCP1, MIP1A and TNFα than those with milder symptoms, indicating 
that severe COVID-19 disease is likely associated with the development of cytokine storm. 
Interestingly, patients with severe symptoms had increased neutrophil counts (10.6×109 per 
L vs. 4.4×109 per L) but more severe lymphopenia (0.4×109 per L vs. 1.0×109 per L) compared 
to patients with mild disease upon admission to hospital. In another study, by comparing 
patients who survived COVID-19 (137 patients) against those who died of COVID-19 
disease (54 patients) from two hospitals in Wuhan, Zhou et al. (2) discovered that severe 
lymphopenia was associated with the non-survivors, whereas survivors had lymphopenia 
with the lowest lymphocyte count observed on day 7 after disease onset followed by recovery 
during hospitalization. In addition, the non-survivors had significantly elevated levels of IL-6 
compared to the survivors. These two studies demonstrated that unrecoverable lymphopenia 
and exaggerated inflammation are two factors associated with severe COVID-19 and even 
death from the disease. These observations were supported by analysis of COVID-19 patients 
in other parts of the world. For instance, by immune cell profiling of 113 COVID-19 patients 
admitted to Yale New Heaven Hospital, USA, ranged between day 3 to day 51 after disease 
onset, Lucas et al. (4) observed that both CD4+ and CD8+ T cells were markedly reduced, 
whereas granulocytes including macrophages, neutrophils and eosinophils were increased 
in PBMCs in COVID-19 patients compared to healthy control, and the levels of granulocytes 
correlated with disease severity. In addition, although increased levels of inflammatory 
cytokines, including IL-1α, IL-1β, IL-17A, IL-12 and IFNα were observed in all COVID-19 
patients compared to healthy control, patients with severe symptoms had increased levels 
of additional inflammatory mediators including IL16, IL-21, IL-23, IL33 and IFNl when 
compared to those with mild diseases. Interestingly, patients with severe symptoms had 
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sustained increased IFNα and IFNl levels as well as elevated levels of IL-1β and IL-18 in plasma 
compared with patients with mild disease, suggesting that in addition to elevated levels of 
proinflammatory cytokines and lymphopenia, dysregulated innate immune cell recruitment 
and impaired type I immunity are markers for severe COVID-19. Another study on two 
cohorts of COVID-19 patients from two different locations, Hong Kong, China and Atlanta, 
USA, performed by Arunachalam et al. (5) showed that although plasma cytokine including 
IL-6, MCP-3 and CXCL10 were significantly up-regulated in COVID-19 patients compared to 
healthy control, only the levels of three inflammatory mediators, namely TNFSF14, EN-RAGE 
and OSM, were strongly correlated with disease severity. Furthermore, pDCs from COVID-19 
patients were found to be impaired in production of IFNα, while monocytes and mDCs had 
reduced expression of CD86 and HLA-DR. Lymphopenia characterized by reduced CD4+ and 
CD8+ T cells in COVID-19 patients was also observed by Giamarellos-Bourboulis et al. (6) 
in their fifty-four COVID-19 patient cohort in Athens, Greece, and it was found to be more 
pronounced in patients with sudden respiratory failure (SRF). Majority of their patients 
with SRF had significant decrease of HLA-DR expression on CD14 monocytes accompanied 
by profound depletion of CD14+ lymphocytes, CD19+ lymphocytes and NK cells. The low 
HLA-DR expression on monocytes was likely due to increased plasma IL-6 and C-reactive 
protein levels in patients, as opposed to TNFa and IFNγ, and blocking IL-6 partially restored 
the expression of HLA-DR on monocytes. Therefore, impaired antigen presentation in 
severe COVID-19 patients might contribute to the development of lymphopenia. However, 
the monocytes remain potent for production of inflammatory cytokines. Together, these 
studies showed that host immune responses to SARS-CoV-2 infection may vary in different 
individuals, but dysregulated host immune response characterized by impaired antigen 
presentation and exaggerated inflammatory cytokine production by the innate immune 
system and lymphopenia are key factors contributing to severe COVID-19 disease. However, 
the underlying mechanisms requires further investigation.

Transcriptome analysis using next-generation RNA-sequencing (RNA-seq) enables 
researchers to determine the presence and quantity of RNA, i.e. gene expression, in 
biological samples on a genome-wide scale. In addition, alternatively spliced transcripts, 
mutations and post-transcriptional modifications in different experimental conditions 
can be identified. Therefore, comparison of the transcriptome using RNA-seq between 
experimental conditions can reveal a wealth of information about the underlying biological 
mechanisms. Several studies utilized RNA-seq to analyze COVID-19 patient samples to profile 
global gene expression changes triggered by SARS-CoV-2 infection, unravelling molecular 
insights underlying host response to the virus and pathogenesis of the disease. For example, 
by RNA sequencing profiling of nasopharyngeal swabs from 430 individuals infected with 
SARS-CoV-2 and 53 negative controls, Lieberman et al. (7) showed a strong antiviral response 
upon SARS-CoV-2 infection with upregulation of antiviral factors such as OAS1-3 and IFIT1-
3. Blanco-Melo et al. (8) used cells and animal models of SARS-CoV-2 infection in joint 
with transcriptional and serum profiling of COVID-19 patients to reveal a unique immune 
response against COVID-19 and disease progression, characterized by low levels of type I and 
III interferons and elevated levels of chemokines and IL-6. By metatranscriptome sequencing 
of bronchoalveolar lavage fluid (BALF) of 8 COVID-19 patients and 20 healthy controls, Zhou 
et al. (9) showed the presence of hypercytokinemia and a robust upregulation of interferon 
stimulated genes in COVID-19 patients.

Various tools and approaches are available for RNA-seq data analysis, which could potentially 
lead to differential interpretation of the results. Some of the data analytic tools that are 
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currently used in some of the RNA-seq studies were originally developed for microarray 
analyses, therefore may be outdated and unsuitable for analysis of RNA-seq datasets. For 
instance, quantile normalization used in some RNA-seq studies was designed to work 
on data where only a small proportion of genes is differentially expressed. When this 
assumption is unmet, results from analysis of the data using this method will not be accurate. 
Hence, more modern normalization methods using scaling factors would be preferred. Here, 
we re-analyzed four SARS-CoV-2 RNA-seq datasets using the same standardized approach 
and compared our results with results of the original studies, aiming to identify common 
immune features in response to SARS-CoV-2 infection. For one of the datasets, we found 
that the majority of reads in some samples are mapped to the virus, rather than to the human 
host, causing lower read counts for thousands of genes in the COVID-19 samples compared 
to the control samples. Furthermore, we compared the differentially expressed genes over 
datasets and report similarities in transcriptomic changes after SARS-CoV-2 infection. In 
addition, we compared the results from our re-analysis of RNA-seq datasets with results 
of scRNA-seq analysis of COVID-19 studies in the literature and found high concordance 
in differentially expressed genes between COVID-19 and control samples revealed by both 
technologies.

MATERIALS AND METHODS

RNA-sequencing data
RNA-seq data of 8 COVID-19 patients and 20 healthy control samples of bronchoalveolar 
lavage fluid (BALF) as reported by Zhou et al. (9) were downloaded from the Genome 
Sequencing Archive, National Genomics Data Center, China National Center for 
Bioinformation (https://bigd.big.ac.cn/gsa/, project code PRJCA002273). For re-analysis of 
the Lieberman et al. (7) data of nasopharyngeal swabs of 430 COVID-19 cases and 54 healthy 
controls, we used the raw counts table as deposited in NCBI Gene Expression Omnibus under 
accession number GSE152075. For the Blanco-Melo dataset (8), we used the raw counts table 
of RNA-seq data of one lung biopsy of a COVID-19 patient and 2 lung biopsies of healthy 
controls available in the Gene Expression Omnibus under accession number GSE147507. 
RNA-seq data of a mouse model of SARS-CoV-2 based on the adeno-associated virus–
mediated expression of hACE2 of 2 infected mice and 2 mock infected mice as reported in 
Israelow et al. (10) were downloaded from NCBI GenBank, accession number PRJNA646535.

Two computational approaches for RNA-seq data analysis
For the Zhou and Israelow data, we used the Nextflow nf-core RNA-sequencing pipeline (11) 
to perform adapter trimming using Cutadapt (Martin et al., 2011), alignment of reads to the 
genome using STAR (12) and quantification of read counts per gene using featureCounts 
(13). Human reads were aligned to the GRCh38 genome and mouse reads were aligned to 
GRCm38. For the Lieberman and Blanco-Melo data we used the raw counts tables from NCBI 
Gene Expression Omnibus.

Once count tables per sample and per gene were obtained, we processed each of the 
four datasets in two ways. As a first method, also referred to as “our” method, we 
removed all genes having a total read count <100 over all samples. Next, we used DESeq2 
(14) for normalization and identification of differentially expressed genes (DEGs). 
DEGs were defined as those genes having an adjusted p value <0.05 and an absolute 
log2(FoldChange)>=2. As second method, similar to Zhou et al.(9), we removed the genes 
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that were present in less than 50% of samples in both groups (COVID-19 and healthy) and 
genes with an average count per million below five in both groups. Then gene counts were 
normalized using quantile normalization and the voom method. The limma package was 
used to identify DEGs, that were defined as having an adjusted p value <0.05 and an absolute 
log2(FoldChange)>=2 (ref ).

Statistical analyses
Enrichment analysis of KEGG pathways was performed using the enrichKEGG function of 
the clusterProfiler package (15) of the R statistical software (R Core Team, 2020). Heatmaps 
were drawn using the R package pheatmap. The combinations of TMM and DESeq2 
normalization with edgeR or DESeq2 for DEG identification were calculated using the TCC R 
package, using 1 and 3 iterations (16).

The composition of immune cells was inferred using CIBERSORT v1.06 (17) using 100 
permutations and the original gene signature file LM22. The calculated proportions of 22 cell 
types were summarized into 9 major cell types. Cell composition analysis was performed on 
raw read counts per gene converted into the amount of transcripts per million.

RESULTS

Human COVID-19 RNA-seq data may contain large proportions of viral reads
To increase our understanding of the host response after SARS-CoV-2 infection, we re-analyzed 
four RNA-seq datasets of COVID-19 samples versus healthy controls. We started our re-analysis 
with the dataset on bronchoalveolar lavage fluid (BALF) samples (BALF dataset) of 8 COVID-19 
patients and 20 healthy controls (9). The original analysis identified 1014 up-regulated genes 
and 739 down-regulated genes in COVID-19 patient samples compared to healthy controls. 
However, our analysis on differential gene expression using DESeq2 identified 140 up-regulated 
genes and 6538 down-regulated genes (Fig. 1A, Supplementary Table 1). Compared to original 
analysis results, we found a much larger number of differentially expressed gene in COVID-19 
samples (6,678 vs. 1,753) compared to healthy control samples, with about 7-fold reduction in 
the number of up-regulated genes and a 7.8-fold increase in the number of down-regulated 
genes (more than 6,000 genes).

To find out if the difference was caused by different analysis method used, we applied four 
combinations of TMM and DESeq2 normalization with edgeR and DESeq2 for finding DEGs 
using the TCC software package (TCC). Similar results were obtained, with a few hundred 
up-regulated and thousands of down-regulated genes (Table 1). During the analysis, we 
found that some of the COVID-19 samples in this dataset had very low amounts of human 
reads. Six out of the eight COVID-19 samples were found to contain only 2.0, 6.5, 13.4, 
1.1 and 6.9 million human reads each, although they were sequenced at a total read depth 
of 20 million reads. In contrast, the 20 control samples have an average of 16.8 million 
human reads with a minimum of 11.6 human reads. It appeared that in these six COVID-19 
samples, viral RNA takes up the remainder of the sequencing reads, and that only the human 
reads were deposited as supplementary data to the original paper (9). The large amount of 
down-regulated genes which we detected in COVID-19 samples using newer normalization 
techniques was not detected in the original paper where quantile normalization was used (9), 
as explained in Supplementary Fig. 1.
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Next, we re-analyzed another dataset from nasopharynx swab samples (NP dataset) of SARS-
CoV-2 infected individuals and healthy controls (7). The original analysis of this dataset 
identified a total of 83 DEGs with 41 up-regulated and 42 down-regulated genes (Padj<0.1 and 
absolute log2 fold change >1) in the nasopharynx as a result of SARS-CoV-2 infection (7). Our 

https://doi.org/10.4110/in.2022.22.e22

Common Immune Features of COVID-19

A

−L
og

10
 (a

dj
us

te
d 

p 
va

lu
e)

Log2 (fold change)

50

−10 0 10

40

30

20

10

0

Up 140 Down 6538

BALF dataset

C

−L
og

10
 (a

dj
us

te
d 

p 
va

lu
e)

Log2 (fold change)

20

−10 −5 50 10

15

10

5

0

Up 314 Down 416

LUNG dataset

B

−L
og

10
 (a

dj
us

te
d 

p 
va

lu
e)

Log2 (fold change)

50

60

−5 0 5

40

30

20

10

0

Up 337 Down 826

NP dataset

D

−L
og

10
 (a

dj
us

te
d 

p 
va

lu
e)

Log2 (fold change)

50

60

−4−8 80 4

40

30

20

10

0

Up 144 Down 6

TG-ACE2 dataset

CERCAM

SLC19A3
HLA-DRA

IFITM2

IL1RN IFIT1
IFITM1

ISG15

IL1B

TLR9

TRIM54

OAS3

S100A13

S100A12
CXCL10

ISG15

FCER1G
CLEC4E

FDCSP

CARD17

IFIT2

SELL

IFI6

CCL4

IFITM3FOSB
FOS

JUN

RRAD

RPLP1 CXCL10

CASP17P

CXCR2P1

CXCL11

FLT1

OAS3

IFIT1

IFIT2

DDX58

IFI44L

RSAD2

IFI44
OAS2

RPS8

RPS5

OAZ1

RPL13A

TSPAN7

Bcl11b

Slfn4

Cxcl9
Ifi211

Ifi204
Isg15

Mx1Irf7
Ifit3
Ifit2

Rsad2

Cxcl10

Figure 1. Differentially expressed genes in re-analyzed four RNA-seq datasets of COVID-19 studies. (A) Regulated genes for Zhou et al. dataset on BALF of 8 
COVID-19 patients and 20 healthy controls (BALF dataset). (B) Regulated genes for Lieberman et al. dataset on nasopharyngeal swabs of 430 COVID-19 cases and 
54 healthy controls (NP dataset). (C) Regulated genes for Blanco-Melo et al. dataset on one lung biopsy of a COVID-19 patient and two lung biopsies of healthy 
controls (LUNG dataset). (D) Regulated genes for Israelow et al. dataset on a mouse model for SARS-CoV-2 of two virus-infected and two mock-infected mice 
(TG-ACE2 dataset).

Table 1. Numbers of up- and down-regulated genes found using the BALF dataset and four combinations of TMM/DESeq2 normalization and edgeR/DESeq2 DEG 
identification and either 1 or 3 iterations
Normalization Testing Iteration Total No. of gene No. of DEG No. of Upregulated gene No. of downregulated gene
tmm edger 1 16,416 8,014 1,058 6,873
tmm deseq2 1 16,416 3,749 334 3,399
deseq2 edger 1 16,416 10,166 810 9,295
deseq2 deseq2 1 16,416 5,875 136 5,685
tmm edger 3 16,416 7,391 1,132 6,177
tmm deseq2 3 16,416 3,800 312 3,471
deseq2 edger 3 16,416 4,057 1,790 2,231
deseq2 deseq2 3 16,416 4,441 243 4,146
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analysis identified a total of 1,163 DEGs with 337 up-regulated and 826 down-regulated genes 
(p<0.05 and absolute log2 fold change ≥2) (Fig. 1B, Supplementary Table 2). Similarly, we 
identified a total of 730 DEGs with 314 up-regulated and 416 down-regulated genes in the dataset 
of post-mortem lung samples (LUNG dataset) of COVID-19 patients and biopsied healthy lung 
tissues from uninfected individuals (Fig. 1C, Supplementary Table 3), compared to ~2000 
up- or down-regulated genes in the original analysis (8). In addition, re-analyzing a dataset of 
hACE2 transgenic mouse infected with SARS-CoV-2 viruses (TG-ACE2 dataset) identified a 
total of 150 DEGs with 144 up-regulated and 6 down-regulated genes (Fig. 1D, Supplementary 
Table 4). Table 2 gives an overview of the amount of DEGs identified using DESeq2 we used and 
the combination of voom and quantile normalization as used by Zhou et al. (9). Therefore, the 
analysis tools used by different studies may cause potential misinterpretation of RNA-Seq data in 
understanding host response to SARS-CoV-2 infection.

Functional analyses
To gain insight into biological pathways that are involved in immune response to SARS-
CoV-2 infection, we performed gene enrichment analysis for KEGG pathways for the up- and 
down-regulated genes in each of the four datasets we re-analyzed. In the BALF dataset, the 
top enriched pathways include the “Ribosome,” “IL-17 signaling pathway,” “TNF signaling 
pathway” and “Non-alcoholic fatty liver disease” pathways (q values <0.05, Fig. 2A and C, 
Supplementary Table 5), whereas the original analysis identified “Interferon signaling,” 
“EIF2 signaling,” “Role of IL-17F in allergic airway inflammatory airway diseases,” and 
“Cholecystokinin/Gastrin-mediated signaling” as the top enriched pathways (7). Of note, 
“IL-17 signaling pathway” was also found to be up-regulated in our analysis of the LUNG 
dataset (Fig. 2A). Our analysis of the NP and LUNG datasets revealed commonly enriched 
pathways including “Viral protein interaction with cytokine and cytokine receptor,” “Cytokine-
cytokine receptor interaction,” “Chemokine signaling pathway,” “NOD-like receptor signaling 
pathway,” and “Influenza A” in these two datasets. The “Influenza A” pathway is enriched in 
interferon-stimulated genes (ISGs) including OAS1, OAS2, OAS3, MX2, IFIH1, DDX58, CXCL10 
and CCL2 (Fig. 2A, Supplementary Table 5). In the TG-ACE2 dataset, the top up-regulated 
pathways include “Viral protein interaction with cytokine and cytokine receptor,” “NOD-like 
receptor signaling pathway,” and “Chemokine signaling pathway” (q values <0.05) (Fig. 2C, 
Supplementary Table 5). Therefore, our analysis of both human and murine datasets showed 
that SARS-CoV-2 virus infection triggered strong cytokine and chemokine responses in hosts.

Enrichment analysis of down-regulated genes showed that in both the BALF dataset and the 
TG-ACE2 dataset, “ECM-receptor interaction” is the top down-regulated pathway (q value 
<0.05) (Fig. 2B, Supplementary Table 6), whereas in the NP dataset, “Ribosome” is the 
pathway that was most down-regulated (q value <0.05) (Fig. 2D, Supplementary Table 6). In 
addition, top down-regulated pathways in the BALF dataset included “Dilated cardiomyopathy,” 
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Table 2. Numbers of DEGs identified in the four SARS-CoV-2 RNA-seq datasets using two computational approaches
Dataset Method No. of upregulated genes No. of downregulated genes Total No. of regulated genes
Zhou Voom and quantile normalization 740 747 1,487

DESeq2 140 6,538 6,678
Lieberman Voom and quantile normalization 97 66 163

DESeq2 337 826 1,163
Blanco-Melo Voom and quantile normalization 28 138 166

DESeq2 314 416 730
Israelow Voom and quantile normalization 2 55 57

DESeq2 144 6 150
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“Arrhythmogenic right ventricular cardiomyopathy,” “Hypertrophic cardiomyopathy,” “Focal 
adhesion,” and “Axon guidance” (q values <0.05). Interestingly, “Axon guidance” was the 
pathway that was commonly identified as one of the top down-regulated pathways in the BALF, 
LUNG and the TG-ACE2 datasets (q values <0.05) (Fig. 2B and D, Supplementary Table 6).

Differentially expressed chemokines, cytokines and ISGs
Dysregulated cytokine production is believed to play an important role in pathogenesis of 
severe COVID-19 disease (8). For the BALF dataset, the original analysis, which classified the 218 
cytokine-related genes into seven categories including ILs, chemokines, IFNs, TNF, CSF, other 
cytokines and receptors, showed that chemokines were predominant among the up-regulated 
genes in SARS-CoV-2 samples among the 35 significant DEGs (9). Among the 14 significantly DE 
chemokines, CXCL17 was ranked the first in the up-regulated chemokines followed by CXCL8 and 
CCL2 (9). In our re-analysis, the number of total cytokine-related genes is 167 with 44 significant 
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DEGs (Fig. 3A, Supplementary Table 1). Only 6 chemokine genes were found to be significantly 
differentially expressed between SARS-CoV-2 and healthy controls, with 4 genes, namely CXCL1, 
CXCL17, CXCL10 and CCL2, being up-regulated and two genes, CXCL16 and CCL22, being down-
regulated (Fig. 3A, Supplementary Tables 5 and 6). For ILs, in contrast to the original analysis 
showing 3 cytokines including IL1RN, IL1B and IL4 being significantly up-regulated in SARS-CoV-2 
samples, we identified 6 IL genes that are significantly differentially expressed. Among them, 
IL-1B was the only one that was significantly up-regulated. The other 5 ILs including IL-16, IL-13, 
IL-19, IL-36B and IL-24 were down-regulated. IL-1B is produced by activated macrophages and is 
an important mediator of the inflammatory response. IL-16 is a chemoattractant and modulator 
of T cell activation, whereas IL-19 polarizes macrophages into an anti-inflammatory phenotype, 
and IL-24 can, for example, dampen the first rounds of CD8+ T cell expansion. The most striking 
difference between the original analysis and our analysis was at the receptor category. Instead of 
14 significantly differentially expressed receptors that were identified with 10 of them up-regulated 
and 4 of them down-regulated in the original analysis, we identified 24 significantly differentially 
expressed receptors with only 1 (CCR1) being up-regulated (Fig. 3A, Supplementary Table 5). The 
down-regulated receptor genes include IL2RA, IL2RB, IL7R, IL12RB1, IL12RB2, and IL21R which play 
important roles in T cell and NK cell growth, differentiation and function. In total, we observed 
up-regulation of only six genes, including IL1B, CXCL1, CXCL17, CXCL10, CCL2 and CCR1, and a larger 
number of other cytokines, chemokines and related genes being significantly down-regulated 
(Fig. 3A, Supplementary Table 6).

We also analyzed the differentially expressed cytokine-related genes in the other three 
datasets. We identified 37 significantly differentially expressed genes in the NP dataset, 
of which 17 being up-regulated (Fig. 3B, Supplementary Table 5). These 17 genes belong 
to three categories, with 1 IL gene (IL10), 7 chemokine genes with CXCL11 as the top up-
regulated gene followed by CXCL10, CXCL9, CCL8, CCL2, CXCL13 and CXCL12, and 9 cytokine 
and chemokine receptor genes. Similarly, analysis of differentially expressed cytokine-related 
genes in the LUNG and TG-ACE2 datasets demonstrated that a small number of IL genes 
including IL1B which was significantly up-regulated in COVID-19 samples. In addition, 
the main group of significantly differentially expressed cytokine-related genes consists 
of chemokines (9 out of 37 in the LUNG dataset and 8 out of 30 in the TG-ACE2 dataset) 
followed by receptor genes (Fig. 3C and D, Supplementary Table 5). Importantly, IL1B is the 
only IL gene that was commonly up-regulated in the BALF, Lung and TG-ACE2 datasets, 
while CCL2 and CXCL10 were observed to be up-regulated in all the four datasets in our 
analysis (Fig. 3). Therefore, SARS-CoV-2 infection up-regulates a small number of cytokine 
and chemokine genes including IL1B, CCL2, CXCL10, and CXCL11 in both humans and mice. In 
addition, we observed increased expression of S100A8 and S100A9 in both BALF and LUNG 
datasets compared to their respective controls (Fig. 3E, Supplementary Tables 1 and 3).

Type I IFNs and ISGs are regarded as a key component of the innate immune response to virus 
infection (18). The original analysis of the BALF dataset identified 83 ISGs including IFIT1, 
IFITM1,2,3, IFIH1, TANK, IRF7 and STAT1 that were significantly elevated, suggesting a robust 
IFN response to SARS-CoV-2 infection (7). In our re-analysis, only 16 ISGs were identified to be 
significantly up-regulated, whereas 176 ISGs were down-regulated (Fig. 4A, Supplementary 
Table 1). Among the top up-regulated ISGs are IFITM1, IFIT1, IFITM2, and IFITM3 which are 
known to have direct antiviral activity, and CCL2, CXCL10 and CCR1 which regulate inflammation. 
These findings are inconsistent with the original analysis results. In our re-analysis of the 
NP, LUNG, and TG-ACE2 datasets, more ISGs were found to be significantly up-regulated 
compared to the results of the original analysis (Fig. 4B-D, Supplementary Tables 2-4). Tens 
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of ISGs were up-regulated in these datasets, and there is a striking overlap of the strongly 
up-regulated ISGs between these three datasets (Fig. 4B-D). It was identified that CXCL10, 
IFIT1, IFIT2 and IFIT3 are in the top twenty up-regulated genes in all three datasets, whereas 
OAS2, OAS3, ISG15, IFI44 and CXCL9 are in two of the three top 20 lists. However, neither IFNβ 
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nor IFNα genes are among the significantly upregulated genes. These results demonstrate 
that although elevated levels of IFNα and IFNβ may not be ready detectable, SARS-CoV-2 does 
trigger a robust IFN response.

Cell composition analyses
Whole transcriptome data can be used to access the abundances of immune cell types in a 
mixed cell population. To further understand the immune response to SARS-CoV-2, we used 
CIBERSORT, a program that combines support vector regression with prior knowledge of 
gene expression profiles from purified leukocyte subsets (19), to analyze the abundance of 
various immune cell types in the BALF, Nasopharynx and Lung datasets. Reduced frequency 
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of B cells, T cells and NK cells are observed in all the three datasets, confirming that SARS-
CoV-2 infection results in lymphopenia in humans (Fig. 5). In addition, increased frequency 
of neutrophils, especially in the BALF and the Lung datasets are identified. Interestingly, 
great increase of mast cell frequency is also observed in both the BALF and the Lung datasets. 
These findings demonstrate that in addition to lymphopenia, dysregulated innate immune 
cell infiltration, featured by abnormally abundant mast cells and neutrophils, contribute to 
the pathogenesis of COVID-19.

DISCUSSION

After nearly two years since its emergence at the end of 2019, SARS-CoV-2 infection and 
COVID-19 disease remain a major health problem globally and effective treatment is yet 
to develop. Understanding the interaction between the virus and the host would provide 
opportunities for the development of therapeutic strategies against the disease. To better 
understand the host immune response after SARS-CoV-2 infection, we performed a re-
analysis of four COVID-19 RNA-seq datasets on samples from nasopharynx, the lung and 
the BALF as well as a human ACE2 transgenic mice infected with SARS-CoV-2 viruses 
using standardized methods. We found that in the infected human BALF samples which 
was sequenced at a library depth of 20 million reads per sample, up to 95% of the reads 
can map to the virus, rather than to the human host. This means that the samples contain 
18 or 19 million viral reads and only 1 or 2 million human reads. Subsequently, we found 
that this impacted the DEGs analysis. Due to the zero and low read counts in the COVID-19 
samples, thousands of “down-regulated” genes were detected. However, due to the 
“undersequenced” of the host RNA since the majority of sequencing reads map to the virus 
in the COVID-19 samples, those genes probably only obtained fewer or no reads, rather 
than being down-regulated. However, this effect is masked by quantile normalization, 
since it equalizes the statistical distribution of the read counts of all samples, infected and 
not infected. Use of normalization methods that use one multiplication factor for all read 
counts per sample reveals that between 5,000 to 10,000 genes are detected as “down-
regulated” in DEG analysis. It is impossible to discriminate between down-regulated genes 
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and “undersequenced” genes in the COVID-19 group based on the RNA-seq data alone. 
One possible solution is to do a deeper sequencing for a fair comparison. Simultaneous 
sequencing of host and viral RNA can lead to large proportions of viral reads in sample, 
hence, substantially affects downstream analyses, such as detection of DEGs. For this 
BALF dataset, we believe that the majority of the ~6000 down-regulated genes are actually 
“undersequenced” genes in the COVID-19 group and that quantile normalization used in the 
original analysis masked this effect.

Our pathway analysis reflected a distinct difference between BALF dataset and NP/LUNG 
datasets. The discrepancy could firstly be due to significant levels of viral RNA sequenced 
from collected BALF samples, hence contributing to reduced number of human reads after 
clean-up. It could also be attributed to sample collection method, anatomical locations, and 
corresponding tissue residential immune cells.

NP and LUNG dataset samples were collected through nasopharyngeal swabs and lung 
biopsy respectively. The nasopharynx is an anatomical area of the upper respiratory tract, 
comprises of primarily epithelial cells and mucus-secreting goblet cells. It represents an 
immunologically distinct compartment, termed the nasopharynx-associated lymphoid tissue 
(NALT), enriched in specialised T cells and B cells together with tissue-specific resident 
macrophages and dendritic cells, act as an inductive site against inhaled pathogens (20). 
Within the lung, the tissue is populated with similar but specialised tissue-resident alveolar 
and interstitial macrophages, dendritic cells, natural killer cells, tissue memory T cells, 
and B cells (21). On the other hand, bronchoalveolar lavage describes a procedure by which 
sterile saline was introduced into the bronchoalveolar space and subsequently collected. 
Therefore, the main constituent of BALF recovered are of alveoli origin, the primary site of 
COVID-19 infection whereby not only tissue-residential immune cells but also infiltrating 
immune cells upon infection would be collected. Hence, nasopharynx swab and lung biopsy 
samples collected from COVID-19 patients and NP/LUNG datasets derived were inclined 
representation of the responses from tissue-resident immune cells, whereas BALF samples 
and corresponding datasets were reflective of the active pathways from both tissue-resident 
and infiltrating immune cells. Therefore, the means and site of sampling could have 
influenced the sequencing results and contributed to the differences observed between NP/
LUNGS and BALF datasets.

Compiling to variations between datasets is potential disease stage-specific immune 
responses. Host response to SARS-CoV-2 can be categorised clinically into anti-viral stage, 
pulmonary stage and hyperinflammation stage, each with differing population of immune 
cells and outcome (22). In the early stage or onset of COVID-19, innate immune cell such as 
the tissue-resident alveolar macrophages and adaptive memory T cells will induce anti-viral 
responses. The patient will advance to pulmonary and hyperinflammation stage should 
the infection remains unresolved, experiencing cytokine storm and hyperinflammation 
aggravated by neutrophils activities (23). Consequently, samples collected at either stage 
of disease will have different immune cell population and therefore influence downstream 
pathway analysis to be representative of those adopted by the predominant immune cells.

KEGG pathway analysis of human and murine datasets revealed similar upregulation of 
anti-viral inflammatory pathways and downregulation of genes that correlate to SARS-CoV-2 
infection progression. Our analysis identified upregulation of distinct genes that can be 
categorised into major pathways pertinent to COVID-19, namely ribosomal, IL-17 signalling, 
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TNF signalling, cytokine/chemokine pathways, and Nod-like receptor (NLR) signalling. A 
clinical determinant of disease severity is the suppression of anti-viral responses, which 
was later identified as one of the immune evasion strategies of SARS-CoV-2. The viral non-
structural proteins (NSPs) demonstrated binding affinity towards various ribosome RNAs, 
causing inhibition of global translation of host proteins, thereby antagonizing essential 
cellular processes to suppress host defence (24,25). This disrupts the function of ribosomes 
and the non-functional ribosomes could be degraded through ubiquitination (26). As SARS-
CoV-2 persists in the host, cells at site of infection may divert resources to compensate for 
degraded ribosome by upregulation of associated genes, in attempt to restore translation 
capacity for the synthesis of anti-viral proteins.

Pathway analysis conducted has identified upregulation of several pathways, notably IL-17, 
TNF, and NLR associated genes and signalling. The roles of these upregulated pathways 
in COVID-19 infection have been investigated in multiple studies. Released from activated 
TH17 cells, IL-17 has been identified as a potent effector cytokine towards pulmonary 
hyperinflammation during COVID-infection. IL-17 exerts its effect through activation 
of multiple signalling pathways and transcription factors, particularly NFkB, promoting 
additional pro-inflammatory cytokines and chemokines of alveolar and epithelial origin, 
hence leading to potentially lethal cytokine storm (27,28). Akin to IL-17, significant 
expression of TNFα by infected tissues, innate immune cells, and TH17 detected in serum 
showed a strong positive correlation to COVID-19 severity and mortality (29,30). In the 
context of SARS-CoV-2 infection, TNF has been attributed with pro-inflammatory effector 
function, partially mediating cytokine shock syndrome through the Ikk, MAPK, and herein 
identified upregulated NLR associated inflammatory pathways (31-33). Recent investigation 
has also linked PANoptosis, an innate immune inflammatory programmed cell death 
pathway dependent on PANoptosome which triggers pyroptosis, apoptosis and necroptosis, 
to TNFα-IFNγ synergism, contributing significantly to the perpetuation of cytokine storm, 
tissue damage, and mortality (34). Therefore, pathways of interest highlighted in this study 
are in alignment with current understanding of COVID-19 pathology.

On the other spectrum, datasets analysis identified downregulation of pathways linked to 
ECM, cardiomyopathy, and focal adhesion. The downregulation of these pathways summates 
to the respiratory failure and lung injury in COVID-19 patients. ECM and focal adhesion 
pathways are responsible for the maintenance of extracellular microenvironment required 
for respiratory functionality (35). KEGG pathway analysis on samples collected from 
COVID-19 patients also revealed downregulation of ECM and focal adhesion pathways and 
lung tissue staining showed corresponding structural dysregulation, resulting in respiratory 
complications (36). Similarly, cardiomyopathy observed here is well documented amongst 
COVID-19 patients, accompanied by a recent longitudinal study on COVID-19 patients as 
having an increased risk of cardiovascular disease (37). With reference to the cardiomyopathy 
KEGG pathways highlighted, the molecular components downregulated are often structural 
proteins, concurring with clinical observation of cardiomyopathy experiences in COVID-19 
patients (38,39).

Enrichment of SARS-CoV-2 RNA in immune cells including monocytes and macrophages in 
COVID-19 patients have been confirmed by single-cell transcriptome analysis studies. For 
instance, a single-cell atlas of multiple organs and tissues from donors who died of COVID-19 
demonstrated that myeloid cells, particularly inflammatory monocytes and macrophages, 
were the cell categories most enriched for SARS-CoV-2 RNA (40). In addition, SARS-CoV-2 
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RNA reads were also detected in mast cells, B and plasma cells, and multiple other cell types 
who did not co-express ACE2 and TMPRSS2, or other hypothesized entry cofactors. Single-
cell sequencing analysis of BALF and sputum samples from severe COVID-19 patients in the 
disease progression stage also detected SARS-CoV-2 RNA in a diverse set of immune cells, 
including neutrophils, macrophages, plasma B cells, T cells and NK cells (41). In addition, 
SARS-CoV-2 transcripts were detected in alveolar macrophage transcriptomes for 67% of 
BALF samples collected from 88 patients with severe COVID-19 disease (42). Subsequent 
single-cell RNA-seq analysis of BAL samples detected both positive- and negative-strand 
SARS-CoV-2 transcripts in migratory CCR7+ dendritic cells, monocyte-derived alveolar 
macrophages and tissue resident macrophages, which do not express ACE2. Therefore, 
the possibility of viral RNA reads in the data should be taken into consideration when 
choosing methods to analyze microarray data from virus infected samples such as those from 
COVID-19 patients.

Here, we applied a standardized method to re-analyze the four RNA-seq datasets of SARS-
CoV-2 infection to probe immune action in comparison to their respective controls. Gene 
enrichment analysis showed that genes involved in “Cytokine-cytokine receptor interaction” 
and “Chemokine signaling pathway” were enriched in both Nasopharynx, Lung and TG-ACE2 
datasets (Fig. 2). Analysis of DEGs further showed that up-regulation of cytokine/chemokine 
genes are a common feature of all four datasets. Excitingly, many of the most differentially 
regulated genes between COVID-19 samples and their controls in these RNA-seq datasets 
were also identified by single-cell RNA-seq studies in literature. For example, we identified 
that inflammatory chemokine CXCL9, CXCL10 and CXCL11 are strongly upregulated in both 
human and mouse SARS-COV-2 infected samples. Specifically, CXCL9 is upregulated in both 
the Nasopharynx and TG-ACE2 datasets, CXCL10 is upregulated in all the four datasets and 
CXCL11 is upregulated in the Nasopharynx, the Lung and the TG-ACE2 datasets (Fig. 3). This 
is in consistent with results from single-cell transcriptome studies, showing that CXCL10 
and CXCL11 were specifically expressed in subtype of hyper-inflammatory macrophages 
(Macro_c2-CCL3L1) in the BALF (41), in SARS-CoV-2 RNA+ CD14high CD16high inflammatory 
monocytes in the lung (40), and in infected alveolar macrophages in the BALF (42), from 
either severe SARS-CoV-2 pneumonia or individuals who were died of COVID-19. These 
results demonstrate that increased expression of CXCL10 and CXCL11 likely by inflammatory 
monocytes/macrophages is a common feather of COVID-19 and is positively associated with 
severity of COVID-19 disease. The inflammatory chemokines CXCL9, CXCL10 and CXCL11 
are predominantly induced by IFNγ (43,44), mainly secreted by monocytes/macrophages, 
endothelial cells, keratinocytes and fibroblasts. They act on the common receptor CXCR3 
which is preferentially expressed on TH1 cells, CTLs, NK cells, NKT cells and monocytes/
macrophages to regulate their migration. In addition, The CXCL9, 10, 11/CXCR3 signaling 
promotes the differentiation of CD4+ T cells into TH1 cells. Therefore, the higher expression 
of these chemokines suggests the potential to mount strong type I antiviral immune response 
to SARS-CoV-2 infection. However, in severe COVID-19, it goes derailed, leading to severe 
inflammation. Previous study has shown that CXCL10 expression was increased in the lung in 
viral acute respiratory distress syndrome (45). The increased levels of CXCL10 was originated 
to a large extent from infiltrated neutrophils who were also express CXCR3. The CXCL10-
CXCR3 acted in an autocrine fashion on the oxidative burst and chemotaxis in the inflamed 
neutrophils, leading to fulminant pulmonary inflammation and lung injury (45). Therefore, it 
is possible that the increased expression of CXCL9, CXCL10 and CXCL11 in COVID-19 could lead 
to increased accumulation and activation of neutrophils in the lung which would contribute 
to the excessive inflammation and lung injury observed in severe COVID-19.
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In our analysis, another commonly enriched gene group identified was ISGs, namely IFIT1/3, 
IFITM1 and IFITM2, which were strongly induced in SARS-CoV-2 infected samples in the four 
RNA-seq datasets (Fig. 4). The IFN family of cytokines have great importance in innate and 
adaptive antiviral immunity. Numerous studies have shown that impaired type I IFN response 
was associated with severe COVID-19. However, there are contradicting findings on IFN 
response in COVID-19 currently. For instance, a study including 50 COVID-19 patients with 
various disease severity showed that severe and critical patients were highly impaired in type I 
IFN response characterized by no IFNβ and low IFNα expression and activity (17). Consistently, 
a striking downregulation of ISGs including MX1, IFITM1 and IFIT2 was observed in whole blood 
cells from critical COVID-19 patients compared to moderate patients. Another study focusing 
on antigen-presenting cells (APCs) in PBMCs from COVID-19 patients showed that IFNα and 
IFNγ pathways were enriched in APCs from moderate but not these from severe COVID-19 
patients (46). In addition, a decreased expression of ISGs including MX2, ISG15 and IFITMs was 
observed in APCs from severe COVID-19. Another scRNA-seq analysis of SARS-CoV-2 viral 
RNA positive immune cells including macrophages and neutrophils which were only found 
in BALF from severe COVID-19 had increased expression of ISGs compared to the same type 
virus-negative immune cells (41). Furthermore, scRNA-seq study of BAL samples from severe 
COVID-19 patients by Grant et al. (42) found enrichment of interferon-responsive genes in 
alveolar macrophages. However, no expression of type I IFNs was detected. Hence, the authors 
proposed that the interferon-response gene signature observed in alveolar macrophages may 
be due to IFNγ derived from activated T cells. Similarly, SARS-CoV-2 virus infection in rhesus 
macaques did not induce type I IFN expression in the lung (47). These observations suggesting 
that SARS-CoV-2 viruses have developed mechanisms to suppress the expression of IFNs and 
hence ISGs, which has also been associated with the disease severity. For example, Lei et al. 
(48) and Yuen et al. (49) have identified that SARS-CoV-2 nsp1, 12, 13, 15, and the M protein 
are potent inhibitors of the mitochondrial antiviral-signaling protein (MAVS) pathway which 
promotes IFNβ production. Moreover, Shin et al. (50) have reported that SARS-CoV-2 also uses 
its papain-like protease (PLpro) to cleave ISG15, which is a potent antiviral gene induced by 
IFNβ, representing another level of immune-suppressing strategy employed by the virus. On the 
host side, functional mutations in the type I IFN pathway was associated with severe COVID-19 
(51). In addition, 10% of 987 life-threatening COVID-19 had neutralizing antibody against type 
I IFNs. Therefore, impaired type I IFN response, possibly due to viral evasion strategies and/or 
host genetic mutations contributes to the pathogenesis of severe COVID-19. However, certainly 
ISGs may be enriched in COVID-19 samples possibly due to high IFNγ.

Across the 4 datasets we analyzed, the number of differentially expressed ILs was much 
smaller than that of chemokines (Fig. 3). For instance, IL-1B is the only significantly 
upregulated IL in the BALF dataset. It is also found to be significantly upregulated in the 
Lung and TG-ACE2 datasets. Interestingly, scRNA-seq studies demonstrated that the hyper-
inflammatory Macro_c2-CCL3L1 cells in both PBMCs and the BALF or the infected alveolar 
macrophages in the lung uniquely expressed high levels of IL1β (41,42). In addition, scRNA-
seq analysis of blood APCs from COVID-19 patients and healthy controls showed that IL-1B 
was the top upregulated cytokine gene in APCs from severe COVID-19 patients compared 
to that from mild COVID-19 or healthy control (46). Furthermore, severe COVID-19 patients 
had higher levels of IL-1β, in addition to TNF and IL6, in their plasma (41). These studies 
demonstrated that high production of IL-1β is associated with severe COVID-19. IL-1β is 
considered as a master regulator of inflammation, having diverse physiological functions 
and pathological significances (52). IL-1β may contribute to acute inflammation in patients 
by stimulating the monocytes to differentiate into M1-like macrophages and conventional 
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dendritic cells to produce other inflammatory cytokines including IL-6, as well as sustaining 
the proliferation and promoting the differentiation of activated B lymphocytes into plasma 
cells (53,54). IL-1β could also regulate both antigen-specific CD4+ and antigen-specific 
CD8+ T cells to enhance their survivability and proliferation (55). The IL-1β stimulated 
CD4+ cells are frequently IL-17-producing or IFNγ-producing cells, which corresponds 
well with the upregulated “IL-17 signaling pathway” in the functional analyses in both the 
BALF and Lung datasets, and the elevated IFNγ commonly reported in COVID-19 patients. 
Interestingly, although IL-1β is found to promote the expansion of T cells, cell composition 
analysis showed that T cells in COVID-19 patients were found to be significantly decreased 
compared to healthy control. Although the mechanism underlying the decrease of T cells 
in some patients is unclear, it is possible that excessive stimulation of T cell might lead to 
T cell exhaustion, resulting in low T cell count (56). Moreover, IL-1β has also been found to 
contribute to the recruitment of myeloid cells, either directly or indirectly (57-59). Directly, 
IL-1β recruits macrophages to the site of infection, which can cause tissue damage through 
classical activation by IFNγ and TNFα, both of which has been identified to be upregulated 
in COVID-19 patients (57,60). Moreover, IL-1β also recruits neutrophils by stimulating 
the endothelial cells to express surface proteins such as members of the integrin family, 
P-selectin, and E-selectin, which promote the adhesion of neutrophils via the rolling 
mechanism (61,62). Alternatively, IL-1β can also induce the expression of CXCL1, which 
subsequently recruits neutrophils (58). Neutrophils are the first immune cells to be recruited 
to the site of inflammation and dysregulated neutrophil recruitment and activation could 
lead to damage to the lungs during a pulmonary infection (63). Importantly, IL-1 receptor 
blockade in severe COVID-19 patients with anakinra, an antagonist of IL-1 receptor, resulted 
in a rapid fall in fever and CRP, reduced oxygen requirements and decreased deaths (64); (65), 
supporting the role of IL-1 in the pathogenesis of severe COVID-19.

The S100 protein family members S100A8 and S100A9 were found to be specifically 
upregulated in the lungs by coronaviruses, but not other viruses including influenza A virus, 
encephalomyocarditis virus and herpes simplex virus 1 in mice (47). In addition, massive release 
of S100A8/S100A9 was associated with severe disease among COVID-19 patients (66,67). 
Furthermore, single-cell transcriptome analysis of samples from SARS-CoV-2 infected individuals 
with various disease severity showed significant upregulation of S100A8/S100A9 in almost all 
cell clusters of both BALF and PBMCs from severe COVID-19 patients in the disease progression 
stage (41). In line with these findings, we also observed significant upregulation of both S100A8 
and S100A9 in the BALF and LUNG datasets (Fig. 3E, Supplementary Tables 1 and 3). S100A8 
and S100A9 are two Ca2+ binding proteins which are constitutively expressed in neutrophils 
and monocytes (68). These two proteins comprise approximately 45% of the cytoplasmic 
proteins in neutrophils. The expression of S100A8/S100A9 is intensely upregulated by many 
inflammatory processes including infection and stress, and these two molecules in turn magnify 
the inflammatory response by stimulating leukocyte recruitment and accelerating release of more 
cytokines from neutrophils and monocytes/macrophages likely through TLR4-MyD88 signaling. 
Therefore, S100A8/A9 are considered as hallmarks of numerous inflammation-associated 
pathological conditions such as rheumatoid arthritis, systemic lupus erythematosus, cystic 
fibrosis, chronic inflammatory bowel diseases, and Psoriasis (69).

Interestingly, S100A8/A9 could stimulates both the transcription and release of IL-1β in 
macrophages and neutrophils through TLR4-MyD88 and NLRP3 inflammasome pathways 
respectively (68). Therefore, the increase of both S100A8/S100A9 and IL-1β in severe COVID-19 
suggests dysregulation of neutrophil recruitment and function, which likely contribute to 
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the pathogenesis of the disease. Indeed, accumulating evidences demonstrate that aberrant 
neutrophil accumulation and function in the lung is a feature of severe COVID-19. For instance, 
Banerjee et al. (24) showed that both S100A8 and neutrophil marker genes were upregulated in 
post-mortem lung samples from COVID-19 patients, which was in line with robust upregulation 
of S100A8 expression and neutrophil chemotaxis in both rhesus macaques and human ACE2 
(hACE2) transgenic mice infected with SARS-CoV-2 (47). The high expression of S100A8 and 
neutrophil chemotaxis were associated with the accumulation of a population of aberrant 
neutrophils with surface characteristics of CD45+CD11b+Ly6Gvariable. Treatment of SARS-
CoV-2 infected hACE2 transgenic mice with Paquinimod, a S100A8/A9 inhibitor, resulted in 
suppressed accumulation of aberrant neutrophils and a remarkably 100% survival of the mice. 
Together, these studies indicated that S100A9/S100A9 are markers of aberrant accumulation 
and dysregulated function of neutrophils in the lung, which contribute to the development 
of severe COVID-19. This is in line with our cell component analysis of the four datasets, 
showing that an increase in neutrophil proportion in both the BALF and LUNG datasets (8,9). 
Interestingly, stronger upregulation of S100A12 than S100A8/S100A9 was observed in the LUNG 
dataset (Fig. 1C, Supplementary Table 3). S100A12 is primarily expressed by neutrophils and 
serum levels of this protein were found to be elevated in numerous inflammatory diseases 
including glomerulonephritis, inflammatory bowel disease, rheumatoid and psoriatic arthritis 
(70). When secreted extracellularly, it mediates chemotactic activity, induces the of production 
of inflammatory cytokines including TNFa and IL-1β and provokes mast cell degranulation 
(71). Therefore, the increased expression of S100A8/S100A9 and S100A12 suggests the aberrant 
neutrophil accumulation and function in triggered by SARS-CoV-2 infection.

Interestingly, our cell component analysis also identified increased proportion of mast cells 
in severe COVID-19 patients compared to healthy control, especially in the BALF and LUNG 
datasets (Fig. 5). Similarly, a scRNA-seq study demonstrated that mast cells were enriched 
in BALF samples from severe COVID-19 patients at disease progression stage (41). Mast 
cells are derived from hematopoietic progenitor cells in the bone marrow, and migrate and 
complete their maturation in most vascularized tissues (72). They also reside in certain 
body cavities including the peritoneum and the pulmonary cavities. IgE-mediated mast cell 
activation is a key reaction in allergy and anaphylaxis. In addition, they can be activated by 
numerous stimuli including components of complement activation, agonists of TLRs, and 
a variety of endogenous peptides including vasoactive intestinal peptide and substance P. 
Upon activation, mast cells release various biologically active compounds including biogenic 
amines (e.g. histamine), proteases (e.g. trypase and chymase), arachidonic acid products 
(e.g. prostaglandins and leukotrienes), growth factors, and cytokines and chemokines, 
thereby participating in many types of innate and adaptive immune responses (73). Mast 
cells are an important source of proinflammatory cytokines including TNFα and IL-1β. 
For instance, mast cell-derived IL-1 including IL1α and IL1β in synovial joint contributes to 
the initiation of autoimmune inflammation in autoantibody-mediated arthritis (74). The 
production of IL1 by mast cells could increases the number of infiltrating neutrophils with 
their release of proteases and rising inflammation (73). In addition, it has also been shown 
that stabilizing mast cells prevents apoptosis and sepsis (75), both of which exacerbate 
COVID-19 symptoms.23 In COVID-19, multiple retrospective and observational clinic studies 
suggest that the use of famotidine, a histamine H2 receptor antagonist, was associated 
with lower incidence of adverse clinical outcomes in hospitalized patients with COVID-19 
and could significantly reduce the fatality (76,77). Together, these studies suggest that 
dysregulated mast cell activation is part of dysregulated innate immune response to SARS-
CoV-2 infection in the pathogenesis of severe COVID-19.
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One striking feature we observed is that more genes were downregulated compared to genes 
that were upregulated in human COVID-19 datasets in our reanalysis (Fig. 1A-C). Cytokine 
receptor genes are a major group of genes that were downregulated. For example, in the BALF 
dataset, both IL2RA (also known as CD25) and IL2RB are among the top downregulated 
genes, consistent with reduced T cells in severe COVID-19. In addition, IL2RA and IL2RB 
together with IL2RG, constitute a high-affinity receptor for IL-2, which plays an essential 
role in maintaining the proper protective suppressor function of CD4+ regulatory T (Treg) 
cells (78). IL21R was also among the top downregulated genes in the BALF dataset. IL-21 not 
only promotes the proliferation of T cells and the proliferation and maturation of B cells, 
but also plays a role in the proliferation and maturation of NK cells from bone marrow (27). 
Receptor for IL-27 (Il27ra) was found to be downregulated in the BALF, the LUNG and the 
TG-ACE2 datasets (Fig. 4). IL-27 not only promotes TH1 differentiation and IFNγ production 
in cooperation with IL-12 and increases CTL generation, but also inhibits TH2 and TH17 
differentiation (79,80). In addition, it promotes the growth and survival of Tregs. Therefore, 
the downregulation of these cytokine receptors is in line with impaired adaptive immunity 
against SARS-CoV-2 viruses, leading to uncontrolled inflammation and severe outcome.

In summary, re-analysis of four COVID-19 RNA-seq datasets using the same standardized 
method revealed common immune features of COVID-19, which include increased expression 
of CCL2, CXCL10, and CXCL11 chemokines, heightened expression of IL-1β and S100A8/A9, 
reduced expression of receptors for chemokines/cytokines that are important for T cell 
growth, differentiation and function which is in line with lymphopenia of COVID-19 patients 
especially those with severe disease. In addition, overabundance of neutrophils and mast cells 
in the lung is part of dysregulated innate immune responses in COVID-19. These features 
are verified by latter scRNA-sequencing studies in the field. This study demonstrates that 
RNA-seq technology, despite its limitations such as being unable to analyze immune features 
at single cell level, is powerful in revealing specific biological features caused by microbial 
infection or in other pathological conditions, providing with the correct analysis tools which 
can be commonly adopted and close collaborations within the scientific communicate.
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Supplementary Figure 1
Quantile normalization with and without meeting the assumption. Quantile normalization 
should be used when only a small proportion of genes, i.e., a few tens or hundreds out of 
around 20,000 human genes in total, are differentially expressed. (A) Log2 gene expression 
values for three samples in condition A and three samples in condition B are shown before 
and after quantile normalization. Quantile normalization equalizes the statistical distribution 
of all samples in the experiment (right panel). The yellow line represents the expression of a 
differentially expressed gene. Global differences between samples are removed by quantile 
normalization, while the yellow example gene in the figure is still identified as differentially 
expressed after normalization. (B) Here a large proportion of around 20,000 genes have a 
higher expression value in condition B compared to condition A. After quantile normalization, 
the statistical distribution of all samples is equalized. Hence, the majority of differentially 
expressed genes before normalization will not be seen after normalization. The yellow example 
genes are not differentially expressed in the right panel, whereas they are in the left panel.
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