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Abstract: In computational systems biology, the general aim is to derive regulatory models from multivariate readouts,

thereby generating predictions for novel experiments. In the past, many such models have been formulated for

different biological applications. The authors consider the scenario where a given model fails to predict a set of

observations with acceptable accuracy and ask the question whether this is because of the model lacking important

external regulations. Real-world examples for such entities range from microRNAs to metabolic fluxes. To improve the

prediction, they propose an algorithm to systematically extend the network by an additional latent dynamic variable

which has an exogenous effect on the considered network. This variable’s time course and influence on the other

species is estimated in a two-step procedure involving spline approximation, maximum-likelihood estimation and

model selection. Simulation studies show that such a hidden influence can successfully be inferred. The method is also

applied to a signalling pathway model where they analyse real data and obtain promising results. Furthermore, the

technique can be employed to detect incomplete network structures.

1 Introduction

A central objective in computational systems biology is to identify
components of biological system networks and their relation to
one another [1, 2]. For the prediction of time-resolved, dynamical
network behaviour, mathematical models are employed that
typically involve several unknown parameters in addition to the
network components. A popular modelling approach for
time-resolved measurements is given by ordinary differential
equations (ODEs) that represent the dynamics of and dependencies
between the components of the network. The parameters
describing the dynamics in an ODE must be inferred statistically,
and in the case of several competing network models, the most
appropriate model can be chosen by model selection methods.
Hence, one deals with a mathematical modelling problem and a
statistical estimation problem, simultaneously [3].

In such an analysis, ODEs directly arise from the network
topology, that is, the modeller specifies the components of the
network and possible interactions. In many applications, the key
elements of the dynamics of interest have been previously
determined in various studies and are well-known from the
literature. It is possible, however, that some interaction partners or
connections remain unspecified. For example, in addition to
transcription factors modulating gene regulation, strong evidence
indicates that microRNAs play an important role in transcription
and translation processes [4]. Translation can also be influenced by
external stimuli like drugs [5–7]. Consequently, a mathematical
model may be insufficient to explain the dynamics of interest, that
is, discrepancies with the measured data which are not simply
because of the measurement error may be evident even with the
best model fit.

A promising way of addressing such discrepancies is given by
employing additional network components to extend the proposed
model. Our main focus in this paper is a systematic model
extension. A substantial amount of work has been conducted in
the past years in this field.

In [8], additional links in undirected graphs are identified using
Gaussian graphical models. These links represent model

extensions and are systematically identified using an l1-penalised
likelihood. However, the proposed algorithm is not applicable to
dynamical data.

Gao et al. [9] and Honkela et al. [10] also consider a model
extension, this time for dynamical data. Similar to the approach to
be presented here, they describe their models in terms of ODEs
with a latent variable. Using Gaussian processes, they infer the
time course of this variable and predict its behaviour. However,
they do not model entire networks, which may possibly involve
numerous links between components, but rather focus only on
transcription and translation of single genes and on analytical
solutions of the specific ODE models.

Furthermore, model extension by latent variables is utilised in the
context of latent confounder modelling [11, 12]. Here, the most
frequently used method is structural equation modelling (SEM)
[13, 14]. SEM allows the identification of multiple latent variables
and their relationship with observed variables by exploiting the
data covariance structure. SEM is mainly formulated for single
time points, and an extension to dynamical data is quite limited
and often not possible.

In the present study, we address the problem of poor model quality
in dynamical models by considering the effect of hidden influences
on the network. We do not assume a functional form for the putative
time courses of such hidden processes, but flexibly estimate their
dynamics and interaction strengths. Wherever a hidden influence is
observed that substantially improves the model’s ability to
represent the data, we attempt to provide a biological meaning
with the help of experimental collaborators. Thus, we can guide
the design of additional experiments in a detailed manner by
providing a quantification of the hidden time courses as well as
relative interaction rates between the hidden components and the
existing network.

This paper is organised as follows. Section 2 presents the ODE
models considered and the means by which a hidden influence is
included therein as well as a schematic representation of the
developed method. The hidden component and the model
parameters are statistically estimated in a two-step procedure, as
described in Section 3. Furthermore, this section also discusses
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parameter uncertainty and explains how the most appropriate model
among several competing ones can be chosen with model selection
methods. The proposed method is applicable to Lipschitz
continuous ODE models, for example, gene regulation models or
signal transduction models. Section 4 applies the developed
technique to different scenarios and to a real data example – the
JAK2-STAT5 signalling pathway. Section 5 concludes this paper
and discusses the strengths and limitations of the proposed method.

2 Approach

In this section, we highlight the main ideas of the present study.
Systematic network extension is illustrated by considering a small
motif example. Next, we generalise this extension to networks of
size N.

Consider a simple motif like the one presented in Fig. 1.
We use the schematic representation of small network motifs

shown in Fig. 1 to illustrate our method as follows. Fig. 1a shows
a simple network motif comprising two components x1 and x2,
which influence each other, as indicated by the corresponding
arrows. With the proposed method, we estimate a hidden
component h, shown in Fig. 1b, which may substantially
contribute to the network dynamics, but was not previously
considered. Thus, we call h a ‘hidden influence.’ Fig. 1c stresses
that not all components must be observed.

ODEs are the most prevalent choice for describing such network
dynamics [15]. We assume these to be Lipschitz continuous; thus,
the existence and uniqueness of an ODE solution are guaranteed.
For motif A in Fig. 1, the corresponding equation is

ẋi(t) = ci(k, x(t)) (1)

with parameter vectors k = (k1, …, kL)
T, kl∈ R≥0, non-negative state

vector x(t) = (x1(t), …, xN(t))
T, xi(t)∈ R≥0, derivatives with respect

to time ẋi(t), possibly non-linear functions ci:R
p
≥0 × RN

≥0 � R and
suitable initial values xi(t0), where t≥ t0 represents the time. The
functions ci generate the network structure and may include
several combinations of the state variables x(t) such as linear
combinations, Michaelis–Menten kinetics, complex formation and
others. The connection between the state variables is described by
the parameters k.

The components xi(t) may be observed or unobserved. In addition
to the motif in Fig. 1a, we now assume a time-varying hidden
component h(t) that acts linearly on ẋi(t), as shown in Fig. 1b. The
system of differential equations then changes to

ẋi(t) = ci(k, x(t))+ aih(t) (2)

with weights a = (a1, …, aN)
T, ai∈ R. Positive weights ai in this

context represent activation of the i-th component, whereas a
negative value of ai implies inhibition. A similar model was

considered, e.g. in [16]. Other than for xi(t), we do not assume
any parametric structure for the hidden component. The time
course of h(t) cannot be observed directly.

Six elements determine the model: the components xi and their
time derivatives ẋi, the parameter vectors k and a, the dependency
describing functions ci and the hidden influence h. We will extend
established models from the literature by adding hidden
components and applying our estimation method described in
Section 3. For reasons of simplicity, we assume that the reaction
rates k and dependency functions ci are known. Both assumptions
can also be relaxed, as is demonstrated in Section 4.2 where we
additionally estimate k and recover a missing feedback, thus
altering the network structure.

The objective of our study is to estimate ai and h(t), and examine if
they improve the ability of the model to represent the data; this also
requires the estimation of x and ẋ. In our analysis, we exploit the
following connection between h and all other components

h(t) =
ẋi(t)− ci(k, x(t))

ai
(3)

for all t and i with ai≠ 0. The hidden influence can then be estimated
according to two major steps as follows. First, we fit penalisation
splines to the measurements of x. This allows a direct computation
of the time derivatives ẋ such that the right-hand side of (3) is
known up to a scaling factor ai. These factors are then estimated
via likelihood maximisation, utilising the differential equation
structure. A flowchart that illustrates the details of the developed
method is shown in Fig. 2.

3 Methods

This section describes the above-mentioned two-step procedure for
the estimation of the hidden influence h. As a basis, we assume

Fig. 1 Example network motifs (circles: observed and hidden components;

triangle: unobserved or indirectly observed component)

a Motif without hidden components, that is, all components are observed

b Motif with a single hidden component (h), where all other components are observed

c Motif with a single hidden component (h) and partially observed components

Partially observed networks are discussed in Section 3.5

Fig. 2 Flowchart illustrating the details of the developed method

Method involves estimating hidden components according to two major steps (indicated

by grey boxes). We distinguish between fully and partially observed networks. If at least

one network component is unobserved, the procedure requires a preliminary step where

the system of ODEs is solved without considering a hidden component. As a next step in

both scenarios, penalisation splines are fitted to the measurements using cross-validation

for the estimation of the smoothing parameter. Finally, a maximum-likelihood loop is

performed until convergence to estimate the time course of the hidden component

and its interaction weights as well as the noise parameter σ2
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observations xobsi (tj) of all components x1, …, xN at discrete time
points t0, …, tn. The first step is presented in Section 3.1, where
we use spline functions to approximate the time courses of x1, …,
xN and their derivatives. In a second step, we define a noise model
for the data and estimate the weights ai using likelihood
maximisation in Section 3.2. In Section 3.3, we discuss
uncertainty and the fit quality of the parameters of interest. In
Section 3.4, we perform model selection on the considered
networks. Finally, in Section 3.5, we extend the estimation
methods to the case of partially observed networks.

3.1 Spline estimation for observed time courses and
their derivatives

Splines are a convenient way to approximate the time course of a
series of measurements in a functional form and are successfully
used to model time-resolved, biological data, for example, [17].
They typically arise as a linear combination

∑

k bkfk (t) of known
basis functions f1, …, fK with corresponding coefficients β1, …,
βK∈ R, as described, for example, in [18]. These coefficients are
chosen such that the differences between the measured data and
the corresponding function values are minimised. The wiggliness
of the spline depends on, in addition to other settings, the
dimension K of the basis spanning the functional space. A large K
can result in overfitting in the sense of exaggerated data
faithfulness. In this case, the spline will perfectly resemble the
presently observed data but poorly predict future measurements. A
low value for K, on the other hand, can lead to an oversimplified
approximation of the true dynamics. To achieve a good trade-off
between these two extremes, we use penalisation splines where the
wiggliness of the spline is controlled by an additional smoothing
parameter l > 0 [19]. Applied to the model given in (2), for a
given li, the basis coefficients β1i, …, βKi are chosen such that the
following term is minimised [20]

x
obs
i −

∑

K

k=1

bkifk

( )T

x
obs
i −

∑

K

k=1

bkifk

( )

+li

∫tn

t0

∑

K

k=1

bkif̈k (s)

( )2

ds (4)

In this notation, x
obs
i =(xobsi (t0), ...,x

obs
i (tn))

T is the vector of the
measured data, and the basis functions evaluated at the observation
times are denoted by fk = (fk(t0), …, fk(tn))

T. As the index i in li
suggests, a penalisation parameter is chosen for each component
separately.

In this study, we choose a sufficiently large K and estimate li
using leave-one-out cross-validation. Hereby, splines are estimated
with n observations and one observation is left out. The excluded
observation is subsequently compared to the spline approximation
at the same time point. This comparison is repeated for all n + 1
observations and different values of li. Finally, this procedure
leads to an optimal li for which the spline approximation is close
to the data without overfitting it. Alternatively, one could use
bootstrap techniques or more generalised cross-validation criteria
for this purpose, as discussed in [20].

Minimisation of (4) yields optimal coefficients b̂ki, and
consequently an approximation for the time course of the observed
components

x̂
spl
i (t) :=

∑

K

k=1

b̂kifk (t) (5)

and their time derivatives

ˆ̇x
spl
i (t) :=

∂x̂
spl
i (t)

∂t
=

∑

K

k=1

b̂kiḟk (t) (6)

The estimation of the time derivatives given by (6) plays an equally
important role as the estimation of the splines given by (5) for the
final estimation of the time course of the hidden component given
by (3). Thus, particularly for the analysis of very noisy data,

additional smoothing techniques, such as a higher penalisation
order in (4), may be considered. Furthermore, the shape of the
estimated spline is not only determined by the parameters K and li
but also by the type of basis functions used. Common types of
spline functions are B-splines, Fourier splines (applicable to, e.g.
for periodic data), polynomial splines, among others [20]. We
implemented our method to include all these possibilities. The
results presented in Section 4 are based on cubic B-splines defined
on an equally spaced time grid. These functions are twice
continuously differentiable such that the penalisation term in (4) is
well-defined [20]. In practice, however, the integral is
approximated through finite differences [20]. For that reason, we
only require the basis functions to be at least once differentiable so
that (6) is well-defined.

With the approximations given by (5) and (6), we can now
estimate the numerator in (3)

ĥ0i (tj) = ˆ̇x
spl
i (tj)− ci(k, x̂

spl(tj)) (7)

For the estimation of the denominator in (3), we apply a likelihood
approach, as described in the following section.

3.2 Maximum-likelihood estimation

Given a weight vector a, the hidden influence can be approximated as

ĥa(tj) =
1

Na

∑

{i:ai=0}

ĥ0i (tj)

ai
(8)

where Na is the number of non-zero weights ai. The case a = 0 can
be excluded without loss of generality because it indicates the
absence of a hidden influence extending the network. This
approximation of h will later be plugged into (2) where it is
multiplied with ai. If ĥ0i is the true numerator of (3), the time
courses ĥ0i on the right-hand side will all be identical up to a
scaling factor. However, because it is an approximation there will
be differences between them in practice. For this reason we
consider the pointwise weighted average in (8), which presents a
natural choice of a summary statistic. If it holds that the single
estimates ĥ0i (tj) strongly differ from each other, then the weighted
average ĥa(tj) will be inaccurate, and this in turn will be reflected
in the likelihood function and the corresponding information
criterion that we later formulate in (13) and (16), respectively, thus
leading to the rejection of the proposed model.

Plugging in h into (2) and multiplying it by ai introduces a
non-identifiability. Because of

aiĥ
a = (jai)

ĥa

j

( )

(9)

for any j≠ 0, the weights ai are non-identifiable. For this reason, we
restrict a to

∑

i |ai| = 1. In the special case of a network consisting
of only one component x1, we only estimate the interaction direction
of the hidden influence, that is, a∈ {− 1, 1}.

In most biological applications, the data contains noise of different
origins, such as measurement noise or technical noise [21, 22]. The
most common assumption is that measurement errors are
independent and normally distributed with mean zero and constant
standard deviation σ > 0

xobsi (tj) = xi(tj)+ 1ij, 1ij ≏
iid
N (0, s2) (10)

In applications, xi(tj) often has a positive domain, and in this case,
(10) might be ill-defined. Note that we do not restrict our methods
to only this type of noise. In Appendix 1, we also specifically
derive all the equations given in this section for log-normally
distributed multiplicative noise. The distribution of εij immediately
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propagates to the measurements

xobsi (tj)|xi(tj)≏
iid
N xi(tj), s

2
( )

(11)

While the true time course xi(t) is unknown, it has already been
approximated in (5). This approximation, however, does not
contain any information about a, which we seek to estimate in the
following. Hence, we introduce another approximation for xi(t),
this time exploiting the ODE structure given in (2): for a given a,
we plug in ĥa from (8) into the ODE given in (2) and solve the
differential equations either analytically or numerically, as
described, for example, in [23]. This yields x̂ode,ai (tj) and leads to
the approximate distribution

xobsi (tj)|x̂
ode,a
i (tj)≏

iid
N (x̂

ode,a
i (tj), s

2) (12)

Overall, we arrive at the conditional likelihood function

L(a, s2) =
∏

N

i=1

∏

n

j=0

fa,s2 (x
obs
i (tj)) (13)

where fa,s2 is the probability density function corresponding to the
chosen error specification.

In addition, a conditional estimate for σ
2 can be derived

analytically

ŝ2
ML =

1

N (n+ 1)

∑

N

i=1

∑

n

j=0

xobsi (tj)− x̂ode,ai (tj)
( )2

(14)

The parameters a and σ
2 are jointly estimated using (14) and a

numerical optimisation of (13). In addition, unknown initial
conditions x(t0) are treated as unknown parameters and are
equivalently estimated.

3.3 Parameter uncertainty

We further explore our likelihood approach with respect to parameter
uncertainty. The overall estimation performance of the unknown
parameters σ

2 and a can be analysed by computing the
Cramer-Rao lower bound (CRLB) [24, 25] which is defined as the
inverse expected Fisher information matrix. This theoretical value
describes a lower bound for the mean squared error (MSE) of a
given parameter. To that end, we look at the diagonal elements of
the expected Fisher information matrix, which, in the case of a
normally distributed error, have the following form

Ik (a, s
2) =

1

s2

∑

i

∑

j

∂

∂ak
x̂ode,ai (tj)

( )2

k ≤ N

N (n+ 1)/ 2s4
( )

k = N + 1

⎧

⎪

⎨

⎪

⎩

(15)

In practice, we solve the ODEs numerically. Here, a sophisticated
ODE solver, such as the Runge-Kutta fourth order method [26]
can be employed to produce accurate estimates. However, an
analytical derivation of the CRLB for such a method becomes
very complex because of the complicated recursive formulation of
the ODE solution. For exemplary purposes, we outline a
derivation for a specific small example using the Euler method in
Appendix 2.

Large values on the diagonal of the expected Fisher information
matrix represent parameters with a small CRLB. These parameters
can be estimated accurately with an (asymptotically) efficient
estimator. For the parameters al, the respective lth diagonal
element increases if

† σ
2 is small, that is, the data are subject to a small amount of noise,

†

(

(∂/∂ak )x̂
ode,a
i (tj)

)2
is large, that is, the ODE solution is sensitive to

changes in the parameter ak and

† n and/or N are large, that is, the data arise from a large number of
time points and different (observed) species.

For the parameter σ2, we look at the (N + 1)th diagonal element of
(15), which increases if

† σ
2 is small, that is, the data are subject to a small amount of noise

and
† n and/or N are large, that is, the data arise from a large number of
time points and different (observed) species.

We can conclude that, as expected, the estimation accuracy will
suffer if we apply our method to small networks, few
observations, conditions indicative of a weak influence of the
hidden component and large noise. As indicated in Section 3.2, we
estimate the parameters with a maximum-likelihood approach. The
estimation is asymptotically efficient [27]; thus, the CRLB is
asymptotically achieved. However, the approximation of the time
courses using splines as described in Section 3.1, introduces
additional uncertainty. In Appendix 2, we examine this loss of
accuracy for a given showcase network and various parameter
combinations, thereby concluding that our method produces
estimates that are very close to the CRLB.

3.4 Model selection

The vector a controls the interaction strength between the hidden
influence h and the network components xi. If a weight ai is
estimated to be close to zero, it will have a negligible effect on the
network and will probably improve the model fit only slightly. In
such a case, one may ask whether the inclusion of this parameter
ai is worth the involved estimation effort or whether one should
simply set this component equal to zero, thus reducing the
complexity of the model.

To quantify the trade-off between improved model fitting and
increased model complexity, we consider the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC),
which are established model choice rules [28, 29]

AIC(û) = −2 log (L(û))+ 2 dim (û)

BIC(û) = −2 log (L(û))+ log (n+ 1)N
( )

dim (û)
(16)

In these equations, û denotes a vector containing all parameter
estimates, L(û) is the likelihood function (13) evaluated at û and
dim (û) is the number of estimated parameters. The AIC and BIC
weigh the accuracy of the fit (measured by the first summand)
against the complexity of the model (measured by the second
summand). One then chooses the model with the smallest AIC or
BIC.

To consider the complexity of the overall estimation procedure,
the vector θ can be chosen to include all unknowns determined in
our two-step approach, that is, all li, βik and σ

2. In our
considerations, however, the number of variables is constant apart
from the number of non-zeros ai. Hence, we can replace dim (û)
by Na as defined in (8), to compare different models.

The models that we are considering with our method are all of a
nested type. The special case of a = 0 is the null model and is
nested within all other models with arbitrary a. Regarding the
decision of which values ai to set equal to zero, we follow three
conventional variable selection methods: best subset selection,
forward stepwise selection and backward stepwise selection. These
and additional model selection methods are discussed in [30]. In
the best subset selection, the AIC or the BIC is computed for all
possible models, and the model with the best score is chosen. This
approach is computationally expensive but guarantees to find the
best model. The latter two methods are greedy algorithms that
compute the AIC/BIC only for a fraction of possible models,
which exploit the nested structure, thus saving computational time
while yielding satisfactory results in practice.
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In the forward stepwise selection, we begin with the model given
in (2), which contains no interactions between the hidden influence
and the network components, that is, all ai equal zero. In the second
step, N models are estimated, where, for each of the models a
different element of a is non-zero while the others are held equal
to zero. If the best model outperforms the selected model from the
previous step, this model is accepted, and in the subsequent step,
another component of a is set to a non-zero value. This step is
repeated until no increase in model performance is achieved with a
more complicated model. Once a component ai is chosen to be
non-zero, it will remain non-zero in all subsequent steps.

Backward stepwise selection is an analogy of the forward stepwise
selection wherein the initial model selected is the most complicated
model for which all interactions between the hidden and the other
components are estimated. In each subsequent step, a single entry
of a is fixed to zero until no lower value of AIC/BIC is achieved.

In Section 4, we employ the BIC for model choice on synthetic
and real data because this criterion penalises the model complexity
more than the AIC.

3.5 Partially observed network components

In the estimation procedure discussed in Sections 3.1 and 3.2, we
assumed that the components xi were ‘directly’ observed and that
‘all’ of them were observed. In this section, we now consider the
case where the observed time courses are affine linear
transformations y1, …, yM of x1, …, xN and the number M of
observed time courses is smaller than the total number of network
components N. The flowchart shown in Fig. 2 illustrates the single
steps of the estimation procedure.

As an example for non-direct observations, consider the motif
depicted in Fig. 1c, which is assumed to follow exactly the same
dynamics as that in Fig. 1b and can therefore be described in
terms of the ODEs given in (2). Suppose that one can now only
measure time courses of the observation functions y1(t) = x1(t) and
y2(t) = bx2(t) + c for scalars b≠ 0 and c. The ODEs given in (2)
can then be translated to

ẏm(t) = hm(k, y(t))+ ãmh(t) (17)

with appropriate ηm, ãm depending on a, b and c and κ being the
collection of the interaction rates k and transformation parameters
b and c. As the observation functions y are affine linear
transformations of the network components x, we can extract the
hidden influence following (7) and (8)

ĥã(tj) =
1

N ã

∑

{i:ãi=0}

ˆ̇y
spl
i (tj)− hi(k, ŷ

spl(tj))

ãi
(18)

Note that, for non-linear observation functions, we cannot directly
apply our method possibly because of, for example, quadratic or
higher order terms of h(t) in (17); however, in the above case, one
can proceed in a manner analogous to that given in Sections 3.1
and 3.2 for the estimation of h and ã if both y1 and y2 are observed.

As an example of partial observation, we can assume that only y1
is observed. As the two-dimensional (2D) ODE system given in (1)
contains no redundant equation, the dynamics of interest are fully
described by a network of only two components. Hence, in
addition to the observed variable y1, we include one latent
component (LC) y2 in our analysis, for example, y2 = x2 or y2 =
bx2 + c, as discussed above. More generally, we consider a
network with observed components y1, …, yM and unobserved
components yM+1, …, yN. The estimation of a hidden influence
and its weights changes slightly as opposed to the fully-observed
case because there is no spline approximation possible for the time
courses of yM+1, …, yN.

In this case, we approximate y1, …, yM and their derivatives as
before [see (5) and (6)]. Furthermore, we approximate yM+1, …, yN
by their solutions of the N-dimensional ODE system given by (17)

with h≡ 0. For simplicity, we denote these approximations by ŷ
spl
i

for all i, although there are no splines involved for i >M. The
starting values yi(t0) are treated as additional unknown parameters.
Owing to the ODE-based derivation of ŷ

spl
i for the latent variables,

estimation of the corresponding ãi is not feasible in the first step
of the estimation procedure. Hence, we restrict the components of
ã to be zero for i >M. For a given weight vector, the hidden
influence is estimated through (18). In the second step, the
likelihood function results as in (13) as a product over all observed
components (i∈ {1, …, M}) and observation times ( j∈ {0, …,
n}). Maximisation of the likelihood function yields estimates for h
and ã for all i∈ {1, …, N}.

4 Results

In this section, we demonstrate several different applications of our
method. In Section 4.1, the prediction of the time course of a
hidden component is evaluated. In Section 4.2, we present our
method as a tool that guides the reconstruction of a previously
misspecified network. Finally, in Section 4.3, we identify a LC in
the JAK2-STAT5 signalling pathway using real-world data.

4.1 Method performance evaluated with synthetic data

To evaluate the performance of our method, we conduct several
simulation studies. All test runs are performed with the statistical
software R [31]. We examine the robustness of our method by
varying the noise intensity of the simulated data. In addition, we
evaluate networks of different sizes and study the dependence of
the results on the number of unobserved components.

The parameters k and a are chosen at random for each simulation
run, and conditioned on these, we generate artificial data at 30
equally spaced time points. We use log-normal noise (see
Appendix 1), and the three noise levels that we consider are low
(σ = 0.01), medium (σ = 0.1) and high (σ = 0.3). In the simulation,
we allow only linear interactions between the network components
which, indicates that the structure of the ODEs can be summarised as

ẋi(t) =
∑

N

u=1

kiuxu(t)− kuixi(t)
( )

+ aih(t) (19)

with uniformly distributed kiu in [0, 1] for describing the reaction
strength between the ith and uth components and uniformly
distributed ai in [− 1, 1].

We use the same hidden influence for each simulation run, thus
producing comparable results. After application of our estimation
procedure, the resulting fit quality is measured by

s =
1

n+ 1

∑

n

j=0

|ĥ(tj)− h(tj)| (20)

We estimate rates a with the forward selection technique. As
illustrated in Fig. 3, results of 100 simulations indicate that a
smaller network size and a smaller fraction of observed
components lead to increasingly poor model fitting performance.

Only small differences are observed between low and high noise
intensities, indicating that our method can accommodate a high
degree of noise while extracting the relevant information from the
data. In addition, it appears that the network size plays only a
minor role with regard to the estimation quality of our method
because the scores for larger networks decrease only slightly.

Our approach also yields estimates of the time course of the
hidden component, which we can compare with the true hidden
component used to generate the data. Fig. 4 shows the mean and 5
and 95% pointwise quantile time courses of three exemplary
simulation scenarios. The shape of the hidden influence is
reproduced satisfactorily, albeit differently. For a network
comprising three components and a high degree of noise, the
estimates produce additional fluctuations that are not present in the
true time course and the confidence intervals are very broad. For a
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larger network size (6 or 9 components), the estimates become more
stable and recover the peak of the true time course; however, the
second part of the peak is slightly overestimated because of the
network being partially observed.

4.2 Recovering misspecified networks with a latent
variable

Our method can be used for a guided repair of a wrongly specified
network. We demonstrate this using artificial data in a further
example. In this example, the network from which we simulate
time-dependent observations consist of four players that are
connected with each other in a forward cascade ending with a
feedback loop, as shown in Fig. 5a. However, we assume that the
initial hypothesis suggests a network structure with a missing
feedback loop. Furthermore, we do not assume known reaction
rates k; thus, we incorporate the fitting of k into the application of
our method.

Fig. 5 shows that we can simultaneously reconstruct the
misspecified network structure and estimate k very well. The
model without a feedback loop is best estimated with parameters
k̂ = (0.05, 0.06, 0.01)T and has a BIC value of 1376.78 [Fig. 5b
(1)]. The identified LC has a positive interaction with the first
species x1(t) and a negative interaction with the last species x4(t).
This suggests that a feedback loop might be missing in the
network specification. The corresponding BIC value is 857.48.

The estimate k̂ = (0.15, 0.29, 0.20)T is close to the true k [Fig. 5b
(2,3)]. The constellation of interactions between the hidden
component and x suggests a feedback loop. Inclusion of this loop
further improves the BIC value to 854.15 and slightly alters
k̂ = (0.14, 0.30, 0.20)T [Fig. 5b(4)]. Subsequent application of our
method does not identify a LC which significantly improves the
model fit [Fig. 5b(5, 6)].

This example demonstrates the ability of our method to recover
misspecified network structures. We repeated the presented
example with random data 100 times and concluded the same
missing feedback in 97% of the repetitions (results not shown).
However, in general networks, misspecifications may occur in very
a complex manner; thus, overall it will be difficult to always apply
our method under all conditions. Nevertheless, even if the network
structure cannot be recovered completely, a hidden component
may indicate which network components are candidates for
refining the network structure and whether inhibition or activation
of certain network components is more likely to improve a given
model.

4.3 JAK2-STAT5 signalling pathway

The simulation study in Section 4.1 has shown that our estimation
procedure can reliably detect and quantify a hidden influence on a
given network. We now focus on models and real-world data from
the literature. A prominent and well-studied example is the
erythropoietin (Epo) signalling pathway which tranduces Epo
stimulation via JAK2-STAT5 [32]. Epo signalling plays an
important role in proliferation, differentiation and survival of
erythroid progenitor cells [33]. After binding of the Epo hormone
to its receptor, STAT5 can also bind. Subsequently, dimerisation
of STAT5 results in a translocation to the nucleus where the
STAT5 dimer acts as a transcription factor.

Several models exist which explain the molecular dynamics in
various ways [34–37]. We analyse immunoblotting data which
have already been analysed by a basic model [34] using the
following system of ODEs

ẋ1 = −k1x1EpoRA

ẋ2 = −k2x
2
2 + k1x1EpoRA

ẋ3 = −k3x3 + 0.5k2x
2
2

ẋ4 = +k3x3

(21)

Here, the different states of STAT5 are cytoplasmic
unphosphorylated STAT5 (denoted by x1), cytoplasmic
phosphorylated monomeric STAT5 (x2), cytoplasmic
phosphorylated dimeric STAT5 (x3) and STAT5 in the nucleus
(x4). EpoRA describes the Epo-induced tyrosine phosphorylation
which can be measured up to a scaling factor. The initial values
are x1(0) > 0 (to be estimated) and x2(0) = x3(0) = x4(0) = 0.

In the above mentioned literature, the model given in (21) is
further refined by, for example, introducing an additional transition
from nuclear STAT5 to the cytoplasmic unphosphorylated state,
thus completing the loop from x1 to x4, or introducing time delays.
These model refinements typically lead to an improved
representation of the measured data, confirmed by, for example,
likelihood ratio tests, information criteria (AIC/BIC) or Bayes
factors. To start from the best-known model, we extend the refined
model by incorporating a hidden influence. As a first step, we
consider

ẋ1 = −k1x1EpoRA + a1h

ẋ2 = −k2x
2
2 + k1x1EpoRA + a2h

ẋ3 = −k3x3 + 0.5k2x
2
2 + a3h

(22)

Here, we do not consider the fourth row of (22) because we have no
information about x4 as we use the measurements of experiment

Fig. 3 Description of the simulation studies used to evaluate the

performance of our method

For 27 different combinations of network size (3, 6 and 9 components), noise intensity

(‘low’≡ σ = 0.01, ‘medium’≡ σ = 0.1 and ‘high’ ≡ σ = 0.3) and ratio of observed to

unobserved components (100% observed, 67% observed and 33% observed), 100

different simulated networks are created and the mean as well as the 5 and 95%

quantiles of the error measurement in (20) are displayed for each combination. All

interaction rates between components are chosen randomly. It holds that, the smaller

the value of s, the better the estimated time course

Fig. 4 Time course of the hidden influence

Hidden influence used in the simulations (solid line) and the mean and 5 and 95%

pointwise quantile courses of three exemplary simulation scenarios with different

parameters defined as follows: a fully observed network of size 3 with high noise

intensity (dashed); a partially observed network (33%) of size 6 with medium

noise intensity (dotted); a partially observed network (67%) of size 9 with low noise

intensity (dashed-dotted). Mean and confidence intervals are based on 100 estimates ĥ(t)
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number 1 provided as supporting material in [34]. These
measurements describe the total amount of cytoplasmic tyrosine
phosphorylated STAT5, that is, y1 = k5(x2 + 2x3), the total amount
of cytoplasmic STAT5, y2 = k6(x1 + x2 + 2x3), and the Epo-induced
tyrosine phosphorylation, y3 = k7EpoRA. All three measured
time-varying variables were experimentally quantified up to
scaling factors denoted by k5, k6 and k7. Evidently, only
transformations of the ODE components x1, …, x3 are observed.
Furthermore, a system comprising only y1, y2 and y3 cannot be
described in closed form. For that reason, we also include the

auxiliary variable x3. The differential equations for the observed
and LCs are as follows

ẏ1 =
k1k5y2y3
k6k7

−
k1y1y3
k7

− 2k3k5x3 + k5(a2 + 2a3)h

ẏ2 = −2k3k6x3 + k6(a1 + a2 + 2a3)h

ẋ3 = −k3x3 +
k2y

2
1

2k25
−

2k2y1x3
k5

+ 2k2x
2
3 + a3h

(23)

Fig. 5 True course of hidden influence

a True network from which the data is simulated

b Schematic representation of the workflow

(1) Misspecified network

(2), (3) LC model suggests a feedback loop

(4)–(6) Model with feedback loop cannot be further improved

c Corresponding data and model fits
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We further refine the model by completing the loop from x4 to x1 and
including a time delay, as has been done previously [38]. The authors
suggested the use of a linear chain trick [39] and introduced a
delayed loop. Thus, two (or possibly more) additional variables in
the system of differential equations are introduced

ẋ1 = −k1x1EpoRA + 2k4z2 + a1h

ẋ2 = −k2x
2
2 + k1x1EpoRA + a2h

ẋ3 = −k3x3 + 0.5k2x
2
2 + a3h

ẋ4 = +k3x3 − k4z2

ż1 =
1

t
(x3 − z1)

ż2 =
2

t
(z1 − z2)

(24)

Analogously, we can transform these equations to counterparts
depending on y1, y2 and y3

ẏ1 =
k1k5y2y3
k6k7

−
k1y1y3
k7

− 2k3k5x3 + k5(a2 + 2a3)h

ẏ2 = −2k3k6x3 + 2k4k6z2 + k6(a1 + a2 + 2a3)h

ẋ3 = −k3x3 +
k2y

2
1

2k25
−

2k2y1x3
k5

+ 2k2x
2
3 + a3h

ż1 =
1

t
(x3 − z1)

ż2 =
2

t
(z1 − z2)

(25)

This representation captures the dynamics of the observed variables.
The right-hand side of (25) depends on the observed components y1
to y3, the hidden component h, the unobserved component x3 and the
two artificially introduced delay variables z1 and z2. For this reason,
we must estimate x3, z1 and z2 prior to h. This is achieved by
numerically computing the solution of the model given in (24)
without considering the hidden component (i.e. a = 0) and using
the approximations for x3, z1 and z2 arising from this model. Once
these quantities are determined, we estimate the three transformed
weighting coefficients ã = (k5(a2 + 2a3), k6(a1 + a2 + a3), a3) and
use the estimates for x3, z1 and z2 as input in the new iteration.
This procedure is repeated until convergence. Once ã is
successfully obtained, we simply calculate a from ã up to the
scaling factors k5 and k6.

Fig. 6 shows a schematic description of the estimated model given
in (25). According to our estimation performed by best subset
selection, the hidden component interacts only with the first and
third states of STAT5. Interestingly, the interaction direction
(activating x1 and inhibiting x3) hints at a translocation of STAT5
from its nuclear state to the cytoplasm as also hypothesised by
other authors [34].

Figs. 7a and b show the experimental data and the estimated time
courses of y1 and y2. The model with a hidden component h
outperforms the model without h because it best represents the
experimental data. Most importantly, the time course produced
with a hidden component is considerably more flexible but does
not overfit the data. The time course of the estimated hidden
component (third panel of Fig. 7c ) exhibits large values at the
beginning of the experiment, decreases and then begins increasing
after 30 min. Our interpretation of this behaviour is that an
external quantity should be present at the beginning of the
experiment (or shortly after); thus, the entire signalling pathway is
kick-started. This external stimulus depletes completely and its
influence slowly begins increasing after 30 min, bringing the entire
system into equilibrium with the inhibition of the dimerised
STAT5, and simultaneously the activation of the monomeric STAT5.

5 Conclusion

The main objective of this study is to provide a new method for
model extension by introducing a hidden component to known
networks. With the proposed method, we cannot only derive the
relative time course of the hidden component but also predict the
influence of the hidden component on all other network components.

We first fit splines to the observed components or to observation
functions that are affine linear transformations of the former. The

Fig. 7 Experimental data and the estimated time courses of y1 and y2

a Experimental data and model fitting for STAT5 phosphorylation in cytoplasm (y1)

b Experimental data and model fitting for the total amount of STAT5 in cytoplasm (y2)

Model that includes no hidden component is indicated by the dashed lines, whereas that

which includes a hidden component is indicated by solid lines

Model with a hidden influence produces a time course that better fits the experimental

data

c Estimated time course of the hidden component, which exhibits a strong peak at the

beginning of the experiment, quickly drops to 0 and begins to increase again after 30

min

Fig. 6 Schematic representation of the JAK2-STAT5 signalling pathway

Four different states of STAT5 are regulated by a LC h with different weights, as

estimated by our method. Observed variables y1 and y2 are linear combinations of the

single states x1 to x3 t1 and t2 represent artificial delay variables
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advantage of splines is that we can immediately compute the
corresponding time derivative. On the basis of the observation
error distribution, we apply maximum-likelihood estimation and
model selection. By so doing, we can estimate a combination of
the time course of a hidden component and the weights that lead
to the best model in terms of data faithfulness without overfitting.

The method was applied to artificial data to test robustness and
applicability. The results suggest a robust and good performance
for the identification of the time course of the hidden component
even in scenarios with high noise intensity.

One application of our method is the detection of misspecified
networks. As a demonstration, we chose a network which included
a feedback loop that was missing in the model specification. The
loop was successfully recovered, thus providing a promising
application variant of our technique. Our method, however, is not
a tool for general network inference in its current form. An
automation of the process by combining theory from network
topology estimation with the proposed latent variable model
presents a possible extension in the future work.

We applied the method to the well-studied JAK2-STAT5
signalling pathway. Model extension with a LC was performed on
a system of ODEs with introduced delay. Our method could
improve the model quality in terms of BIC and produced results
which are in conformity with other methods suggested in the
literature.

A key element in general model building is the estimation of
parameters and possibly topology from data. Here we propose to
interpret model estimation as a latent variable problem in a
dynamical system. We target applications in which latent variables
are influencing observations but not vice versa. A coupling in h(t)
in the sense of feedback of observed network components to the
LC is possible; however, we mainly see two limitations of this
approach. First, additional assumptions about h(t) must be made,
and second, including h(t) into the system of ODEs limits its
shape and does not allow for additional flexibility.

We currently only allow linear model extensions. In ongoing
work, we extend our method to more general settings. More
specifically, we consider multiple independent latent variables that
influence a system of differential equations. In this scenario, in
addition to the estimation of the latent time courses, we study
possible ways of separation of the single variables. Modelling
endogenous dependencies between latent and system variables
without losing the flexibility of the hidden quantity is another
extension that may be addressed in the future. Furthermore,
although the proposed method was extensively tested in designed
simulation scenarios, many additional challenges such as
dependent errors, low sample sizes (in the sense of a very short
time-series or a large amount of missing data) and non-linear
ODEs remain, and at the same time, present additional method
extensions. Finally, one might investigate additional model
selection methods that are applicable to our method and produce
stable and efficient results. Examples are established methods such
as likelihood ratio tests, lasso [40] and elastic net [41]. Extending
the method to Bayesian theory would further allow the application
of Bayes factors [42] and thermodynamic integration [43, 44].

For the method presented here, we intentionally chose to separate
the two major estimations into two steps, and both steps can be
associated with two major modelling perspectives [3]. While
fitting the spline parameters can be associated with a statistical
perspective, exploiting the network structure for inference of the
latent time-course and its interaction weights is closely connected
to the mathematical modelling perspective. Model selection and
thus network prediction, as discussed in Section 3.4, bring the
method back to the statistical perspective. Formulating the problem
as a joint optimisation of all parameters involved (reaction rates,
spline parameters and noise parameters) is possible. This,
however, leads to a considerably more complex and
computationally intensive method.

As we demonstrate in Appendix 2, the performance of our method
depends on the quality of the spline approximation. This quality will
typically suffer if the modelled data are sparse, contain extreme
outliers, are corrupted by a high amount of noise or the chosen

spline representation cannot resemble fluctuations of the observed
time-series appropriately.

The results of the proposed method can be employed as a
promising aid for guiding future experiments, thus helping to
complete the systems biology loop [45, 46] between experimental
data and model analysis.
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8 Appendix

8.1 Appendix 1: Log-normally distributed multiplicative
noise

Normally distributed error terms, as in (10), imply that the noise
level is independent of the magnitude of the measurements.
Although this assumption is commonly made, it is not appropriate
for all biological applications, for example, when concentrations
are measured over time. This assumption is particularly
problematic for concentrations close to zero because the model
description of xobsi (tj) can then easily become negative. This
difficulty is avoided by assuming multiplicative log-normally
distributed noise

xobsi (tj) = xi(tj) · 1ij, 1ij ≏
iid
LN −

s2

2
, s2

( )

The parameter choice of the log-normal distribution is motivated
because of the implication E xobsi (tj)|xi(tj)

( )

= xi(tj).

The distribution of εij immediately propagates to the
measurements

xobsi (tj)|xi(tj)≏
iid
LN log (xi(tj))−

s2

2
, s2

( )

As discussed in Section 3.2, we exploit the ODE structure of our
system which leads to the approximate distribution

xobsi (tj)|x̂
ode,a
i (tj)≏

iid
LN log (x̂ode,ai (tj))−

s2

2
, s2

( )

The parameter σ2 is estimated as

ŝ2
ML = −2+ 2

���������������������������������������������������

1+

∑N
i=1

∑n
j=0 log xobsi (tj)

( )

/ x̂ode,ai (tj)
( )( )[ ]2

N (n+ 1)

√

√

√

√

The diagonal elements of the expected Fisher information matrix are
derived as

Ik (a, s
2) =

1

s2

∑

i

∑

j

(∂/∂ak )x̂
ode,a
i (tj)

x̂ode,ai (tj)

( )2

k ≤ N

N (n+ 1)

2

1

s4
+

1

2s2

( )

k = N + 1

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

8.2 Appendix 2: Example for parameter uncertainty
calculation

In this section, we evaluate the goodness of fit for parameters
associated with a specific example. For simplicity, we choose a
small network comprising two species and normally distributed
measurement noise. The two parameters of interest are a1 and σ

2.
We analytically compute the CRLB for both parameters and
examine whether it is achieved using a simulation with known
parameters.

The specific network is described by (2) and Fig. 1b and we
consider a network size N = 2 and linear combinations of the
components. Without loss of generality, we assume a2 = 1− a1 and
a1∈ (0, 1).

The CRLB for parameter a1 involves (∂/∂a1)x̂
ode,a
i (tj). The value

of this term depends on the numerical method chosen for solving
the ODE. If the Euler method is used, the recursive solution has
the form

x̂a1(t j+1) = x̂a1(tj)+ D(c1x̂
a
1(tj)+ c2x̂

a
2(tj)+ a1ĥ

a(tj))

x̂a2(t j+1) = x̂a2(tj)+ D(c3x̂
a
2(tj)+ c4x̂

a
1(tj)+ (1− a1)ĥ

a(tj))

with c1 =− k2− k1, c2 = k3, c3 =− k4− k3, c4 = k2 and Δ denoting the
time step, and x̂ai being a shortened version of x̂a,odei . We assume that
the initial values xi(t0) do not depend on a1. One can then show by
full induction that, for j = 1, …, n

∂x1(tj)

∂a1
=

F1(tj)

(1− a1)
2
−

F2(tj)

a21

∂x2(tj)

∂a1
=

F3(tj)

a21
+

F4(tj)

(1− a1)
2

(26)

with

F(t j+1) = F(tj)+ D

c1F1(tj)+ c2F4(tj)+
1

2
ĥ02(tj)

c1F2(tj)− c2F3(tj)

c3F3(tj)− c4F2(tj)−
1

2
ĥ01(tj)

c3F4(tj)+ c4F1(tj)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and F(t0) = (0, 0, 0, 0)T. ĥ0i (t) are the unweighted estimates of the
time course of the hidden component, as described in (7). The
entries of F(tj) are independent of a1. For given σ

2, k, a1, spline
approximations of x(t) and data dimensions, (26) allows the
analytical computation of the expected Fisher information I(a1),
and hence that of the CRLB I−1(a1). For this specific example,
the expected Fisher information matrix has a diagonal form and
I−1(σ2) equals 2s4

N (n+1)
.

The just derived CRLBs are lower bounds for the MSE of the
maximum-likelihood estimates. Our estimation procedure,
however, consists of two steps: spline approximation and
maximum-likelihood estimation, each entailing uncertainty in the
parameter estimates. We hence computed Monte Carlo estimates
for the MSE of a1 and σ

2 using two different approaches. First,
we used the true hidden time course during the estimation
procedure. The resulting empirical MSE is the one resulting from
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the maximum-likelihood step and is bounded below by I−1. Second,
we estimated the hidden time course as well. The resulting MSE is
slightly larger and accounts for the uncertainty of the overall
estimation procedure.

The results of the simulation are shown in Table 1. We examine
different combinations of σ

2 and a. For each combination, we
simulate 500 time courses at 100 time points and estimate the
parameters. We numerically compute the MSE of these 500
estimates. In the table, we show this MSE and the corresponding
CRLB for a given parameter combination.

The results of Table 1 show that the CRLB is achieved for σ2 if we
consider only maximum-likelihood approximation. If we
additionally consider the uncertainty introduced by the spline
approximation, the ratio between MSE and CRLB increases
slightly. For a1, we observe a similar result in that the ratio
increases if we consider spline approximation, while, nevertheless,
providing MSE values that are very close to the corresponding
CRLB. Another interesting result is the increase in fit quality for
smaller σ2 values, as we already discussed in Section 3.3.

Table 1 Results of the parameter uncertainty simulation

MSE (CRLB)

a =
0.5

0.5

( )

a =
0.9

0.1

( )

maximum-likelihood approximation
σ = 1 a1 9.90 × 10−6 (1.63 × 10−6) 3.73 × 10−9 (9.27 × 10−10)

σ
2 1.07 × 10−2 (1.00 × 10−2) 1.02 × 10−2 (1.00 × 10−2)

σ = 0.5 a1 2.33 × 10−6 (4.08 × 10−7) 9.04 × 10−10 (2.32 × 10−10)

σ
2 6.19 × 10−4 (6.25 × 10−4) 6.38 × 10−4 (6.25 × 10−4)

σ = 0.1 a1 9.06 × 10−8 (1.62 × 10−8) 3.54 × 10−11 (9.27 × 10−12)

σ
2 1.04 × 10−6 (1.00 × 10−6) 9.83 × 10−7 (1.00 × 10−6)

maximum-likelihood and spline approximations
σ = 1 a1 1.55 × 10−4 (1.24 × 10−5) 5.23 × 10−6 (1.13 × 10−7)

σ
2 7.59 × 10−2 (1.00 × 10−2) 1.33 × 10−1 (1.00 × 10−2)

σ = 0.5 a1 1.62 × 10−5 (3.13 × 10−6) 9.57 × 10−7 (3.44 × 10−8)

σ
2 4.29 × 10−3 (6.25 × 10−4) 5.44 × 10−3 (6.25 × 10−4)

σ = 0.1 a1 6.22 × 10−7 (1.25 × 10−7) 2.69 × 10−8 (1.08 × 10−9)

σ
2 6.24 × 10−6 (1.00 × 10−6) 4.31 × 10−6 (1.00 × 10−6)

MSE and corresponding CRLB (in parentheses) for the two parameters of
interest.
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