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Intracellular pH is a fundamental parameter to cell function that requires tight homeostasis. In the absence of any regulation,
excessive acidi�cation of the cytosol would have the tendency to produce cellular damage.Mammalian Na+/H+ exchangers (NHEs)
are electroneutral Na+-dependent proteins that exchange extracellular Na+ for intracellular H+. To date, there are 9 identi�ed NHE
isoformswhereNHE1 is themost ubiquitousmember, known as the housekeeping exchanger. NHE1 seems to have a protective role
in the ischemia-reperfusion in�ury and other in�ammatory diseases. In nociception, NHE1 is found in neurons along nociceptive
pathways, and its pharmacological inhibition increases nociceptive behavior in acute pain models at peripheral and central levels.
Electrophysiological studies also show that NHE modulates electrical activity of primary nociceptive terminals. However, its role
in neuropathic pain still remains controversial. In humans, NHE1 may be responsible for in�ammatory bowel diseases since its
expression is reduced in Crohn’s disease and ulcerative colitis.e purpose of this work is to provide a review of the evidence about
participation of NHE1 in the nociceptive processing.

1. Introduction

Intracellular pH (pHi) is a fundamental parameter to cell
function that requires tight homeostasis [1]. In the absence
of any regulation, the cytosol would have the tendency to
become acidi�ed due to the continuous buildup of metabolic
acid (H+) equivalents [2, 3]. Cells have developed means to
raise cytosolic pH, guarding against dangerous acidi�cation.
Regulation of pHi comprises several processes such as cytoso-
lic H+ buffering, H+ sequestration into cellular organelles,
and transmembrane movement of acid equivalents [1, 3, 4].
Cells regulate rapid and localized pH swings by their intrinsic
pH buffering capacity which is provided by several intracellu-
lar weak acids and bases. Moreover, cells regulate pH through
the bicarbonate (HCO3

−) buffer systemwhich combines with
excess H+ ions to form carbonic acid [5].en, carbonic acid
is transformed to carbon dioxide (CO2) by the enzyme car-
bonic anhydrase [5]. e total buffer capacity includes both

components [1, 2, 4]. Although effective this buffering system
has limited capacity to counteract continuous generation of
H+ equivalents bymetabolism, ongoing transport of ions that
alter the pH (H+ and HCO3

−), or the presence of diseases
that contribute to extracellular acidi�cation (in�ammation,
hypoxia, or ischemia). e mechanism of regulation of
pHi carried out by transporters requires energy as H+

is transported against its electrochemical gradient. us,
transporters use the inward Na+ gradient produced by the
3Na+/2K+-ATPase. Several proteins carry out this function
being one of themost important Na+/H+ exchangers [1, 6, 7].

Mammalian Na+/H+ exchangers (NHEs) are electroneu-
tral Na+-dependent proteins that exchange extracellular Na+
for intracellular H+ [8–10]. In animal cells, they are linked
to a variety of physiological roles which include regulation of
pHi and cell volume [6, 10–13]. Between the different NHE
isoforms identi�ed, NHE1 is the most ubiquitous member
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[9, 10]. In pathological conditions, the activity of NHE1 has
been related to growth of some tumor cells [14]. Moreover,
NHE1 has been proposed as a mediator of the myocardial
damage that occurs aer ischemia-reperfusion injury
[15, 16]. However, recent studies with transgenic mouse
models expressing elevated NHE1 levels have demonstrated
less susceptibility to ischemia-reperfusion injury [17–19]
suggesting that NHE1 plays a protective instead of noxious
effect in this pathology. Besides its role in cancer and
ischemia, recent evidence has shown the NHE1 plays an
important role as a protective mechanism in nociceptive
sensory neurons. e aim of this work is to provide a review
of the role of NHE1 in the nociceptive processing.

1.1. NHE Family. e NHE system was �rst identi�ed in
1977 [20]. Later (in 1988), NHE was cloned [21, 22] and
started an explosion of research on these proteins. To date,
there are 9 identi�ed NHE (gene SLC9A) isoforms, NHE1
(gene SLC9A1) to NHE9 (gene SLC9A9) (Table 1). NHE1-
5 are localized in plasma membrane whereas NHE6-9 are
found in intracellular compartments. NHEs vary in their
cation selectivity and localization. Regarding the latter, NHE1
is the most ubiquitous member, known as the “housekeep-
ing” exchanger [10, 23]. NHE2 through NHE5 have a more
limited tissue distribution. NHE2, NHE3, and NHE4 are
expressed predominantly in the kidney and gastrointestinal
tract [24–27] whereas NHE5 is predominantly expressed
in the nervous system [28, 29]. e organellar isoforms
include NHE6 (mitochondria and endoplasmic reticulum
membrane), NHE7 (recycling endosomes), NHE8 (trans-
Golgi network), and NHE9 (recycling endosomes) [30, 31].

1.2. NHE Structure. Human NHE proteins have between
645 and 898 amino acids characterized by two domains: the
N-terminus transmembrane transport domain and the C-
terminus regulation domain [10]. e N-terminus is highly
homologous among isoforms [32]. Although controversial,
NHEs have 12 putative encoded transmembrane spanning
domains with both N- and C-terminus located in the intra-
cellular side [23, 32].

ere are suggestions that NHEs have a cleaved sig-
nal peptide and 11 functional transmembrane spanning
domains, an extracellular N-terminus, and an intracellular
C-terminus [27]. However, it could be con�rmed by further
studies. Transmembrane domains 4 and 9 are involved in the
sensitivity to amiloride and its analogues while domains 4
and 7 participate in the Na+ and H+ transport. NHEs may
form dimer or tetramer complexes through intermolecular
interactions between transmembrane regions of the respec-
tive monomers [12, 33, 34].

1.3. NHE Regulation. e NHE family is regulated by
posttranslational modi�cations including protein kinase-
mediated phosphorylation and by a number of signaling
molecules including phosphatidylinositol-4,5-bisphosphate
(PIP2), calcineurin homologous protein (CHP), ezrin,
radixin, moesin (ERM), calmodulin, and carbonic anhydrase
II. Mitogen-activated protein kinase (MAPK) signal
transduction pathways are among the most widespread

mechanisms of eukaryotic cell regulation. Mammalian
MAPKs are activated by a wide variety of stimuli that
include hormones, growth factors, in�ammatory cytokines,
osmotic shock, ischemic injury, and intracellular acidosis
[35]. Upon activation, MAPKs phosphorylate NHE1. In
particular, intracellular acidi�cation leads to activation of
the serine/threonine protein kinase Raf which then activates
MEK (a MAPK kinase) that in turn activates extracellular
signal-related kinase (ERK1/2) and ribosomal protein S6
kinase (p90rsk). ERK1/2 phosphorylates serine 770 and 771
while p90rsk phosphorylates serine 703 of the NHE1 protein
(Figure 1) [36–42]. Moreover, NHE1 is phosphorylated by
p160-Rho-associated kinase (p160ROCK) [43] and Nck-
interacting kinase (NIK) [44]. e mechanisms by which
protein phosphorylation enhances H+/Na+ exchange are
unclear. However, it has been suggested that phosphorylation
facilitates binding of carbonic anhydrase II, which in turn
catalyses the hydration of CO2 to form HCO3

− and H+

(Figure 1) [45]. NHE1 is also activated by calmodulin
[46, 47], CHP1, CHP2 and tescalin (CHP3) [48–50]. Of
note, the CHP-interacting region is �anked by two positively
charged clusters that bind PIP2 in vitro which are important
for NHE1 activity [51]. In addition, NHE1 binds to ERM
cytoskeleton proteins which are important for signaling, cell
migration, and apoptosis [52].

NHE1 is subject to inhibition. ere is evidence that
intracellular acidosis can negativelymodulate NHE1 through
phosphorylation by protein kinase B (PKB) [53] or dephos-
phorylation through protein phosphatase 2A (PP2A) [54].
is phosphorylation would interfere with Ca2+-calmodulin
binding and could reduce the affinity for intracellular H+.

2. Role of NHE in Nociception

2.1. �n�ammatory �ain. e role of NHE in pain processing
has been studied recently. Blockade of peripheral NHE with
nonselective NHE inhibitors such as amiloride and 5-(N,N-
dimethyl)amiloride (�MA) increases �inching behavior in
the capsaicin, serotonin, and formalin tests. In addition
peripheral injection of 5-(N-ethyl-N-isopropyl)amiloride
(EIPA), a selective NHE1 inhibitor, also increases nocicep-
tion in the same models [55]. ese studies suggest that
peripheralNHE1 is themain responsible for the actions of the
peripheral NHE inhibitors. Furthermore, spinal blockade of
NHE1 with selective NHE1 inhibitors EIPA and zoniporide
increases �inching behavior induced by formalin [56]. In
line with these studies, in the rat skin-nerve preparation,
amiloride increased pH-induced nociceptor (C-�bers) spike
discharge [57]. Amiloride enhanced both the duration and
the magnitude of the response. Authors attributed this effect
to the blockade of NHE. NHE1mRNA and protein are found
in the dorsal root ganglia and lumbar dorsal horn [55]. Taken
together, data suggest that NHE1 plays an important role as
an intracellular pH sensor and as a protective mechanism
in nociceptive neurons in acute in�ammatory pain states
(Figure 2). In addition, it has been shown that blockade of
peripheral and spinal NHE1 promotes but not maintains
long-lasting bilateral secondary allodynia and hyperalgesia
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T 1: Characteristics of the Na+/H+ exchanger (NHE) family.

Common name
(gene) Distribution Membrane

Localization Function Pathophysiology

NHE1 (SLC9A1) Ubiquitous Plasma membrane
Cytosolic pH, cell volume, �uid
secretion, cell shape,
proliferation, migration

Ataxia, seizures, ischemia,
reduced parotid gland secretion,
pain

NHE2 (SLC9A2) Several tissues Plasma membrane Fluid secretion Loss of acid secretion, reduced
parotid gland secretion

NHE3 (SLC9A3) Kidney, intestines Plasma membrane Reabsorption of Na+ and HCO3
− Diarrhea, tubular proteinuria,

hypertension

NHE4 (SLC9A4) Stomach
Kidney Plasma membrane Cytosolic pH,

�uid secretion Impaired gastric acid secretion

NHE5 (SLC9A5) Brain, testis, spleen, and
skeletal muscle Plasma membrane Cytosolic pH Pain

NHE6 (SLC9A6) Ubiquitous Endosomes Organellar pH X-linked mental retardation,
epilepsy, ataxia

NHE7 (SLC9A7) Ubiquitous Endosomes Organellar pH Unknown
NHE8 (SLC9A8) Ubiquitous Endomembranes Organellar pH Unknown

NHE9 (SLC9A9) Ubiquitous Endosomes Organellar pH
Attention-de�cit hyperactivity
disorder, autism-spectrum
disorder

induced by formalin suggesting that NHE1 plays a role as a
protective system in chronic pain as well [58]. Reinforcing
this, NHE1 is downregulated from day 1 to 12 aer formalin
injection [58]. Similar results have been observed in biopsies
from patients with ulcerative colitis and Crohn’s disease that
present an in�ammatory process and abdominal pain [59,
60].

2.2. Neuropathic Pain. e role of NHE1 in neuropathic pain
has been less studied. Systemic injection of amiloride atten-
uated chronic constriction injury- and vincristine-induced
neuropathic pain [61]. Authors attributed the observed
antinociceptive effects of amiloride to the inhibition of NHE
with subsequent decrease in Ca2+ ions and oxidative stress.
However, since they used doses of amiloride that also block
acid sensing ion channels (ASICs) [62], it is likely that these
effectsmay result from the blockade ofASICs instead ofNHE.
However, the �nal answer still needs con�rmation.

Contrary to the results in in�ammatory pain and in the
skin-nerve preparation, other authors have reported that
blockade of NHE1 by zoniporide reduces the amplitude of
the compound action potential recorded from the dorsal root
[63]. is study showed that blockade of NHE1 may reduce
peripheral neuronal excitability by shiing fast Na+ channels
into the inactivated state under physiological conditions.
ese actions may lead to antinociceptive effects. However,
the same group has reported that continuous intravenous
infusion of zoniporide to rats and dogs for up to 1month, but
not for 2-weeks, produced peripheral neuropathies (axonal
degeneration), in the spinal cord (dorsal funiculus), dorsal
roots, and dorsal root ganglia [64]. us, more research is
need on this point to clarify the role of NHE1 in neuropathic
pain.

2.3. NHE in Nociceptive Neurons. NHE1 has been reported
in dorsal root ganglia, dorsal spinal cord, and trigeminal
neurons. NHE1 mRNA and protein expression are observed
in dorsal root ganglia and dorsal spinal cord of rats [55].
Moreover, NHE5 protein is observed in spinal cord but not
in dorsal root ganglia [55]. NHE1 is mainly expressed in the
lamina I of the dorsal horn of the spinal cord and it colocalizes
with peptide-rich sensory nerve �ber markers, substance P,
and calcitonin gene-related peptide [56]. Others have found
NHE1 in trigeminal ganglia [65] and colonicmucosa [59, 66].
Furthermore, NHE1 transcript has been found in human
dorsal root ganglion [67, 68]. Data about the localization of
NHE1 in neurons suggest that regulation of pHi may play a
role in the nociceptive processing at peripheral and central
sites (Figure 2).

2.4. NHE in SchwannCells. NHE1has been found in primary
cultures of Schwann cells from rat sciatic nerve [69]. Authors
found that NHE was moderately active at steady-state pHi.
More recently, NHE3 has been found in Schwann cells on
the laryngeal nerve [70]. Nerve �bers and nerve cell bodies
of Schwann cells and satellite cells were surrounded by both
proteins. It is likely that, as in other cells, NHE plays a role in
Schwann cells regulating pHi. However, it has been reported
that NHE may have a role in proliferation of Schwann cells
as inhibition of NHE aer addition of a mitogen signi�cantly
reduced the degree of mitosis [71].

2.5. NHE in Microglia. NHE1 is expressed in resting
microglia [72]. Pharmacological inhibition of NHE1 activity
acidi�es primary or immortalizedM4T.4microglia in resting
conditions and blockades pHi recovery capacity aer exper-
imental acidi�cation [72–74]. ese data suggest that NHE1
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F 1: Model of transmembrane organization and regulation of the NHE1 exchanger. Transmembrane domains IV and IX (in red) are
involved in the sensitivity of amiloride and its derivates. Numbers in the C-terminus domain indicate amino acid number in the structure. It
is thought that intracellular H+ activates amino acids 445 and 446 in the transmembrane domain. Green arrows indicate sites of activation by
different kinases while red arrows indicate sites of negative regulation by kinases or PP2. 14-3-3: 14-3-3 protein, CAII: carbonic anhydrase II,
CaM-A and CaM-B: calcium-calmodulin A and B, CHP: calcineurin B homolog protein, ERK1/2: extracellular signal-related kinase, ERM:
ezrin, radixin, andmoesin, NIK: Nck-interacting kinase, p90rsk: ribosomal protein S6 kinase, p160ROCK: p160-Rho-associated kinase, PIP2:
phosphatidylinositol 4,5-bisphosphate, PKB: protein kinase B, and PP2: protein phosphatase 2.

plays a key role in maintaining pHi in resting conditions
and extruding H+ aer acidosis in microglia. Activation
of microglia by lipopolysaccharide does not change the
expression of NHE1 but increases the activity to maintain
pHi. In addition, lipopolysaccharide increases the production
of the superoxide radical (O2

•−) inmicroglia while inhibition
of NHE1 reduces microglial activation and proin�ammatory
response. ese data suggest that NHE1 participates in the
generation of O2

•− through maintaining H+ homeostasis,
thereby allowing for sustained NADPH oxidase complex
activation in activated microglia [72]. Free radicals can
subse�uently lead to release of cytotoxic proin�ammatory
cytokines. Sincemicroglial activation and release of cytokines
have been associated with in�ammatory and neuropathic
pain [75, 76], it has been suggested that NHE1 may be one
of the mechanisms to increase microglial activity and sustain
neuropathic pain [63, 64].

2.6. NHE in Astrocytes. Astrocytes play an important role
throughout the central nervous system among others reg-
ulating pH [13]. Injury or stress to the central nervous

system activates astrocytes, which then display an altered
morphology and protein expression [77]. NHE1 protein has
been found in astrocytes [78–81]. It seems that NHE1 is
moderately active in basal conditions, but it can be activated
by phosphorylation through tyrosine kinase (TK), ERK1/2,
and p90rsk, in astrocytes [78, 82, 83] further promoting
extrusion of acid. Other substances like tumor necrosis
factor-alpha (TNF𝛼𝛼), interferon-𝛾𝛾, interleukin-1 beta (IL-
1𝛽𝛽), and hydrogen sul�de (H2S) also produce intracellular
acidi�cation and activation of NHE in astrocytes. In contrast,
cyclic GMP-inducing C-type natriuretic peptide and cyclic
GMP inhibit NHE in astrocytes [84].

2.�. �o�e o� NHE� in �n�����tory ��in in H���ns.
In�ammatory bowel diseases such as Crohn�s disease and
ulcerative colitis have been associated with defects in
homeostasis of cations as revealed by altered expression of
several cation transporters [59, 85]. It is thought that these
defectsmay be responsible formotility dysfunction, diarrhea,
and pain commonly seen in patientswith this type of diseases.
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NHE1 plays an important role in cation homeostasis of the
gastrointestinal tract [27]. ere are consistent reports that
NHE1 is reduced in ulcerative colitis and Crohn’s disease
in humans [59, 60]. Authors suggest that this reduced
expression may compromise recovery of acidic pHi, and thus
it may contribute to tissue necrosis and probably to pain
[59, 66]. However, on the bases of the present data, we cannot
discharge that other mechanisms might be contributing to
produce the characteristic symptoms of the Crohn’s disease
and ulcerative colitis.

On the contrary, NHE inhibition of human gut epithelial
cells suppressed interleukin-8 production and activation of
the p42/p44 mitogen-activated protein kinase and nuclear
factor-kappaB. Furthermore,NHE inhibition ameliorated the
course of in�ammatory bowel disease in dextran sulfate-
treatedmice [86]. In support of this, NHE inhibitorsmay pro-
duce an anti-in�ammatory effect by inhibiting the production
of PGE2 and the increase in COX-2 protein levels [87]. Differ-
ences could be due to the experimental approach used. How-
ever, more studies are needed in order to clarify this issue.

2.8. Perspectives and Conclusion. e role of NHE1 in noci-
ception has recently been discovered. Data suggests that

NHE1 plays a protective role in acute and chronic in�am-
matory pain. However, the role of NHE1 in neuropathic
pain is controversial. Since NHE1 inhibitors produce an
increase of in�ammatory pain, the study of NHE1 inhibitors
in neuropathic pain is difficult becausemodels of neuropathic
pain do not allow getting a graded level of allodynia in such
way that blockade of NHE1would allow assessing an increase
in tactile allodynia. e development of NHE1 activators
could help to solve the problem. e results observed in
the acute and chronic model of in�ammatory pain induced
by formalin should be corroborated in other models of
in�ammatory pain. Particularly, the use of models related
to chronic in�ammatory conditions, in which acidi�cation
is a common feature, such as the injection of complete
Freund’s adjuvant (CFA), monoiodoacetate (MIA), or uric
acid, is recommended. e use of knock-out mice as well as
interference RNA directed against NHE1 and other members
of the family would be helpful to delineate the participation
of these proteins in the modulation of pain. e wide
distribution of NHE1 could represent a challenge for drug
development. Besides nociceptive neurons, NHE1 is found
in heart and brain.us, activation of NHE1may lead to side
effects in those sites. However, the integrated study of the pHi
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regulation involving NHE1 will de�nitely produce the basis
to understand how nociceptive sensory neurons function in
presence of the acidic conditions.
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