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High-fidelity regulation of information transmission among cerebellar layers is mainly

provided by synaptic plasticity. Therefore, determining the regulatory foundations of

synaptic plasticity in the cerebellum and translating them to behavioral output are of great

importance. To date, many experimental studies have been carried out in order to clarify

the effect of synaptic defects, while targeting a specific signaling pathway in the cerebellar

function. However, the contradictory results of these studies at the behavioral level further

add to the ambiguity of the problem. Information transmission through firing rate changes

in populations of interconnected neurons is one of the most widely accepted principles

of neural coding. In this study, while considering the efficacy of synaptic interactions

among the cerebellar layers, we propose a firing rate model to realize the concept of

transmission coefficient. Thereafter, using a computational approach, we test the effect

of different values of transmission coefficient on the gain adaptation of a cerebellar-

dependent motor learning task. In conformity with the behavioral data, the proposed

model can accurately predict that disruption in different forms of synaptic plasticity

does not have the same effect on motor learning. Specifically, impairment in training

mechanisms, like in the train-induced LTD in parallel fiber-Purkinje cell synapses, has

a significant negative impact on all aspects of learning, including memory formation,

transfer, and consolidation, although it does not disrupt basic motor performance. In

this regard, the overinduction of parallel fiber-molecular layer interneuron LTP could not

prevent motor learning impairment, despite its vital role in preserving the robustness of

basic motor performance. In contrast, impairment in plasticity induced by interneurons

and background activity of climbing fibers is partly compensable through overinduction

of train-induced parallel fiber-Purkinje cell LTD. Additionally, blockade of climbing fiber

signaling to the cerebellar cortex, referred to as olivary system lesion, shows the most

destructive effect on both motor learning and basic motor performance. Overall, the

obtained results from the proposed computational framework are used to provide a map

from procedural motor memory formation in the cerebellum. Certainly, the generalization

of this concept to other multi-layered networks of the brain requires more physiological

and computational researches.
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INTRODUCTION

The cytoarchitecture of the cerebellar cortex has a uniform
character and is roughly divided into three parallel circuit
elements (Marzban et al., 2015), which, from the inner to
the outer layer, are called the granular, the Purkinje, and the
molecular layers (Figure 1A). Effective communication between
these layers is mainly regulated by synapses (Evans, 2007).
Generally, synaptic plasticity has multifaceted roles in the
formation, transfer, and consolidation of memory, which are
critical for learning, and also for enhancement of signal-to-
noise ratio for robust neurotransmission (D’Angelo et al., 2005;
Jörntell and Hansel, 2006; Borjkhani et al., 2018). Despite an
extensive amount of electrophysiological and behavioral studies
on the mechanisms underlying synaptic plasticity (Gao et al.,
2012; Freeman, 2015), the precise contribution of each type of
plasticity in the evolution of motor memory remains debated
(Yuzaki, 2013; D’Angelo et al., 2016), since various parts of the
cerebellar circuit are involved in controlling the baseline motor
performance, simultaneously integrating multiple cortical and
sensory inputs, and modulating the output firing rate of deep
nuclei (DN) toward premotor areas (Mauk et al., 2000; Cheron
et al., 2013; Badura et al., 2016).

The existence of different forms of synaptic plasticity, besides
access to sensorimotor information, has enabled the cerebellum
to participate actively in motor learning (De Zeeuw and Ten
Brinke, 2015). Motor learning in the cerebellum is mediated
by multiple plasticity sites at both cortical and nuclear parts.
Naturally, organizing movement patterns in a coordinated
manner requires the interaction of different forms of synaptic
plasticity in the cerebellar network (Gao et al., 2012). In fact,
an individual type of plasticity alone cannot account for wide
dynamic ranges of cerebellar learning (Boyden et al., 2004;
Solouki and Pooyan, 2016).

As schematically illustrated in Figure 1B, the transmission
flow of mossy fibers’ (MFs) input to DN consists of two distinct
parts: (1) the direct pathway that relays MFs sensory information
directly to DN and (2) the indirect or cortical pathway involving
MFs, granule cells (GCs), parallel fibers (PFs), and Purkinje cells
(PCs). In addition to the mainstream of the cortical pathway,
PCs receive inhibitory input from molecular layer interneurons
(MLIs). The indirect pathway operates as a fast learning module
while deeper structures (direct pathway) work as a slow learning
module, wherein the motor skill is transferred and consolidated
into more persistent memory (Lee et al., 2015; Luque et al.,
2016). The concept of memory formation in the cerebellar
cortex and its later transfer to the nuclear tract is supported
by the experimental evidence that the flocculus shutdown after
four sessions of optokinetic reflex (OKR) adaptation does not
impair the previously acquired motor memory (Shutoh et al.,
2006). Reversible blockade of floccular protein synthesis by
actinomycin or anisomycin microinjection produced a similar
effect (Okamoto et al., 2011). The classical theory of cerebellar
learning states that repetition of short-term training sessions
can gradually lead to persistent changes in the synaptic efficacy
(Ito, 2000; Strata, 2009; De Zeeuw and Ten Brinke, 2015). It is
postulated that long-term depression (LTD) at PF-PC synapses

constitutes the major mechanism of motor learning in the
cerebellar cortex (Ito, 2001; Gao et al., 2012; Hirano, 2013). The
strength of PF-PC synapses is adjusted under the guidance of
climbing fibers (CFs). Thus, the olivary system seems to train
the synapses by encoding the error signals that drive cerebellar
learning (Carrel, 2012). The presence or absence of CF signal
during PF activity causes LTD or LTP, respectively, at the PF-
PC synapses. Postsynaptic plasticity at PF to MLI synapses is
also mediated, through spillover, by CF activation in the opposite
direction of PF-PC plasticity (Hirano, 2013). On the other hand,
the plasticity at MF-DN is driven by synchronized activities of
MFs and PCs (Gosui and Yamazaki, 2016).

Recently, a controversy arose from the observation in several
studies, indicating that although LTD was abrogated genetically
or pharmacologically, motor learning in non-anesthetized
behaving animals remained unchanged (Welsh et al., 2005;
Faulstich et al., 2006; Schonewille et al., 2011; Yuzaki, 2013;
Inoshita and Hirano, 2018). To solve the observed controversy,
some researchers justified the PF-LTD vs. motor learning
mismatch by considering the possibility of a functional or
structural compensatory mechanism, which has yet to be proven
(Schonewille et al., 2011; Gao et al., 2012). Some others proposed
long-term potentiation (LTP) as an alternative substrate for
motor learning (Schonewille et al., 2010) and reduced the role of
LTD to an inhibitor of synaptic saturation or a protector against
excitotoxic PC death during the inferior olive (IO) overactivation
(Welsh et al., 2005). One of the reasons of ambiguity in
determining the role of LTD and LTP in motor learning is that
changes in each one alone, regardless of what happens to the
other, are being studied. In most genetic studies, where molecules
required for LTD induction were manipulated, LTP alterations
have not yet been investigated (Yuzaki, 2013). Furthermore, the
deleted gene of interest has a global effect on every cell of the
brain and not just the cells of interest. Thus, one cannot be sure
that the resulting phenotype is exclusively related to LTD. In the
case of discrepancies between PF-LTD and motor learning, more
specific experimental or computational analysis are warranted
before drawing any final conclusions.

In this study, we take the advantages of organizational
uniformity and layered structure of the cerebellum to develop
a computational model for investigating the highly distributed
nature of cerebellar synaptic plasticity during a motor learning
process. Assuming the synapse as a basis for neurotransmission
(Stevens, 2003), plasticity is considered as a mechanism for
regulating the transmission coefficient among neuronal layers.
The main idea behind our computational scheme lies in
estimating the effect of altered transmission coefficient among
cerebellar layers on the equilibrium behavior of the system. In
the first part of the paper, we provide an analytical framework
to describe the rate of changes at synaptic weights as a function
of population activity in cerebellar neurons and determine five
different conjunctions to evaluate the following scenarios:

1) MF-GC: The importance of MF-GC synapses in enhancing
signal transmission and tuning spike time of GCs on the
millisecond order has been shown so far (Garrido et al.,
2013b; Sgritta et al., 2017). Here, we decrease the transmission
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FIGURE 1 | Cytoarchitecture of the cerebellum. (A) Cross-sectional views of the cerebellum showing the folding pattern and layered character of the cortex.

(B) Schematic representation of cerebellar microcircuit. There are two principal afferents to the cerebellar cortex: (1) MFs, which provide sensory information of screen

oscillation to GCs, GOs, and DN, and (2) CFs, which convey the retinal image slip information to PCs and drive cortical learning by changing the synaptic efficacy at

PF-PC synapses. The ascending axons of the GCs branch in a T-shaped manner to form PFs, which, in turn, make excitatory synaptic contacts with MLIs and PCs.

PF-PC and MF-DN synapses are respectively considered as the main sites of learning and consolidation. Synaptic weights are indicated by
←→
W .

coefficient of the input layer among MFs and GCs to elucidate
whether this synapse has any role in motor learning and gain
adaptation or not.

2) PF-PC: We reevaluate the aforementioned dichotomy
between PF-LTD and motor learning by considering the
intrinsic differences between the spontaneous LTD, which
is induced by background activity of CFs and train-induced
LTD, which is triggered by use-dependent activity of CFs.
Moreover, we use the model to examine the effect of LTD
and LTP blockade on motor learning and baseline motor
performance. Meanwhile, we monitor the plastic changes at
PF to MLI synapse to determine whether the MLI pathway
has any backup role for the PF-PC pathway and, if so, to what
extent it would contribute in compensating the LTD/LTP
defect at PF-PC synapses. Additionally, our model allowed for
a temporally specific ablation of LTD, which helps us to clarify

different roles played by the early and late phases of LTD in
short- and long-term learning.

3) IO (CF pathway): Emerging evidence from experimental
studies indicates a high level of coordination between olivary
system activity and cerebellar learning (Pijpers et al., 2005; Van
Der Giessen et al., 2008; Badura et al., 2013; Solouki et al.,
2018). However, it is still unclear which phase of learning
will be affected by olivary system disruption. Probably, the
extent of functional problems caused by IO lesion would be far
beyond the defect of PF-LTD because CFs, which are the axons
of IO neurons, are involved in adjusting the synaptic plasticity
at both molecular and Purkinje layers. To understand the
possible effect of olivary system lesion on cerebellar learning,
we simulate learning paradigm in the absence of CF signal.

4) PF-MLI: Implication of MLIs in motor learning and the
possibility of their synergistic interaction with LTD and LTP at
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PF-PC synapses are studied from two perspectives. Along with
the second scenario, we first examine whether interneurons
are able to compensate impairment at PF-PC synapses and,
reciprocally, how would impairment at PF-MLI synapses
affect PF-PC synaptic plasticity and learning behavior of
the model.

5) PC-DN: The basis for motor memory consolidation is a
controversial topic. One view is that the acquired short-
term memory in the cerebellar cortex is transferred to a new
location during the learning process, that of so-called saving
phenomena (Kellett et al., 2010). In the last scenario, we
try to verify the existence of such hierarchical causality by
disconnecting the cortical and nuclear parts of the cerebellum.

As a model for cerebellar motor learning, the adaptation of
OKR is used. OKR is a kind of cerebellar-dependent oculomotor
response that serves to stabilize moving images on the retina
(Inoshita and Hirano, 2018). The potential impact of the lesion
scenarios on the behavioral trait of the model is addressed by
employing the following terms and definitions: (a) basic motor
performance, i.e., the initial value of OKR gain before any
learning paradigm has taken place; (b) motor learning, which
corresponds to adaptation of OKR gain following a learning
paradigm; and (c) motor consolidation, which means long-term
preservation of the level of adaptation of OKR gain. In the final
step, putting together the results of the above scenarios in the
execution of a repetitive learning paradigm and tracing their
behavioral differences at both phases of short- and long-term
learning, we propose a conceptual map of procedural motor
memory formation in the cerebellum.

MATERIALS AND METHODS

Definition of Plasticity Rules
Experimental studies in different parts of the brain, including the
hippocampus, neocortex, and cerebellum, have revealed activity-
dependent processes that can persistently change the efficacies
of synapses (Dayan and Abbott, 2001; Gerstner et al., 2014). In
this section, we take the advantages of differential equations to
characterize the rate of changes of synaptic efficacies as a function
of population activity in cerebellar neurons. The transmission
delays between the different neural populations are disregarded.

Cerebellar Cortex

Looking at Figure 1B, the population firing rate of MF afferents
is denoted by fMF ∈ Rn. In the context of OKR adaptation, MFs
transmit sensory information of visual stimulus to the granular
layer and DN. The MF input is then propagated to GCs with an
m by n synaptic connectivity matrix, presumably, m ≫ n. The
GCs are also under the influence of feedforward and feedback
inhibition from Golgi cells (GOs). Thus, the output of GCs,
denoted by fPF ∈ Rm, can be written as follows:

fPF = fMF −W{PF−GO}fPF −W{MF−GO}fMF (1)

fPF(1+W{PF−GO}) = fMF(1−W{MF−GO}) (2)

fPF =

(
1−W{PF−GO}

1+W{MF−GO}

)

fMF = αfMF (3)

where W{MF−GO} and W{PF−GO} are constant representing the
synaptic weight of MF-GO and PF-GO, respectively. α =
(

1−W{PF−GO}
1+W{MF−GO}

)

is defined as transmission coefficient between

excitatory mossy fiber input and granular layer. It is postulated
that MF burst activation not only induces presynaptic LTP but
also enhances intrinsic excitability of the GCs. This augmented
excitability results from an increased input impedance and
reduced spike threshold, which heightens excitatory postsynaptic
potential (EPSP) and facilitates spike output (Armano et al.,
2000; Seja et al., 2012). Thus, despite the low background firing
rate of GCs owing to tonic inhibition by GOs, sensory stimulus
can evoke bursting in GCs, such that MFs input is transmitted
with high reliability to the Purkinje layer (D’Angelo and De
Zeeuw, 2009). Moreover, the combination of feedforward and
feedback inhibition by GOs opens up a fine-tuned time window
for maximum transmission of sensory information with a high
signal to noise ratio (Chadderton et al., 2004; Gao et al., 2012).
Therefore, the transmission coefficient of the input layer would
be ≤1 (α ≤ 1). Obviously, this value is higher in the normal
group than the lesion one. Herein, α is simply assumed to be near
1 in the normal and 0.3 in the lesion condition.

The excitatory output of GCs is sent to the Purkinje layer
by PF axons. Also, the output of each PC is assumed to be
fPC ≡W{PF−PC}fPF −W{PF−MLI}fPF , whereW{PF−PC} ∈ R× Rm.
The synaptic weight of direct connection among MFs and DN
is defined by W{MF−DN} ∈ R × Rn. The final output of the
nuclear module (DN) toward the oculomotor neurons is given
by fDN = W{MF−DN}fMF − fPC. The GABAergic nature of PC is
taken into account in writing fDN .

The model gradually learns to adapt the actual output
fDN to the desired motor output dfMF . If the desired gain
d is larger (smaller) than the initial state, the synaptic
weight experiences depression (potentiation) in W{PF−PC} and
potentiation (depression) in W{MF−DN} (Jörntell and Hansel,
2006; Gosui and Yamazaki, 2016). As mentioned in the previous
section, CFs pass on the learning error e ≡ dfMF − fDN to
PCs, which enables supervised learning at PF-PC synapses. The
objective function of supervised learning is given as

J
(

W{PF−PC}
)

=
1

2
e2 (4)

The least mean square (LMS) method can be used to
determine the steepest descent direction of the error function
(Kawato, 2009):

1W{PF−PC} ∝ −
∂J

∂W{PF−PC}
= −fPFe = −fPF(CF − CF) (5)

where (CF − CF) is the difference between the spontaneous and
background activity of CFs, assumed to encode the error signal.
In the case that both PFs and CFs are activated, fPF and (CF−CF)
are positive, and thusW{PF−PC} is negative (LTD). We can write

Ẇ{PF−PC} = −λ1
∂J

∂W{PF−PC}
= −

1

2
λ1

∂e2

∂W{PF−PC}
= −λ1fPFe (6)

where λ1 is the learning rate. In contrast, lone activation of PFs
in the absence of e, leads to LTP (Lev-Ram et al., 2002; Coesmans
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et al., 2004; Hirano, 2013). We model this effect by adding
λ2fPF to Equation (6) (Dayan and Abbott, 2001). Although this
subtractive normalization term is used to contract the train-
induced LTD, it cannot avoid the saturation of W{PF−PC} when
the error signal is off. In the absence of error signal, the
spontaneous activity of PFs is counterbalanced by background
activity of CF (Ito, 2013). Thus, we decrease the magnitude of
W{PF−PC} by considering the effect of spontaneous LTD, which
is denoted by −λ2LTDspon. This subtle definition helps us to
examine the defects in train-induced and spontaneous LTD,
separately. We also add λ3W{PF−PC} as a synaptic decaying factor
(Dayan and Abbott, 2001; Gerstner et al., 2014). Eventually,
Equation (6) is turned to

Ẇ{PF−PC} = −

train−induced LTD
︷ ︸︸ ︷

λ1αfMF

(

dfMF −W{MF−DN}fMF −W{PF−MLI}

αfMF +W{PF−PC}αfMF

)

+

spontaneus LTP
︷ ︸︸ ︷

λ2αfMF −

spontaneus LTD
︷ ︸︸ ︷

λ2LTDspon − λ3W{PF−PC} (7)

where λ2 and λ3 are the recovery rates satisfying λ1 ≫

λ2, λ3. In the rest or post-training period, the OKR gain,
which might have amplified with adaptation, tends back to
its initial value. Let us indicate this initial gain by d = d0.
In this null condition, the synaptic weights return to their
baseline (W0

{PF−PC},W
0
{PF−MLI}, W

0
{MF−DN}) and the error signal

approaches zero. Thus, by setting Ẇ{PF−PC} = 0 in the above
equation, we derive

λ2(αfMF − LTDspon) = λ1αfMF

e→0
︷ ︸︸ ︷
(

d0fMF −W0
{MF−DN}fMF −W0

{PF−MLI}

αfMF +W0
{PF−PC}αfMF

)

+ λ3W
0
{PF−PC} (8)

As seen, the balance between PF-LTD and PF-LTP induced by the
spontaneous activity of CF and PFs is equal to the baseline weight
of W{PF−PC}. Replacing λ2(αfMF − LTDspon) with λ3W

0
{PF−PC}

in Equation (7) and considering a regulatory coefficient (β1) for
manipulating the strength of train-induced LTD results in

Ẇ{PF−PC} = − λ1β1αfMF

(

dfMF − W{MF−DN}fMF

−W{PF−MLI}αfMF +W{PF−PC}αfMF

)

− λ3(W{PF−PC} −W0
{PF−PC}) (9)

The other neurons stimulated by PFs are MLIs. As mentioned
in the previous section, PF-MLI synapses are suggested to
exhibit bidirectional plasticity in the opposite direction to that
induced at PF-PC synapses. Coherent activation of PFs and a
CF induces LTP, whereas lone stimulation of PFs induces LTD
at PF-MLI synapses. Thus, changing the direction of LTP and
LTD in Equation (9) yields the following plasticity rule for PF-
MLI synapse.

Ẇ{PF−MLI} = + λ1β3αfMF

(

dfMF −W{MF−DN}fMF

−W{PF−MLI}αfMF +W{PF−PC}αfMF

)

− λ3(W{PF−MLI} −W0
{PF−MLI}) (10)

where β3 is a regulatory coefficient for manipulating the
strength of train-inducedMLI-LTP andW0

{PF−MLI} is the baseline
weight of PF-MLI synapse. Given the indirect relation of
MLIs and CFs through spillover, the amount of use-dependent
synaptic weight changes at PF-MLI synapses is not as large
as that at PF-PC synapses. Thus, the default value of β3 is
smaller than β1. It should be noted that in the third scenario,
when we are examining IO lesion, β1 and β3 are replaced
by β2.

Cerebellar Nuclei

The activity of DN has critical impact on precise modulation
of long-term learning. However, there have been few biological
studies that explain the nuclear plasticity changes in the face
of upstream signals (D’Angelo et al., 2016). Numerical models
predict that the potentiation in DN could be driven by PC output
(Pugh and Raman, 2006; Garrido et al., 2013a; Solouki et al.,
2019). We also know that MFs are the only excitatory inputs that
induce LTP in nucleus synapses. Indeed, large activity of MFs
together with the small activity of PCs should reasonably induce
LTP at MF-DN synapses (Pugh and Raman, 2006). Taking into
account the above facts, we model LTP in an associative manner
as a general function of pre- and post-synaptic activities in DN
(H

(

fMF , fDN , fPC
)

). It is also observed that the sole activation of
MFs induces LTD inW{MF−DN} (Pugh and Raman, 2006; Hirano,
2013). A subtractive normalization term (λ5fMF) is used to show
this effect (Gerstner et al., 2014). The magnitude of W{MF−DN}

is also constrained by adding a multiplicative decaying factor
(λ6W{MF−DN}) (Gerstner et al., 2014). Finally, Ẇ{MF−DN} can be
written as

Ẇ{MF−DN} = λ4H
(

fMF , fDN , fPC
)

− λ5fMF − λ6W{MF−DN} (11)

Presumably, W{MF−DN} represents the slow dynamics and
evolves much more slowly thanW{PF−PC}. Therefore, we assume
λ4, λ5, λ6≪ λ1.

Numerical simulations have revealed that the synaptic weight
of MF-DN is liable to induce a kind of Hebbian plasticity
with postsynaptic gaiting mechanism (Medina and Mauk, 2000;
Kawato, 2009; Mapelli et al., 2015). This gaiting is mainly
regulated by two afferents to DN, namely, fPC and fMF . Logically,
LTP occurs when fMF is large and fPC is small. This can be denoted
in the following way (Gerstner et al., 2014):

1W{MF−DN} ∝ fMF

(

DN − DN
)

or fMF(f
max
PC − fPC) (12)

where DN is the background firing rate (temporal average) of
DN and fmax

PC is the maximum firing rate of PC. Let us set H =
fMF( fmax

PC − fPC), then, Equation (11) becomes

Ẇ{MF−DN} = λ4fMF

(

fmax
PC −W{PF−PC}αfMF

+W{PF−MLI}αfMF

)

− λ5fMF − λ6W{MF−DN}

(13)

With the null condition denoted by Ẇ{MF−DN} = 0
and (W0

{PF−PC},W
0
{PF−MLI}, W0

{MF−DN}), the subtractive
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normalization can be specified as follows:

λ5fMF = λ4fMF(f
max
PC −W0

{PF−PC}αfMF +W0
{PF−MLI}αfMF)

− λ6W
0
{MF−DN} (14)

Substituting Equation (14) into Equation (13), besides inserting
a regulatory coefficient (γ ) for manipulating the strength of
corticonuclear tract connectivity in the first term of Equation
(13), yields.

Ẇ{MF−DN} = λ4γ

(

W{PF−MLI} −W{PF−PC} +W0
{PF−PC}

− W0
{PF−MLI}

)

αfMF
2

+ λ6(W
0
{MF−DN} −W{MF−DN}) (15)

LEARNING PROTOCOL AND SIMULATION
SETUP

In this study, we utilized a typical learning protocol proposed by
Shutoh et al. (2006). They recorded horizontal OKR gain of fixed
head mice in response to sustained oscillation of checked-pattern
screen. The behavioral data together with the simulation results
for the normal case are depicted in Figure 2. Learning simulation
is conducted in a course of five sessions; each contains 1 h of
training and 23 h of post-training off-task period. Long-term
(slow) adaptation is estimated by gain differences before training
on the first day and after training on each day. Likewise, short-
term (fast) adaptation is measured by gain differences before and
after 1-h daily training. Other experimental data from Katoh
et al. (1998) and Shutoh et al. (2006) are used to verify the
results of the model in a lesion case. The former investigated
the role of chronic olivary system lesions on short- and long-
term adaptation of OKR and the latter investigated the effect of
reversible flocculus lesion on the transsynaptic shift in memory
trace from cerebellar cortex to DN by injecting lidocaine into
the cerebellar cortex of mice immediately after training on the
4th day.

Simulation of lesion scenarios in the current study is
carried out by manipulating the embedded coefficients in the
updating rules (α, β , and γ ) and modifying the corresponding
baseline values of synaptic weighs (W0

{PF−PC}, W
0
{PF−MLI}, and

W0
{MF−DN}). In the first case, we partially attenuate MF-GC

transmission by reducing α from 1 to 0.3. In the second case,
we implement a multi-stage plan to investigate the role of a)
train-induced LTD, b) spontaneous LTD, c) spontaneous LTP,
and d) learning and recovery rate at PF-PC synapse, separately.
Partial and complete blockade of train-induced PF-PC LTD is
done by reducing β1 from 1 to 0.3 and 0, respectively. According
to Equation (7), spontaneous PF-PC LTD deficit disturbs the
baseline balance of W{PF−PC} in favor of spontaneous LTP and
increases W{PF−PC}. From Equations (12) and (15), the growth
of W{PF−PC} and subsequent increased activity of PCs takes
W{MF−DN}(t) to the resting state. Moreover, from Equation
(10), the increase of W{PF−PC} and the decrease of W{MF−DN}

enlarge W{PF−MLI}. Therefore, to simulate the impairment of
spontaneous PF-PC LTD, we set W0

{PF−PC} = W0
{PF−MLI} = 1.1

FIGURE 2 | Simulation of OKR adaptation in normal condition. OKR gain

changes (top) and evolution of synaptic weights at PF-PC, PF-MLI, and

MF-DN (bottom) during eight sessions of training. The dashed black line

indicates the initial level of OKR gain before any training has taken place. The

amounts of short- and long-term learning for the 4th and 8th days are

indicated by STM and LTM labels. The shaded region specifies the 1-h training

period on the first day. The learning curve of the model for the last 3 days, in

the absence of experimental data, is plotted by a dashed line.

andW0
{MF−DN} = 0, which were set at 1 in the normal condition.

In contrast to spontaneous LTD, impairment of spontaneous
PF-PC LTP decreases the synaptic weight of W{PF−PC} toward
LTD until it stops at 0 (Equation 7). Under this condition, the
baseline values of W{MF−DN} and W{PF−MLI} shift to a lower
level (Equations 10 and 15). In practice, vanishing all PF-PC
synapses reduces the working frequency and basal intrinsic
excitability of PCs, which in turn affects the activity of MLIs and
DN (Schonewille et al., 2010). To simulate the impairment of
spontaneous PF-PC LTP, we set W0

{PF−PC} = β1 = λ3 = 0,

β3 = 0.48, andW0
{PF−MLI} = W0

{MF−DN} = 0.5. Finally, we carry
out simulation with a different set of learning and recovery rate to
determine the impact of early and late phases of LTD induction
on short- and long-term learning and to check the robustness
of suggested plasticity rule against parameter variations. In the
third case, we blockade CF signaling to cerebellar cortex by
replacing β1 and β3 with β2. Partial and complete blockade of
CF signal is simulated by setting β2 at 0.3 and 0, respectively. In
the fourth case, we block either plasticity or baseline activity of
PF-MLI synapses. In the case of no PF-MLI plasticity,W{PF−MLI}

remains constant at its baseline level, that is, W{PF−MLI}(t) =
W0
{PF−MLI} for any t. Elimination of PF-MLI baseline activity

is also made by setting W0
{PF−MLI} = 0. This manipulation

reinforces the inhibition from PCs to DN and subsequently
reducesW{MF−DN}(t) so thatW0

{MF−DN} = 0. The overactivation
of PCs in the absence of PF-MLI baseline is compensated by
decreasing the baseline of W{PF−PC} from 1 to 0.4 and setting
β1 = 0.1. Furthermore, to avoid LTP saturation at PF-MLI
synapses, β3 is set at 0.2. In the last scenario, we block PC-DN
transmission by setting γ = 0 immediately after training on the
fourth session of learning.
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We adjust the time constants (τ ) of induction and recovery
periods, which are equal to the inverse of learning rates (λ),
based on the electrophysiological study done by Le et al. (2010).
They demonstrated that the induction of LTD or LTP at PF-
PC synapses occurs within 5–30min and the recovery from
training takes more than 1 day. It is also reported that OKR
adaptation is capable to induce a 30–40% decrease in the
amplitude of PF excitatory postsynaptic current (PF-EPSC) or
the rising slope of PF-EPSP in PCs (Schonewille et al., 2011;
Inoshita and Hirano, 2018). Based on the above evidence, a
relatively specific and limited space was searched to find the most
appropriate set of learning rates for fitting simulation results
with the experimental data. Specifically, the values of λ2 and λ5
are simply determined by substituting the initial conditions into
Equations (7) and (13), respectively. In addition, the baseline
values of W{PF−PC} and W{MF−DN} (W0

{PF−PC},W
0
{MF−DN}) are

achieved by the counterbalance between PF-LTD and PF-LTP
from Equations (8) and (14).

Based on the fact that the final output of the cerebellum
to the oculomotor neurons is provided by DN (Figure 1B),
a portion of its modular activity, mediated by the upstream
synaptic weights W{PF−PC}, W{PF−MLI}, and W{MF−DN}, is
associated with the OKR adaptation (Mapelli et al., 2015;
Gosui and Yamazaki, 2016). Therefore, a normalization factor
is used to transform the actual gain from cerebellar space
(

W{MF−DN} −W{PF−PC}α +W{PF−MLI}α
)

to the real world.

GOKR = gOKR0
(

W{MF−DN} −W{PF−PC}α +W{PF−MLI}α
)

(16)

where gOKR0 is a scaling factor used to adjust the initial amplitude
of OKR. Regarding the initial state of the behavioral data of
normal case (Figure 2), we set gOKR0 = 0.3. Further details about
the model parameters of the simulated scenarios can be found in
Table 1.

RESULTS

The dynamics of the present model related to the normal and
lesion scenarios are plotted in six panels (Figures 2–5). Each
panel consists of the learning curve(s) of OKR gain at the top
and its corresponding time-dependent changes in weights of PF-
PC (W{PF−PC}), PF-MLI (W{PF−MLI}), and MF-DN (W{MF−DN})
synapses at the bottom view. Initially, we assess the model
capability to reproduce the observed OKR gain adaptation
in wild-type mouse (Figure 2). It can be seen that the daily
repetition of training sessions increased the overall gain step
by step from 0.3 to 0.56 after 5 days. When the simulation
proceeded for 3 more days, OKR gain further increased at a
slower pace until it reached an equilibrium point. The amplitude
of OKR increased rapidly during 1 h of sustained daily training
and diminished throughout post training or rest period, but
did not come back to its previous level. Obviously, the rapid
changes are related to the fast dynamic (W{PF−PC}) and the
gradual low changes at the end of each day relative to the start
of the same day are attributed to slow dynamic (W{MF−DN}).
The results also support the idea of distributed and synergistic
interaction of different forms of plasticity in the cerebellum

during a motor learning task (Boyden et al., 2004; Gao et al.,
2012; Garrido et al., 2013a; Solouki and Pooyan, 2016). It can
be seen that adaptation to a larger gain effectively increases the
value of W{MF−DN}, while it does not change the final value of
W{PF−PC}. Facing the error signal during the training condition
(d > d0), W{PF−PC} undergoes LTD and then recovers to its
initial value in the dark condition. It seems that what has been
learned by W{PF−PC} during training is partially transferred to
W{MF−DN}. Therefore, W{PF−PC} and W{MF−DN} are suggested
to be responsible for short-term memory formation (STM) and
long-term consolidation (LTM), respectively.

W{PF−MLI} also changes in sync with W{PF−PC} but in the
opposite direction. The GABAergic nature of interneurons
converses the PF-MLI plasticity to the same direction as the
PF-PC plasticity. This increases the possibility of W{PF−MLI}

participation in STM and compensation of W{PF−PC}, which
is investigated in the next scenarios. Additionally, the depth
of modulation in W{PF−PC} reaches its maximum level after 3
days. Theoretically, this seems unusual since |e| is the highest
on the first day. In practice, however, the long-term gain of
OKR increases in an S shape (Shutoh et al., 2006; Takeuchi
et al., 2008; Inoshita and Hirano, 2018). We show this effect
by adding a regulatory factor to the first term of Equation (9)
just for the first 3 days. To simulate OKR adaptation in the
lesion conditions, we modified simulation settings including the
transmission coefficients highlighted in Figures 3–5 and baseline
values of synaptic weights for compensation, which may occur in
behaving animals (see details in Table 1).

Complete interruption of the information flow from the
cerebellar input layer to the output layer cannot address the
reason of the enormous amount of GCs. Therefore, to better
understand the evolutionary conservation of this abundant
number of cerebellar GCs, a more desirable strategy would
be to suppress the neurotransmission from most, but not all,
GCs. Moreover, since an experimental elimination of GCs can
cause morphological processes in their target neurons (Galliano
et al., 2013), it is likely profitable to investigate the functional
outcome of inactivating the majority of GCs computationally
rather than experimentally. In the first lesion scenario, we have
attenuated transmission at MF-GC synapses by reducing α from
1 to 0.3. Based on the model formulation (Equations 9, 10,
15, and 16), the impact of α reduction is not limited to the
input layer but propagated in the plasticity rules of the next
layers. As a consequence of this manipulation, the overall gain
of OKR and plasticity of the synapses significantly declined
(Figure 3). To provide a tighter comparison of normal and
lesion scenarios, we have depicted short- and long-term gain
increment of the fifth session of training besides the percentage of
synaptic weight changes of the same day in Figure 6. Positive and
negative long-term gain increments are respectively, considered
as the occurrence of motor learning and disruption of basic
motor performance. Considering Figure 6, it can be seen that
even 70% attenuation in MF-GC transmission did not disrupt
basic motor performance although motor learning and memory
consolidation were compromised. This result is in line with a
previous study from Galliano et al. (2013) who noted a minority
of functionally intact GCs is adequate for the maintenance of
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TABLE 1 | Summary of model parameters for the simulated scenarios.

Model

parameters

Simulation scenario

Normal Attenuation

of MF-GC

transmission

Blockade of

train-

induced

PF-PC LTD

Blockade of

spontaneous

PF-PC LTD

Blockade of

spontaneous

PF-PC LTP

Alteration

the rate of

LTD

induction at

PF-PC

synapse

Blockade of

CF signal to

cerebellar

cortex

Blockade of

PF-MLI

plasticity

Blockade of

PF-MLI

baseline

activity

Blockade of

PC-DN

transmission

α 1 0.3 1 1 1 1 1 1 1 1

β1 1 1 0.3, 0a 1 0 1 – 1 0.1 1

β2 – – – – – – 0.3, 0a – – –

β3 0.5 0.5 0.5 0.5 0.48 0.5 – 0 0.2 0.5

γ 1 1 1 1 1 1 1 1 1 0b

W0
{PF−PC}

1 1 1 1.1 0 1 1 1 0.4 1

W0
{PF−MLI}

1 1 1 1.1 0.5 1 1 1 0 1

W0
{MF−Dn}

1 1 1 0 0.5 1 1 1 0 1

τc1 0.33 0.33 0.33 0.33 0.33 2 0.33 0.33 0.33 0.33

τc3 2.5 2.5 2.5 2.5 ≫2.5d 1.5 2.5 2.5 2.5 2.5

τc4 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5

aThe coefficients of 0.3 and 0 are applied in the cases of partial and complete blockade, respectively.
bThe value of γ is set at 0 immediately after training on the fourth session.
cTime constant (τi ) is equal to the inverse of learning rate (λi ) and expressed in hours. τ1 and τ3 represent time constant of W{PF−PC} during learning and recovery period, respectively.

The values of τ4 and τ6, which represent the time constant of W{MF−DN} during and after training, are considered equal.
dThe value of τ3 can be arbitrarily so large that λ3 = 0.

FIGURE 3 | Lesion in the transmission of the granular layer. (A) Schematic representation of lesion location in the granular layer. (B) Simulated OKR adaptation (top)

and evolution of synaptic weights (bottom) during five sessions of training, while the transmission coefficient of MF-GC synapses (α) is attenuated from 1 to 0.3.

basic motor performance, whereas formation and consolidation
of sophisticated memories require higher numbers of normal
GCs regulating PC firing.

LTD at PF-PC synapses is believed to be the main cellular
mechanism for cerebellar motor learning (Kano et al., 1994;
Ito, 2001; Belmeguenai et al., 2008; Hirano, 2013; Yuzaki, 2013;
Kuwabara et al., 2014; Freeman, 2015). However, the necessity
of LTD for the acquisition of motor learning is challenged by
the demonstration of normal motor learning in LTD-deficient
mice (Welsh et al., 2005; Faulstich et al., 2006; Schonewille et al.,

2011). In response to the dichotomy that has arisen between
PF-PC LTD and motor learning, some researchers proposed
LTP as an alternative substrate for motor learning (Schonewille
et al., 2010), some others have spoken about the possibility of
a compensatory pathway (Lemon and Edgley, 2010; Gao et al.,
2012), and some found the existing documentation inadequate
and postponed the final conclusion to further in vivo experiment
and theoretical investigations (Hirano, 2013; Ito et al., 2014).
In this regard, we conducted a multi-stage lesion scenario to
examine the possible involvement of different factors (including
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FIGURE 4 | Lesion in the transmission of the molecular and the Purkinje layers. (A) Schematic representation of lesion sites and the corresponding transmission

coefficients. (B–D) Dynamics of the model in gain-up training for 5 days. Each panel consists of the learning curve(s) of OKR gain at the top and its corresponding

time-dependent changes in synaptic weights at the bottom. Experimental data in (C) are plotted in red dots.
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FIGURE 5 | Lesion in the transsynaptic shift of memory trace from cerebellar cortex to DN. (A) Schematic representation of lesion location. (B) Dynamics of the model

in gain-up training for 4 days. Lesion is made by interruption of PC-DN transmission immediately after 1-h training on the 4th day. Experimental data are plotted in

red dots.

train-induced LTD, spontaneous LTD, spontaneous LTP, and rate
of learning and recovery) in weight changes at PF-PC synapses
and motor learning. The impairment of train-induced PF-PC
LTD is simulated by partial and complete abrogation of temporal
correlation between use-dependent and synchronous activity of
CF and PFs (see details in Table 1). Figure 4B.1 compares the
OKR gain and synaptic weights in the partial and complete
lesion conditions during five sessions of learning. The OKR
gain continued to increase at a lower rate than normal in the
partial lesion case, whereas it remained largely stopped at the
initial state in the complete lesion case. This result indicates that
complete blockade of train-induced PF-PC LTD would interrupt
motor learning without causing noticeable damage to baseline
motor performance. Furthermore, deficiency in train-induced
PF-PC LTD led to a 31% increase in PF-MLI synaptic weight
in the complete lesion case, which might be interpreted as a
confirmation for the compensatory role of PF-MLI pathway for
PF-PC synapse. However, despite the major impact of such a
compensatory mechanism in upregulating the MF-DN synaptic
weight (W{MF−DN}) and hindering fall from the initial gain state
(0.3), it was not that enough to prevent loss of motor learning.
Therefore, PF-MLI synapses contribute in providing a more
robust basicmotor performance rather than compensatingmotor
learning. As shown in Figure 6, the blockade of train-induced
LTD had a negative impact on both short- and long-term gain
increments. Specifically, in the complete lesion case, the slight
increase in the short-term gain results from the modulating
effect of MLIs on PCs. Therefore, it can be inferred that the
molecular layer takes part in short-term memory formation,
but not as much as Purkinje layer does. Next, we simulated
spontaneous PF-PC LTD deficit by eliminating LTD induced by
spontaneous activity of CF and PFs. As a result, the baseline
weight of W{PF−PC} became larger than normal. The increase
in W{PF−PC} overactivates PCs and takes W{MF−DN}(t) to 0. As
shown in Figure 4B.2, the initially decreased OKR gain was
successfully compensated day by day through overinduction of

train-induced LTD. According to Figure 6, one of the highest
rate of train-induced PF-PC LTD induction with 44% depression
in W{PF−PC} and the highest rate of short- and long-term gain
increment among all the lesion scenarios belong to blockade
of spontaneous LTD. This shows the high ability of train-
induced PF-PC LTD in compensating spontaneous PF-PC LTD
deficit. It seems that the behavioral learning differences between
spontaneous and train-induced LTD are the key to explain
the discrepancies between cerebellar PF-PC LTD and motor
learning. A conventional protocol of PF-PC LTD induction is
composed of conjunctive stimulation of PFs and CF at 1Hz
for 5min or pairing PFs stimulation with direct intracellular
depolarization of PC (Hammond et al., 2015); this stimulation
corresponds to spontaneous LTD, since both CF and PFs elicit
tetanic spikes without temporal modulation, while train-induced
LTD is provoked by use-dependent and variable activity of
CF and PFs (Schonewille et al., 2011). Then, we simulate
spontaneous PF-PC LTP by inactivating LTP induction at PF-
PC synapses, which was triggered via the background activity
of GCs. This manipulation disturbed the balance of W{PF−PC}
baseline in favor of spontaneous LTD and decreased W{PF−PC}
so that it was clamped to 0 and consequently train-induced
LTD was also inactivated. In this condition, the OKR gain
did not increase after five sessions of learning (Figure 4B.2).
The long-term gain increment has a slight (non-significant)
negative value (Figure 6), which indicates the intactness of
basic motor performance despite the complete destruction of
motor learning and memory consolidation. This result is in line
with the experimental observations in calcineurin-deficient mice
(Schonewille et al., 2010). The slight formation of STM, in this
case, is related to MLI activity.

Next, we carried out the simulation with two different learning
and recovery rates for the synaptic weight at PF-PC synapses
to specify the impact of early and late phases of LTD on
short- and long-term memory and to check the robustness
of suggested plasticity rule against parameter variation. As
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shown in Figure 6, increasing the recovery rate of W{PF−PC}
reduced long-term gain increment although there was no defect
in short-term gain increment. It seems that shortening the
duration of late phase of LTD (increasing recovery rate) had
a negative impact on transfer and subsequent consolidation of
motor learning. On the other hand, decreasing the learning rate
of W{PF−PC} (lengthening the duration of the early phase of
LTD) had a negative impact on short-term memory formation,
which is a prerequisite for long-term consolidation. Furthermore,
application of different sets of learning or recovery rate did not
cause any unrealistic performance overshoot or disruption in
the order of LTD/LTP occurrence in W{PF−PC} and W{MF−DN},
which shows the robustness of the suggested plasticity rule
against parameter variations.

In the third lesion scenario, we considered partial and
complete blockade of CF signal that emanated from IO neurons
to the cerebellar cortex by inactivating train-induced plasticity
at both PF-PC and PF-MLI synapses. The model ability in
reproducing lesioned behavior was successfully verified by
experimental data (Katoh et al., 1998; Shutoh et al., 2006)
[compare the simulated OKR gain of complete IO lesion with
the experiment (Figure 4C)]. After lesions were made on the
olivary system, the ability to change OKR gain was significantly
reduced compared with the normal group. In the complete
block case, both short- and long-term gain increment had
negative values (Figure 6). This suggests that the olivary system
(specifically CFs) plays a critical role not only in motor learning
but also in basic motor performance. As a confirmation for
this view, mutant mice with structural abnormalities in the
innervation pattern of PCs by CFs have shown obvious signs
of ataxia (Janahmadi et al., 2009; Yuzaki, 2013). Compared
with the train-induced PF-PC lesion, complete blockade of
CF had a more negative impact on basic motor performance.
A possible factor that may have led to such a difference is
the lack of train-induced PF-MLI LTP in the CF lesion case.
This issue supports this notion that train-induced PF-MLI
LTP plays a crucial role in providing a more robust basic
motor performance.

Although feedforward inhibition of MLIs onto PCs have
been studied extensively, its behavioral relevance has remained
enigmatic (Wulff et al., 2009). In the fourth lesion scenario, we
investigated how GABAergic neurotransmission from MLIs to
PCs regulates adaptation of OKR by conducting the simulation in
two modes: (1) no PF-MLI plasticity and (2) no PF-MLI baseline
(Figure 4D). In the no plasticity mode, we assumed that PF-
MLI synaptic weight is fixed at a baseline value (W0

{PF−MLI}). The
resultingOKR gain did not show any considerable difference with
that of the normal group. The lack of plasticity in PF-MLI synapse
was successfully compensated by about 5% overinduction in
train-induced PF-PC LTD. The question that may be posed
is that if the lack of plasticity in the PF-MLI synapse does
not cause any problems in the learning process, what then
is the role of this plasticity? The plasticity that was induced
at PF-MLI synapses relies on indirect (spillover) activity of
CFs (Gao et al., 2012). Thus, it may have a lower learning
capacity and less effective power to modulate the activity of DN
and the final output of the cerebellum. However, as predicted

earlier, the little memory that forms in this plasticity is used
to provide a robust basic motor performance especially when
train-induced PF-PC LTD is absent. In the no baseline mode,
we set the baseline of W{PF−MLI} at 0. Removing the inhibition
from PCs increased their excitability and shifted the membrane
potential of DN toward a hyperpolarized state. To avoid the
overexcitation of PCs and unrealistic variations in PF-MLI
plasticity, we decreased the baseline value of W{PF−PC} and
transmission coefficient of W{PF−MLI}, respectively. Simulation
results showed that the daily increase in OKR gain did not
accumulate by the repetition of training sessions (Figure 4D).
This suggests that blockade of PF-MLI baseline activity impairs
memory transfer and consolidation, leaving short-term memory
formation intact, consistent with experimental reports (Wulff
et al., 2009).

In the last lesion scenario, we blocked PC-DN transmission
by setting γ = 0 immediately after training on the fourth
session of learning. An experimental data set (Shutoh et al.,
2006) is used to test the ability of the model in reproducing
the lesion behavior (Figure 5). This manipulation caused almost
all that has been learned in the fourth session to be lost and
gained back to its previous level. Furthermore, deactivation of
the PC-DN pathway eliminates the induction of LTP at the MF-
DN synapse, indicating that memory transfer from W{PF−PC}
to W{MF−DN} is disrupted. Normally, the disruption of memory
transfer affects long-term learning consolidation. This suggests
that the cerebellar cortex plays a critical role not only in short-
term memory formation but also in transferring the formed
memory to the nuclear region. Furthermore, it can be inferred
that OKR gain depends on the modulation strength of PC
activity. In an extreme case when all PF–DN synapses die out,
PCs cannot modulate their spike discharges, thereby decreasing
the OKR gain.

DISCUSSION

In this study, we presented a mechanistic firing rate model
of the cerebellar circuit endowed with bidirectional plasticity
rules located at PF-PC and PF-MLI synapses and a Hebbian-
like plasticity rule with a postsynaptic gating mechanism at MF-
DN synapses. Considering the synaptic interaction among the
cerebellar layers, the concept of transmission coefficient was
proposed as a tool for motor learning analysis. Manipulation
of transmission coefficients at five synaptic junctions among
cerebellar layers, referred to as lesion scenarios, provided a great
potential to answer some of the fundamental questions about
the underlyingmechanisms involved in cerebellar motor learning
and memory formation.

In order to select a modeling strategy in compliance with
the objectives of this research, the following points were
considered. (i) We tried to adhere to the structure and
physiology of the cerebellum and, at the same time, preserve
the simplicity of the model. This simplicity helped us to provide
a panoramic view of the different phases of motor memory
formation and to reproduce steady-state changes of learning
behavior over a day time scale. (ii) The adaptation of OKR
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FIGURE 6 | Quantitative data of the model’s behavior in confronting different lesion scenarios. (Top) Bar graph displaying the long-term or slow adaptation of OKR

gain measured by gain differences after training on the 5th day and before training on the first day. Positive and negative long-term gain increments are respectively,

considered as the occurrence of motor learning and disruption of basic motor performance. Blockade of CF signaling to cerebellar cortex had the most destructive

effect on both motor learning and basic motor performance. Conversely, blockade of PF-MLI plasticity had the least negative impact on the increment of OKR gain.

Additionally, blockade of spontaneous PF-PC LTD was completely compensated by overinduction of train-induced LTD. Notably, the more increment in this case does

not mean the greater final OKR gain than normal, since the initial state of OKR gain started from 0 rather than 0.3. (Middle) Bar graph showing the short-term or fast

adaptation of OKR gain measured by gain differences before and after 1 h of training on the 5th day. Dashed lines indicate normal values. (Bottom) Bar graph

showing the percentage of synaptic weight changes at the fifth session of learning.

gain as a cerebellar-dependent task is used to make a more
straightforward relationship between the neural and behavioral
domains. This improves the interpretability of behavioral
disorders caused by cerebellar malfunction and minimizes the

possible involvement of other brain regions in the control
of movement. (iii) Synaptic plasticity rules were defined as
a function of background and use-dependent activities of the
neuronal population. Distinguishing between the underlying
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factors involved in long-term synaptic weight modification
helped us to further elucidate their contribution to the learning
process. (iv) The compatibility of the simulation results with
experiments was examined. The results showed good accordance
with the findings of previous studies. (v) The functional
contribution of interneurons inmotor learning was regarded. (vi)
The possibility of a compensatory mechanism in different lesion
scenarios was investigated.

The repetitive alternation between task and off-task period
during gain-up training for five consecutive sessions effectively
increased the OKR gain by 90%. Meanwhile, the model could
show the cooperative action of the main forms of synaptic
plasticity at PF-PC, PF-MLI, and MF-DN synapses during
learning. Then, we tested the model performance under various
lesion conditions. The percentage of changes in synaptic weights
and the extent of gain increment relative to the initial state
were used as a measure for evaluating and comparing different
conditions. The model predicted that train-induced PF-PC LTD
is the most effective compensation mechanism since it could
successfully cover the lack of spontaneous PF-PC LTD and
PF-MLI plasticity. In addition, train-induced PF-PC LTD had
a major role in the learning capability of the model since
its blockade completely stopped motor learning and memory
formation, although it did not disrupt basic motor performance.
In this regard, the overinduction of PF-MLI LTP was not able
to prevent motor learning impairment, despite its vital role
in preserving the robustness of basic motor performance. The
pivotal role of PF-PC LTD in cerebellar learning is highlighted
in several studies, including those evaluating the animal models
of autistic spectral disorder (ASD) (Koekkoek et al., 2005;

Baudouin et al., 2012; Piochon et al., 2014). For instance,
the incomplete elimination of surplus CFs in patDp/+ mice
causes PF-PC LTD saturation and motor learning impairment
(Piochon et al., 2014). Similarly, deletion of Fmr1 gene in PCs
(L7-Fmr1; a model for syndromic autism) attenuates eyeblink
conditioning by altering LTD profile (Koekkoek et al., 2005).
ASD models with environmental etiology also support the
involvement of synaptic transmission of PCs in motor learning
(Wang et al., 2018). Valproic acid (VPA) is an anti-seizure drug
that can replicate ASD-like symptoms. Administration of VPA
effectively reduces the cell density and dendritic arborization of
PCs. Such an anatomical defect is associated with suppressed
synaptic transmission of PCs and impaired motor learning in
VPA-treated mice (Wang et al., 2018). As another lesion case,
blockade of spontaneous PF-PC LTP clamped W{PF−PC} to 0
and subsequently disabled motor learning. Of course, as in the
previous case, this manipulation did not show abnormal motor
performance. Thus, it can be inferred that both train-induced
LTD and spontaneous LTP are required for motor learning.
If the motor performance is considered as a consequence of
postnatal long-term learning (Manto and Jissendi, 2012), then
the birth defect in train-induced LTD or spontaneous LTP would
cause severe impairment in motor performance. Compared to
LTD, fewer studies have focused on the impact of PF-LTP on
motor learning (Yuzaki, 2013). L7-PP2B mutant mouse is one
of the animal models created for this purpose (Schonewille
et al., 2010). Consistent with our results, this mutant showed
impaired acquisition of eyeblink conditioning and impaired
gain adaptation of vestibulo-ocular–reflex. The basal motor
performance remained unaffected. Another point about the

FIGURE 7 | Conceptual map of procedural motor memory formation in the cerebellum. Sensory input is transmitted to the cortical and nuclear modules by MFs. The

granular layer, benefiting from abundant clusters of granule and Golgi cells, conveys the encoded sensory information to both molecular and Purkinje layers by PFs.

Conjunctive activation of PFs and CF forms short-term memory at the main and peripheral learning sites. Then, the formed memory is transferred to the nuclear

module through inhibition exerted by PCs on DN mostly at the late phase of LTD. Finally, the postsynaptic activity of DN drives the formation of long-term memory at

the consolidation site.
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mutant is that, despite the abrogation of LTP, LTD functions
normally. This may appear to be in conflict with our results
and the notion of mutual dependence between LTD and LTP
suggested by several studies (Baudouin et al., 2012; Yuzaki,
2013). However, our model explained this contradiction by
differentiating between train-induced and spontaneous LTD and
predicted that the reported LTD, induced by frequency constant
stimulus, was spontaneous and not train-induced. Among all the
lesion cases, IO lesion, which was referred to as blockade of CF
signaling to cerebellar cortex, had the most destructive effect
on both motor learning and basic motor performance since it
would result in the inactivation of all train-induced mechanisms
mediated by CF error signal not just LTD in PF-PC, but also
LTP in PF-MLI synapses. Thus, studies on transgenic animals
that suffer from IO lesion or CFs abnormalities may not be
an exact representation of LTD defect. As another case, the
lesion caused by 70% attenuation of MF-GC transmission did
not disrupt basic motor performance although it compromised
motor learning and memory consolidation. Based on our
formulation, manipulating the transmission coefficient in the
input layer reduced the plasticity of synaptic weights in the
next layers and even the inner nuclear layer. These observations
provide important clues from a dynamical viewpoint, as to why
vertebrates require an extreme abundance of functional GCs
in their life and to what extent this abundance is redundant.
The functionality of GABAergic interneurons in regulating the
adaptation of OKR was investigated in two different conditions:
(1) no PF-MLI plasticity and (2) no PF-MLI baseline. The
model predicted that the lack of PF-MLI plasticity is completely
compensable through overinduction of train-induced PF-PC
LTD. Furthermore, the indirect access of MLIs to instruction
signals from CFs and the final output of the cerebellum reduce
their learning and modulating capability. The necessity of PF-
MLI plasticity was more tangible when the train-induced PF-PC
LTD had defected. In such a circumstance, PF-MLI plasticity
acted as a reserve mechanism, using its limited short-term
memory formation capacity to save the basic motor performance
from impairment. On the other hand, lack of PF-MLI baseline
impaired memory transfer and consolidation, while leaving
short-term memory formation intact. Simulation of the learning
process with different sets of learning and recovery rates asserted
that the early phase of LTD participates in short-term memory
formation and the late phase of LTD is involved in memory
transfer. The possibility of a hierarchical causality in transferring
the acquired short-term memory across the cortical and its
partial consolidation into the nuclear parts of the cerebellum
was investigated by cutting off the connection of flocculus with
the DN during the training. After lesions were made, OKR
gain returned to its pretraining level and MF–DN synaptic
weight failed to further increase, whereas PF–PC synaptic weight
remained intact, indicating disruption of memory transfer and
consequently long-term memory consolidation. The existence of
such a biphasic mechanism, with a first rapid phase of memory
formation in the cerebellar cortex and a slower phase of memory
consolidation in the cerebellar nuclei, is also observed in the
spiking models of the cerebellum (Antonietti et al., 2016, 2017;
Luque et al., 2016). These models showed that the functional

interplay among distributed plasticity sites could facilitate the
slow memory consolidation at the nuclear sites, which is
important for faster and more stable reacquisition of associative
motor tasks. Recently, a distributed spiking model of the
cerebellum is used to predict the impact of different pathological
damages of the cerebellar cortex on the acquisition of eyeblink
conditioning (Geminiani et al., 2018). The pathological cases
consistently indicated that (1) an intact functionality of cerebellar
cortex is needed to accelerate memory transfer to DN; (2) partial
impairment in MF afferents results in an imperfect transmission
of information to the granular layer, which in turn influences the
activity of PCs and compromises learning; and (3) partial damage
in PF-PC LTD does not completely stop learning, but decreases
its velocity.

Taking all the obtained results from lesion scenarios together,
we proposed a conceptual map for procedural motor memory
formation in the cerebellum (Figure 7). Accordingly, the
sequential processes of cerebellar motor learning occur in the
following way. (1) Conjunctive activation of PFs and CF during
training sessions causes short-term memory formation at PF-PC
synapses (main learning site) and to a lesser extent at PF-MLI
synapses (peripheral learning sites). (2) After training, the activity
of DN is modulated to a higher level than before training, since
the inhibition exerted by PCs is weakened by PF-PC LTD and
PF-MLI LTP. (3) This enhanced DN activity resulted in LTP at
MF-DN synapses by a Hebbian-like postsynaptic mechanism.
(4) Meanwhile, PF-PC synapses (along with PF-MLI synapses)
recover from LTD steadily by spontaneous PF-PC LTP, and this
causes a slow decrease in DN activity. Thus, the late phase of
LTD provides enough time to transfer memory from PF-PC to
MF-DN synapse. (5) The recovery from PF-PC LTD and PF-
MLI LTP erases the learned short-term memory, whereas (6)
the slow decrease of DN activity acts to consolidate learning at
MF-DN synapses. When the train-induced PF-PC LTD defects,
PF-MLI plasticity acts as a backup mechanism, using its limited
short-term memory formation capacity to save the basic motor
performance from impairment.

It should be noted that, although long-term synaptic plasticity
has been proposed to be the dominant form of plasticity for
cerebellar motor learning, various types of plastic mechanisms
can occur at multiple synaptic or even non-synaptic sites
of the network that provide supplementary and overlapping
functions (Gao et al., 2012). For instance, there is accumulating
evidence supporting the involvement of short-term and intrinsic
plasticity in motor learning and memory formation (Hirano,
2018; Shim et al., 2018). However, the exact functionality of such
phenomena remains to be shown. Furthermore, the transient
nature of the short-term plasticity and the non-synaptic (non-
local) character of the intrinsic plasticity make the tracking
of their effects harder. Therefore, analyzing the steady-state
behavior of the system, we ignore the short-term plasticity and
mainly focus on the effect of long-term synaptic changes on
cerebellar learning. We also implicitly take into account the role
of the intrinsic plasticity in determining the optimum working
frequency and basal intrinsic excitability of PCs by modifying
the corresponding baseline values of synaptic weights in the
lesion conditions.
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The selected modeling strategy has a great ability in
displaying the equilibrium behavior of the system, even
in the post training period. However, this simplified
model, working with analog variables representing the
average firing rates of the different neuronal populations,
encounters limitations in showing the spatiotemporal
evolution of spike patterns of the principal neurons and the
diversity of delays imposed by the interneurons. Equipping
the model with the spike-timing-dependent plasticity
(STDP) mechanisms allows us to match learning with the
network temporal dynamic and to simulate more complex
phase-varying tasks.

In future work, the impact of different learning paradigms
on the efficacy of learning can be evaluated. Also, to gain
further insight into the cellular and molecular bases of motor
learning, it is necessary to extend the compartments of
the model to mimic the non-linear behavior of cerebellar
network more precisely. In this study, we considered
gain adaptation of OKR as a representative of cerebellar
learning. Certainly, the study of model behavior in the

implementation of other cerebellar-dependent tasks can
help to uncover more features of motor learning in
the cerebellum.

Altogether, the proposed model, taking the efficacy of
neurotransmission among different layers of the cerebellum
into account implicitly, provides a computational basis toward
evaluating multiple synaptic plasticity in cerebellar learning
and memory.
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