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Introduction
Poly ADP-ribosylation (PARylation) of proteins by poly ADP- 
ribose (PAR) polymerases (PARPs) is one of the earliest  
responses to DNA damage (Amé et al., 2004). The best- 
characterized role of PARPs in the DNA damage response  
(DDR) is in repair of DNA single-strand breaks (SSBs; Caldecott,  
2008). Although PARP1 and PARP2 PARylate proteins at SSBs, 
PARP1 is the principle ADP-ribosyltransferase (Adprt) required 
for their repair (Schreiber et al., 2002; Le Page et al., 2003; 
Fisher et al., 2007). However, the observation that parp1/ 
parp2/ mice are not viable suggests shared functions be-
tween these enzymes in maintaining genome stability or other 
pathways required for cell viability (Ménissier de Murcia et al.,  
2003). Although the mechanisms by which PARPs regulate SSB 
repair remain unclear, they may promote recruitment of repair 
factors at DNA lesions (El-Khamisy et al., 2003; Okano et al., 
2003; Bekker-Jensen et al., 2007; Kanno et al., 2007; Rulten  
et al., 2008).

PARPs also become activated in response to DNA double- 
strand breaks (DSBs), which can be repaired by homologous 
recombination (HR) or nonhomologous end joining (NHEJ; 
Haber, 2000). Although PARP1 interacts with NHEJ proteins, 
including Ku and the DNA-dependent protein kinase catalytic 
subunit (Ariumi et al., 1999; Galande and Kohwi-Shigematsu, 
1999), classical NHEJ is normal in murine PARP1/ cells 
(Yang et al., 2004). However, PARP1 is required to promote 
end joining by alternative NHEJ (A-NHEJ; Audebert et al., 
2004; Robert et al., 2009) and has been implicated in HR to 
promote replication restart at damaged replication forks (Yang 
et al., 2004; Sugimura et al., 2008; Bryant et al., 2009).

Recently, we and others initiated a study of DNA repair 
in Dictyostelium discoideum and found it contains orthologues 
of NHEJ and other repair proteins absent in other invertebrates 
(Block and Lees-Miller, 2005; Hudson et al., 2005; Hsu et al., 
2006; Zhang et al., 2009). This suggests that D. discoideum will 
prove a useful model to study certain repair pathways that show 
limited conservation in other genetically tractable organisms. 
In this regard, PARP activity is evident in D. discoideum, and 
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Consistent with activation of PARPs, PARylated proteins be-
come evident after treatment with both agents (Fig. 1 A).

Given that DNA damage-induced nuclear foci are a com-
monly used marker for posttranslational modifications at or  
adjacent to sites of DNA damage, we assessed SSB-induced 
PAR foci formation in D. discoideum nuclei after SSBs. Expo-
sure of cells to H2O2 (Fig. 1 B) or MMS (Fig. 1 C and Fig. S1, 
A and B) induces PAR-positive nuclei in a dose- and time- 
dependent manner. PAR staining is pannuclear at high doses of 
H2O2, whereas a punctate staining pattern is evident at lower 
doses (Fig. 1 B). Robust induction of -H2AX foci is not appar-
ent at the H2O2 and MMS concentrations used, indicating 
PARylation is not a consequence of secondary DSBs (Fig. S1, 
C and D). To illustrate staining is a consequence of PAR synthesis, 
cells were treated with PARP inhibitors. Benzamide has previ-
ously been shown to inhibit PARylation in D. discoideum (Rajawat 
et al., 2007), whereas NU1025 was used as a higher potency 
alternative. Pretreatment of cells with either agent inhibits PAR 
nuclear staining in response to H2O2 and MMS (Fig. 1, D and E).

Adprts have been isolated from this organism (Rickwood and  
Osman, 1979; Kofler et al., 1993). Here, we analyze the role of 
D. discoideum Adprts in DNA repair and find that, similar to 
other organisms, multiple Adprts are required for D. discoideum 
to tolerate SSBs. Furthermore, we exploit D. discoideum to un-
cover a third PARP that is required for DSB repair and illustrate 
that PARylation promotes NHEJ through retention of repair fac-
tors at damage via a PAR interaction domain present in Ku70.

Results and discussion
D. discoideum Adprts are required for 
tolerance to SSBs
Given that vertebrate PARPs are required for SSB repair, we 
wished to establish whether Adprt enzymes perform a similar 
function in D. discoideum. To achieve this, we assessed whether 
PARylation is induced after SSBs in this organism. Cells were 
exposed to H2O2 or methanesulfonate (MMS), and PARylation 
was assessed by Western blotting using a PAR antibody. 

Figure 1.  PARylation is induced in D. discoideum after SSBs. (A) Ax2 cells were untreated () or exposed to 0.5 mM H2O2 for 10 min or 5 mM MMS 
for 30 min. Whole-cell extracts were analyzed by Western blotting using the indicated antibodies. (B) Ax2 cells were treated with H2O2 as indicated. 
Coverslips were subjected to immunofluorescence using PAR antibodies. The percentages of PAR-positive cells were scored from a population of >200 
cells. Cells were categorized into those that exhibit pannuclear staining or PAR nuclear foci. Data are representative of three independent experiments.  
(left) Representative images are shown. (C) Ax2 cells were untreated or treated with 5 mM MMS for 30 min. Coverslips were processed for immuno-
fluorescence and stained with PAR antibodies. (D) Ax2 cells were treated with carrier (ethanol) or 5 mM benzamide and exposed to 0.5 mM H2O2 for  
10 min (top) or 5 mM MMS for 30 min (bottom). Coverslips were processed for immunofluorescence using PAR antibodies. (E) Ax2 were treated with  
carrier (DMSO) or 1 mM NU1025 and analyzed as in D.

http://www.jcb.org/cgi/content/full/jcb.201012132/DC1
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these strains exhibit a significant defect in PARylation after  
exposure to 5 mM MMS for 30 min (Fig. 2 B) or shorter times 
(not depicted). SSB-induced PARylation in the adprt1a strain 
is reflected in a lack of sensitivity of cells to MMS (Fig. 2 C). 
However, adprt1b and adprt2 strains exhibit increased 
sensitivity to MMS and H2O2 compared with parental controls 
(Fig. 2 C and Fig. S1, F–I). The adprt1b and adprt2 strains 
are not radiosensitive, arguing against sensitivity to MMS  
being a consequence of DSBs sustained at the doses of MMS 
used (Fig. S1 E). Collectively, these data support a role for 
Adprt1b and Adprt2 in cellular resistance to SSBs and indicate 
conservation of a PAR-dependent SSB repair pathway in  
D. discoideum.

Next, we assessed which Adprt enzymes are required for 
SSB repair. Vertebrate Adprts can be divided into five subgroups 
(Otto et al., 2005), with group 1 containing the DNA damage-
responsive PARPs, PARP1 and PARP2, in addition to PARP3 
and PARP4. D. discoideum contains 13 proteins with putative 
Adprt catalytic domains, including orthologues of PARPs 1–4 
(dictyBase; Otto et al., 2005). Three of these proteins, Adprt1a, 
Adprt1b, and Adprt2, contain PARP catalytic domains that  
exhibit a significant homology to PARP1 (Fig. 2 A; Otto  
et al., 2005).

To test the role of Adprt enzymes in SSB repair, we gener-
ated strains disrupted in the adprt1a or adprt2 genes and ob-
tained strains disrupted in adprt1b (Sawai et al., 2007). None of  

Figure 2.  D. discoideum Adprt1b and Adprt2 are required for tolerance to SSBs. (A) The domain structure of Adprt1a, Adprt1b, and Adprt2 illustrating 
the PARP catalytic and regulatory domains, putative zinc finger, pADR, WGR, and BRCA1 C-terminal (BRCT) domains. (B) The indicated strains and their 
respective parental controls, Ax2 and Ax4, were untreated or exposed to 5 mM MMS for 30 min. Cells were subjected to immunofluorescence using PAR 
antibodies. The percentages of PAR-positive cells were scored from a population of >200 cells. (C) The indicated strains and their respective parental 
controls, Ax2 and Ax4, were assessed for their ability to survive exposure to MMS. Error bars represent the SEM from three independent experiments.
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DSB-induced PARylation is observed in adprt2 cells, whereas 
a significant reduction is evident in the adprt1a strain  
(Fig. 3 C and Fig. S2 A). This reduction in PARylation is further 
decreased by disrupting adprt2 and adprt1a in combination 
(Fig. 3 C). These observations suggest that although Adprt1b  
and Adprt2 are required for tolerance to SSBs, Adprt1a and,  
to a lesser extent, Adprt2 are required for nuclear PARylation 
after DSBs.

Given the reduced ability of adprt1a and adprt2 cells to 
PARylate nuclear proteins after DSBs, we assessed their ability 
to repair these DNA lesions. To assess NHEJ, we exploited the 
observation that transfection of linearized plasmid DNA along 
with the restriction enzyme used for linearization results in 
stimulation of DNA integration into the genome by restric-
tion enzyme–mediated integration (REMI; Kuspa and Loomis, 
1992). The ligation of the vector at endogenous restriction  
enzyme sites and the fact that vector DNA contains limited se-
quence homology to the D. discoideum genome suggest that 
REMI is mediated by NHEJ. Consistent with this, REMI is de-
pendent on Ku70, Ku80, and other components of the NHEJ 
pathway (Fig. 4 A and Fig. 5 F; Hsu et al., 2011). The adprt1a 
strain has a reduced REMI index comparable with ku80 cells, 
indicating a role for Adprt1a in promoting NHEJ (Fig. 4 A and 
Fig. S2 B). In contrast, adprt2 cells exhibit a modest reduction 
in the ability to perform REMI, whereas disruption of adprt2 
and adprt1a in combination does not further exacerbate the 
REMI defect of adprt1a cells (Fig. 4 A). These data suggest 
that although Adprt2 may contribute toward promoting NHEJ, 
Adprt1a is the principle PARP required to regulate this pathway. 
In further support for a role of Adprt1a in NHEJ, adprt1a cells 
are sensitive to DSBs administered during spore germination 
(Fig. 4 B and Fig. S2 C), a stage of the D. discoideum life cycle 
when cells are reliant on NHEJ to tolerate DSBs (Hudson  
et al., 2005).

Disruption of NHEJ promotes HR in several organisms 
(Pierce et al., 2001; Zhang et al., 2007; Barlow et al., 2008). 
Given the requirement for adprt1a in promoting NHEJ, we  
assessed the impact of disrupting this gene on the ability of 
cells to perform HR. Accordingly, we assessed targeted HR  
efficiency at the cdk8 locus in adprt1a cells and found it to be 
elevated 4.5-fold compared with Ax2 (Fig. 4 C). Collectively, 
these data indicate that DSB-induced PARylation by Adprt1a 
promotes NHEJ at the expense of HR.

PARylation promotes NHEJ through 
retention of Ku at DSBs
Next, we assessed whether the inability to perform NHEJ in  
adprt1a cells reflects a reduced capacity to recruit NHEJ fac-
tors to DNA lesions. Subcellular fractionation experiments  
reveal that NHEJ proteins become enriched in chromatin iso-
lated from vertebrate cells after DSBs (Drouet et al., 2005). 
Using the same technique in D. discoideum, we observed enrich-
ment of Ku80 in chromatin fractions after DSBs in Ax2 cells. 
DSB-induced enrichment of Ku80 in chromatin was reduced 
in adprt1a cells compared with Ax2, illustrating that Adprt1a 
is required to recruit and/or retain Ku at DSBs (Fig. 5 A and  
Fig. S2, D and E).

Adprt1a is required to promote NHEJ
Having established a role for Adprt enzymes in SSB repair, we 
assessed their role in DSB repair. Treatment of Ax2 cells with 
the DSB-inducing agent phleomycin results in PARylation of 
nuclear proteins, as judged by the appearance of PAR-positive 
nuclei (Fig. 3 A). Pannuclear PAR staining is observed at high 
doses of phleomycin, whereas lower doses result in punctate 
staining (Fig. 3 A). DSB-induced PARylation is inhibited by 
NU1025, illustrating this event is mediated through PARP  
activity (Fig. 3 B). PARylation remains intact in adprt1b cells 
after DSBs (Fig. 3 C). In contrast to SSBs, a modest reduction of 

Figure 3.  Adprt1a is required for PARylation after DSBs. (A) Ax2 cells 
were treated with phleomycin (micrograms per milliliter) and subjected to 
immunofluorescence using PAR antibodies. Data are representative of three 
independent experiments. Cells were categorized into those that exhibit 
pannuclear staining or PAR nuclear foci. (B) Ax2 cells were treated with  
1 mM NU1025 or DMSO before exposure to 100 µg/ml phleomycin for 
30 min. Cells were subjected to immunofluorescence using PAR antibodies. 
(C) The indicated strains and their respective parental controls, Ax2 and 
Ax4, were assessed for PARylation after phleomycin treatment as in B. The 
percentages of PAR-positive cells were scored from a population of >200 
cells. Error bars represent the SEM from three independent experiments.  
*, P < 0.05 compared with the positive control (Ax2 + phleomycin).

http://www.jcb.org/cgi/content/full/jcb.201012132/DC1
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Recently, PARP1 has been implicated in promoting end 
joining by the A-NHEJ pathway (Audebert et al., 2004; Robert 
et al., 2009). A possibility, therefore, is that Adprt1a may  
be involved in A-NHEJ. However, we use REMI of plasmid 

PAR polymers act as recognition modules to recruit factors 
to DNA lesions through PAR interaction domains (Kleine and 
Lüscher, 2009). One such domain, the PAR-binding zinc finger 
(PBZ) motif, is required for CHFR to fulfill its role in the antephase 
checkpoint, implicating this motif in regulating the DDR (Ahel  
et al., 2008). The D. discoideum genome contains several proteins 
that exhibit a PBZ domain, including Ku70 (Fig. 5 B; Ahel et al., 
2008). To determine whether the PBZ domain of D. discoideum 
Ku70 is capable of interacting with PAR, we expressed and  
purified the C-terminal 74 amino acids of Ku70 fused to GST  
(GST-Ku70C) or the same protein lacking the C-terminal 25 amino 
acids that spans the PBZ domain (GST-Ku70PBZ) and tested 
their ability to bind PAR. Consistent with the PBZ domain of Ku70 
being able to interact with PAR, GST-Ku70C, but not GST-
Ku70PBZ, is able to bind PAR in vitro (Fig. 5 C).

To assess a requirement for the PBZ domain of Ku70 in 
NHEJ, we generated a ku70 strain and expressed full-length 
wild-type Myc-tagged Ku70 (Myc-Ku70) or Myc-Ku70 lacking 
the PBZ domain (MYC-Ku70PBZ) in these cells (Fig. 5 D).  
Importantly, both proteins coimmunoprecipitate with Ku80, 
indicating they interact with their biologically relevant part-
ner (Fig. 5 D). In Myc-Ku70–expressing cells, Ku80 becomes  
enriched in chromatin after DSBs (Fig. 5 E). Importantly,  
Myc-Ku70PBZ–expressing cells exhibit reduced enrichment 
of Ku80 and Myc-Ku70PBZ in chromatin after DSBs, presum-
ably through an inability of Ku to be recruited and/or retained at 
DSBs (Fig. 5 E and Fig. S2 F). Although Myc-Ku70 rescues the 
NHEJ defect of ku70 cells, Myc-Ku70PBZ is unable to do so 
to the same degree (Fig. 5 F). Collectively, these data suggest 
the PBZ domain of Ku70 is required to promote NHEJ.

Concluding remarks
Our observations that disruption of adprt1b and adprt2 sensi-
tizes cells to agents that induce SSBs illustrate that the role of 
PARylation in SSB repair is largely conserved in D. discoideum. 
The involvement of two PARPs in SSB tolerance is reminiscent 
of the situation in mammals. PARP2 was initially discovered as 
a result of residual PARylation in PARP1-deficient mice after 
DNA damage (Amé et al., 1999). In addition, parp2/ mice 
are sensitive to DNA damage and exhibit increased chromo-
some instability after exposure to alkylating agents and a delay 
in repair of this variety of DNA damage (Schreiber et al., 2002; 
Ménissier de Murcia et al., 2003). Our data illustrating that both 
Adprt1b and Adprt2 respond to SSBs would support the role of 
multiple PARPs in this response and indicate conservation of  
a PAR-dependent SSB repair pathway in D. discoideum.

Importantly, we identify Adprt1a as a third PARP that func-
tions in the DDR. Although Adprt1a is dispensable for cells to tol-
erate SSBs, it is required for NHEJ. We also observe a modest 
decrease in DSB-induced PARylation in adprt2 cells. This is  
reflected in a subtle reduction of the REMI index of these cells. 
Collectively, these data imply that, similar to SSBs, multiple 
PARPs, namely Adprt1a and Adprt2, are involved in NHEJ.  
However, NHEJ efficiency in the adprt1a strain is not reduced 
further by disrupting adprt2. We therefore believe that although 
Adprt2 may function in NHEJ, Adprt1a is the principle PARP 
that promotes this pathway.

Figure 4.  Adprt1a is required to promote NHEJ. (A) REMI efficiency of 
the indicated strains was assessed as described in Materials and methods. 
The numbers analyzed were such that experimental strains were compared 
with >200 colonies from the positive control (Ax2 plus the restriction en-
zyme). Data are represented as the percentage of REMI induction relative 
to parental Ax2 controls. *, P < 0.05 compared with the positive control 
(Ax2). (B) Ax2, adprt1a, and ku80 spores were germinated before ex-
posure to phleomycin, and cell survival was established as described in 
Materials and methods. (C) Ax2 and adprt1a cells were assessed for 
HR efficiency by measuring targeted integration of the blasticidin resis-
tance cassette at the cdk8 locus. The percentage of HR is the proportion of  
aggregation-deficient colonies against the total number of blasticidin- 
resistant colonies. The n number represents to total of blasticidin-resistant 
colonies analyzed from multiple independent transfections. Error bars rep-
resent the SEM from three independent experiments.
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Figure 5.  The PBZ domain in D. discoideum Ku70 is required for NHEJ. (A) The indicated strains were exposed to phleomycin as indicated. After 80 min, 
the indicated cell fractions were analyzed by Western blotting. (B) Alignment of the PBZ domains present in D. discoideum (Dd) Ku70 and vertebrate 
APLF (APLF1 and APLF2), SNM1, and CHFR. Conserved amino acids are highlighted in black, and similar amino acids are represented in gray. (C) Serial 
dilutions of GST, GST fused to the C terminus of Ku70 (GST-Ku70C), or GST fused to the same fragment lacking the PBZ domain (GST-Ku70CPBZ) were 
blotted onto nitrocellulose filters. Inclines represent the relative amount of protein blotted onto the filter. After incubation in PAR polymer, Western blotting 
was performed using the indicated antibodies. (D, left) Whole-cell extracts were prepared from the indicated strains and subjected to Western blotting. The 
indicated strains were incubated with phleomycin, and Ku was immunoprecipitated (IP) from whole-cell extracts using Ku80 antisera. (right) Myc-Ku70 was 
confirmed by Western blotting (WB) using Myc antisera. (E) The indicated strains were left untreated or exposed to phleomycin. After 80 min, the indicated 
cellular fractions were analyzed by Western blotting. (F) REMI efficiency of the indicated strains was assessed as in Fig 4 A. The numbers analyzed were 
such that experimental strains were compared with >200 colonies from the positive control (ku70 cells expressing Myc-Ku70 plus restriction enzyme). The 
data are represented as the percentage of REMI induction relative to ku70 cells expressing Myc-Ku70. Error bars represent the SEM from three indepen-
dent experiments. *, P < 0.05 compared with the positive control (ku70 cells expressing Myc-Ku70). Molecular masses are given in kilodaltons.
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the strategy to generate the strains used in this study and their verification 
is illustrated (Fig. S3). To generate the adprt1a disruption strain, DNA frag-
ments upstream (nucleotides 1,070–1,907) and downstream (nucleotides 
3,643–4,375) of the adprt1a catalytic domain (nucleotides 2,420–3,404) 
were generated by PCR from Ax2 genomic DNA. These fragments were 
cloned on either side of a blasticidin resistance cassette contained within 
the pLPBLP plasmid (Faix et al., 2004) using KpnI–HindIII and BamHI–NotI, 
respectively. A similar procedure was followed to disrupt the adprt2 gene  
by cloning upstream (nucleotides 543–1,500) and downstream (nucleo-
tides 2,482–3,236) DNA fragments flanking the Adprt2 catalytic do-
main into pLPBLP using KpnI–HindIII and BamHI–NotI, respectively.  
A ku70 strain was generated by cloning upstream (nucleotides 880 to 
27) and downstream (nucleotides 2,357–2,786) DNA fragments into 
pLPBLP using KpnI–HindIII and PstI–BamHI, respectively. This ku70 dis-
ruption construct targeted the entire ku70 gene for deletion. Cells were 
transfected with the disruption constructs and subjected to selection with 
10 µg/ml blasticidin the following day. Blasticidin-resistant clones were 
isolated using standard procedures, and gene disruption was verified by 
PCR and Southern blotting. The adprt1b strain was a gift from T. Cox 
(Princeton University, Princeton, NJ) and A. Kuspa (Baylor College of 
Medicine, Houston, TX).

Two independent clones of the adprt1a and adprt2 strains were 
analyzed (adprt1a.w and adprt1a.z; adprt2 and adprt2.2). Although 
only adprt1a.w and adprt2 are illustrated in the main figures on the 
manuscript, data from both clones are illustrated in Fig. S1 and Fig. S2.

The blasticidin resistance cassette was removed from the adprt1a 
and ku70 strains as described previously (Faix et al., 2004). In brief, 
strains were transformed with the pDEX-NLS-cre plasmid, and transformants 
were transiently selected with 20 µg/ml G418 before being grown in  
media containing no antibiotics. Surviving colonies were screened for sen-
sitivity to 10 µg/ml blasticidin and 20 µg/ml G418. Cells sensitive to both 
blasticidin and G418 were cloned on SM agar containing a K. aerogenes 
lawn, and clones were subjected to PCR to confirm the removal of the blas-
ticidin resistance cassette.

The ku70 strain was complemented with either full-length Ku70 or 
Ku70 containing a 25–amino acid C-terminal deletion that includes the 
PBZ domain contained within the pDXA-3C expression vector (Manstein et 
al., 1995). In both cases, the N-terminal Ku70 primer contained a KpnI  
restriction site and Myc tag, and the C-terminal primer contained an XbaI 
restriction site. Strains were transformed with the pDXA-3C complementa-
tion vectors and the pREP helper plasmid and subjected to selection with  
10 µg/ml G418.

Immunoblotting and antibodies
Whole-cell extracts were prepared by washing cultures in KK2 before 
boiling cells in Laemmli buffer for 20 min (Hudson et al., 2005). Anti-
bodies were obtained from the following sources: PAR (Trevigen), -H2AX  
(Abcam), Ku80 (Hudson et al., 2005), actin (Santa Cruz Biotechnology, 
Inc.), and Myc (Cell Signaling Technology).

Immunoprecipitation of Ku80
Exponentially growing cells were seeded at 5 × 106 cells/ml and treated 
with 100 µg/ml phleomycin for 30 min with rotation. Cells were washed 
twice in KK2, resuspended to a final density of 107 cells/ml in lysis buffer 
(50 mM Tris, pH 8.0, 200 mM NaCl, 1% Triton X-100, 1 mM DTT, 1 mM 
EDTA, 50 U/ml benzonase [EMD], 10 mM sodium butyrate, 1 mM NaF, 
20 mM -glycerophosphate, 1 mM sodium orthovanadate, 1 µM micro-
cystin, and protease inhibitor cocktail [Roche]), and incubated with rota-
tion for 30 min at 4°C. Cell lysates were centrifuged at 14,000 rpm for 
10 min, and the supernatant was isolated and precleared with protein 
G–Sepharose beads at 4°C for 1 h before incubation with Ku80 serum 
(Hudson et al., 2005) for 30 min at 4°C, followed by an incubation with 
protein G–Sepharose beads for 45 min at 4°C, with rotation. The beads 
were pelleted at 500 rpm for 2 min and washed three times with lysis 
buffer before resuspending the beads in SDS loading buffer containing 
100 mM DTT. Samples were analyzed by Western blotting (Hudson  
et al., 2005).

Protein expression and purification
A fragment of the ku70 gene that encodes the C terminus of Ku70 span-
ning amino acids 835–909 or the same fragment lacking the last 26 
amino acids that encode the PBZ domain was inserted into the pGEX6P-1 
vector (GE Healthcare) via BamHI and XhoI sites (termed GST-Ku70C and 
GST-Ku70CPBZ, respectively). GST-tagged proteins were expressed and 
purified according to the manufacturer’s instructions.

DNA into the genome of D. discoideum as an assay for NHEJ, 
which occurs accurately at endogenous restriction enzyme 
sites (Kuspa and Loomis, 1992) and is dependent on Ku70 and 
Ku80. A-NHEJ is Ku independent and involves extensive pro-
cessing of DNA termini that will ablate restriction site integ-
rity. We therefore favor that Adprt1a and Adprt2 are involved in 
classical NHEJ.

Our data suggest that DSB-induced PARylation pro-
motes NHEJ by retention of repair factors at DSBs through 
the PBZ motif in Ku70. This conclusion is based on our ob-
servations that (a) DSB-induced PARylation and NHEJ are 
compromised in the adprt1a strain, (b) enrichment of Ku 
onto chromatin after DSBs is reduced in adprt1a cells, and 
(c) recombinant Ku70 lacking the C-terminal PBZ domain ex-
hibits a reduced ability to be enriched in chromatin after DSBs 
and to promote NHEJ compared with recombinant wild-type 
Ku70. Given the pivotal role of Ku in initiating NHEJ, we 
believe the NHEJ defect in adprt1a or Myc-Ku70PBZ– 
expressing cells suggests an inability to assemble and/or retain 
NHEJ factors at DSBs. This is reminiscent of the situation in 
SSB repair in which PAR polymers promote accumulation of  
repair proteins at DNA damage (El-Khamisy et al., 2003; Okano  
et al., 2003; Bekker-Jensen et al., 2007; Kanno et al., 2007; 
Rulten et al., 2008). Consistent with this hypothesis, human 
PARP3 has recently been implicated in facilitating NHEJ through 
promoting the accumulation of APLF and XRCC4–ligase IV at 
DSBs (Rulten et al., 2011).

Neither vertebrate Ku70 nor Ku80 possess a PBZ domain. 
However, although the PBZ domain is evident in several D. dis-
coideum DDR proteins, only three human proteins possess this 
motif (APLF, SNM1, and CHFR; Ahel et al., 2008). We have 
yet to identify APLF in D. discoideum. Although speculative, 
an interesting possibility is that the PBZ domain is evident in 
several D. discoideum proteins to compensate for the absence 
of APLF. A prediction of this model would be that APLF func-
tions in a variety of DDR pathways, including NHEJ. In this 
regard, APLF has been implicated in SSB repair, and similar 
to our observations, its PBZ domain is required for accumula-
tion of NHEJ factors at DSBs (Bekker-Jensen et al., 2007; Iles 
et al., 2007; Kanno et al., 2007; Rulten et al., 2008, 2011). We 
have yet to identify the proteins PARylated at DNA lesions in 
D. discoideum. However, given that PARylation of histones re-
cruits repair factors to strand breaks in vertebrates (Rulten et al., 
2008, 2011), it will be interesting to assess whether histones are 
similarly PARylated in response to DSBs in D. discoideum and 
act to retain Ku at sites of DNA damage.

Materials and methods
Sequence alignments
D. discoideum nucleic acid and predicted protein sequences were ob-
tained from dictyBase, and other sequences were obtained from the  
National Center for Biotechnology Information. The MultAlin interface was 
used for DNA sequence alignment (Corpet, 1988), and ClustalW was 
used to align protein sequences. Protein domains were identified using 
InterProScan.

Cell culture and strain generation
D. discoideum strains were grown using standard procedures, either axeni-
cally or on SM agar in association with Klebsiella aerogenes. An outline of 
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plates containing LPB agar (2.92 mM lactose, 0.1% bactopeptone, 19 mM 
Na2HPO4.2H2O, 30 mM KH2PO4, 2% agar, and 10 µg/ml blasticidin S). 
Plates were incubated at 22°C, and colonies were counted 3, 4, and 5 d  
after plating. REMI was assessed by measuring the fold induction of the 
colony number in the presence of BamHI. Before performing REMI in the 
ku70 strain complemented with Myc-Ku70 or Myc-Ku70PBZ, cells were 
grown in the absence of G418 for 24 h before being subjected to transfec-
tion as described in the previous paragraph.

Targeted HR efficiency at the cdk8 locus
The cdk8 knockout plasmid (Lin et al., 2004) was digested with KpnI and 
NotI to liberate a fragment of DNA containing regions homologous to the 
D. discoideum cdk8 gene flanking the BsR resistance cassette and purified 
using standard procedures. Cells in the exponential phase of growth were 
transfected with 7 µg DNA using standard procedures, serial diluted in 
HL5 after a short recovery period, and plated out in 96-well plates. After 
24 h, 10 µg/ml blasticidin was added, and plates were incubated in the 
dark at 22°C for 14 d. After selection, clonal suspensions of blasticidin-
resistant transformants were spotted onto SM agar containing a lawn of  
K. aerogenes. After 5–6 d, plaques were large enough for phenotypic 
analysis. Integration at the cdk8 locus is indicated by an aggregation- 
deficient phenotype. Aggregation-proficient or -deficient colonies were  
randomly selected, and the genomic DNA was analyzed by PCR to con-
firm targeted and random integration, respectively.

Subcellular fractionation
Subcellular fractionation experiments were performed as described pre-
viously (Drouet et al., 2005). In brief, exponentially growing cells were 
seeded at 5 × 106 cells/ml and exposed to phleomycin or mock treated. 
At the time points indicated in the figure, cells were washed in KK2 buffer 
and resuspended in nuclear lysis buffer (50 mM Hepes, pH 7.5, 150 mM 
NaCl, 1 mM EDTA, 1 µM microcystin, 1 mM NaF, 2 mM sodium orthovan-
adate, and protease inhibitor cocktail) supplemented with 0.1% Triton  
X-100 to a final density of 3 × 107 cells/ml. Cells were incubated for  
15 min at 4°C and then centrifuged at 14,000 g for 3 min, giving rise to a 
pellet and supernatant fraction S1. The pellet was resuspended in nuclear 
lysis + 0.1% Triton X-100 for a further 15 min at 4°C and centrifuged at 
14,000 g for 3 min. The supernatant was pooled with the S1 fraction, and 
the pellet was resuspended in nuclear lysis buffer + 200 µg/ml RNase A 
(Sigma-Aldrich), incubated with rotation at room temperature for 30 min, 
and repelleted as before to give fraction P2. The P2 pellet was resuspended 
in SDS loading buffer containing 100 mM DTT. Fractions were analyzed 
by Western blotting using the antibodies indicated in the figure.

Online supplemental material
Fig. S1 further shows that PARylation is stimulated after SSBs and that 
Adprt1b and Adprt2 are required to tolerate this variety of DNA dam-
age. Fig. S2 further illustrates that Adprt1a is required for NHEJ through 
PBZ domain–dependent retention of Ku at DSBs. Fig. S3 shows validation 
of disruption strains. Online supplemental material is available at http://
www.jcb.org/cgi/content/full/jcb.201012132/DC1.
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