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Abstract
In cystic fibrosis, statistical models have been more successful in predicting mortality than

the time course of clinical status. We develop a system of partial differential equations that

simultaneously track mortality and patient status, with all model parameters estimated from

the extensive and carefully maintained database from the Cystic Fibrosis Foundation. Cys-

tic fibrosis is an autosomal recessive disease that leads to loss of lung function, most com-

monly assessed using the Forced Expiratory Volume in 1 second (FEV1%). This loss

results from inflammation secondary to chronic bacterial infections, particularly Pseudomo-
nas aeruginosa, methicillin-sensitive Staphylococcus aureus (MSSA) and members of the

virulent Burkholderia complex. The model tracks FEV1% and carriage of these three bacte-

ria over the course of a patient’s life. Analysis of patient state changes from year to year

reveals four feedback loops: a damaging positive feedback loop between P. aeruginosa car-
riage and lower FEV1%, negative feedback loops between P. aeruginosa and MSSA and

between P. aeruginosa and Burkholderia, and a protective positive feedback loop between

MSSA carriage and higher FEV1%. The partial differential equations built from this data

analysis accurately capture the life-long progression of the disease, quantify the key role of

high annual FEV1% variability in reducing survivorship, the relative unimportance of short-

term bacterial interactions for long-term survival, and the potential benefits of eradicating

the most harmful bacteria.

Introduction
In some diseases, patient status can be usefully characterized by a single measurement that
serves as a powerful predictor of mortality. Examples include prostate specific antigen (PSA)
[1], MELD scores in liver transplantation [2], the Glomerular Filtration Rate in the kidney [3],
and CD4 T cell counts in HIV [4]. Accurate mathematical models must capture a joint process
of longitudinal change in this measurement and mortality [5], potentially coupled to transi-
tions between discrete patient states, such as the acquisition or loss of a pathogen. Statistical
methods for addressing this challenge have focused on identifying the key covariates linked to
rapid decline or death, and correcting for patient differences as random effects [6–8].

PLOSONE | DOI:10.1371/journal.pone.0156752 June 1, 2016 1 / 17

a11111

OPEN ACCESS

Citation: Adler FR, Liou TG (2016) The Dynamics of
Disease Progression in Cystic Fibrosis. PLoS ONE
11(6): e0156752. doi:10.1371/journal.pone.0156752

Editor: Abdelwahab Omri, Laurentian, CANADA

Received: January 21, 2016

Accepted: May 19, 2016

Published: June 1, 2016

Copyright: © 2016 Adler, Liou. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Data is available upon
request through the CFF Patient Registry
Comparative Effectiveness Research Committee.
You can contact the committee at datarequests@cff.
org. Restrictions on access to data are to ensure
patient privacy for all persons in the CFF Patient
Registry.

Funding: This work was supported by 21st Century
Science Initiative Grant, James S. McDonnell
Foundation (https://www.jsmf.org/) (to F.R.A.). This
work was also supported by Cystic Fibrosis
Foundation, LIOU14P0 (https://www.cff.org/); Ben B.
and Iris M. Margolis Family Foundation of Utah; and
National Institutes of Health, R01HL125520 (www.nih.
gov) (to T.G.L.). The funders had no role in study

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0156752&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://www.jsmf.org/
https://www.cff.org/
http://www.nih.gov
http://www.nih.gov


We here develop a mathematical model for these joint dynamics (see related work on PSA
with a Chapman-Kolmogorov equation [1, 9] or as a stochastic differential equation [10]). This
approach provides two main benefits. First, model parameters can be estimated directly from
existing longitudinal data, and the key relationships displayed graphically. Second, these mod-
els can be efficiently solved to study the population-level impacts of changes in parameter val-
ues, structural assumptions, and treatment.

Cystic fibrosis is an autosomal recessive disease characterized by a loss of lung function, typi-
cally measured by the Forced Expiratory Volume in 1 second (FEV1) as corrected to a percent
of normal values, based on age, height, gender, race and ethnicity (FEV1%). Declines in FEV1%
are due largely to the interaction between chronic bacterial infections and the inflammatory
immune response evoked to combat them [11]. Although many microbes infect the CF lung
[12], three bacteria have long been recognized as important. Pseudomonas aeruginosa is an
opportunistic, highly prevalent gram-negative bacterium that associates strongly with acute
exacerbations in CF patients [13], reduces the diversity of the CF lung microbiome [12, 14, 15],
and is a primary target of treatment [16]. Methicillin-sensitive Staphylococcus aureus (MSSA) is
an opportunistic, highly prevalent gram-positive bacterium with evidence of positive effects on
survivorship [17], thought to be due in part to its strong negative association with P. aeruginosa
[16, 18, 19]. The Burkholderia complex consists of a much less prevalent but often deadly set of
gram-negative bacteria that infect few humans other than those with cystic fibrosis [20, 21].

Although FEV1% is a powerful predictor of mortality, predicting its own temporal dynamics
has proven difficult [17]. Several models have addressed the problem of jointly modeling FEV1%
change and survival, using statistical methods that indicate that rapid FEV1% decline has predic-
tive power for survival not captured by FEV1% itself [22, 23]. Other studies have identified
covariates associated with more rapid decline, including carriage of P. aeruginosa, MSSA and Bur-
kholderia [8, 23–27], although the specific covariates identified differ among studies [28]. In turn,
low FEV1% has been shown to predict an increased rate of acquisition of P. aeruginosa [29].

Our goals is to build a model of how patients change over their entire lives with parameters
estimated from annual changes in patient status as recorded in the extensive and carefully
maintained Cystic Fibrosis Foundation Patient Registry (CFFPR) [30, 31]. Because our data
only record positive or negative cultures for the three bacterial infections, we refer to a change
from a positive test in one year to a negative test in the next as “loss”, and a change from a nega-
tive test in one year to a positive test in the next as “acquisition,” although many of the
observed changes do not describe permanent clearance or establishment of chronic infection.

We organize the presentation around two sets of predictions. The first set addresses the
annual changes in patient status estimated from CFFPR data.

S1: Patients with lower FEV1% will have lower survivorship,

S2: Patients with lower FEV1% will be more likely to acquire P. aeruginosa and Burkholderia,
and less likely to acquire MSSA,

S3: Patients with lower FEV1% will be less likely to lose P. aeruginosa and Burkholderia and
more likely to lose MSSA,

S4: Patients with P. aeruginosa or Burkholderia will have higher mortality at any given FEV1%
and a greater average annual reduction in FEV1%,

S5: All bacteria will have negative interactions, so that patients carrying any particular one will
be less likely to acquire, and more likely to lose, either of the others.

The second set addresses the lifelong course of disease as predicted by the mathematical
model (H1–H4).
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H1: The model can accurately capture the dynamics of survivorship and FEV1% over the entire
lifetime of patients without adjusting any free parameters,

H2: High variance in year-to-year values of FEV1% in individual patients is an important fac-
tor in reducing survivorship,

H3: Elimination of P. aeruginosa and Burkholderia will lead to significant improvement in sur-
vivorship and FEV1%, and elimination of MSSA will have the opposite effect,

H4: Removing the interaction between P. aeruginosa and MSSA will predict poorer outcomes
by removing the protective effects of MSSA [17, 32].

Clarifying alternative hypotheses for the mechanism by which MSSA provides protection is
one of our central goals. At one extreme, MSSA carriage could be merely a marker of better
patient status. Alternatively, it could be protective solely through its antagonistic relationship
with P. aeruginosa, thus preserving FEV1% and improving survival. At the other extreme,
MSSA could have protective effects beyond those created by its antagonism with P. aeruginosa.

Methods
Our data come from the CFFPR, which includes longitudinal information on patients from
117 certified cystic fibrosis centers in the United States during the period from 1986 through
2011 [30, 31]. Patients are evaluated for lung function (including FEV1), microbiology (includ-
ing for P. aeruginosa, MSSA, and Burkholderia) and other clinical parameters during regular
clinic visits and as needed during exacerbations, with a target of four measurements per year.
FEV1 is difficult to measure in patients younger than 6 years of age, thus these patients are not
included in this study. Microbiology is determined by bacterial culturing. Carriage of P. aerugi-
nosa, MSSA, and Burkholderia is recorded based on at least one positive culture during a year.
Prior to 2003, CF centers recorded an annualized result for each organism that indicated at
least one positive culture during the year. Since 2003, multiple results are recorded, and we
annualized these data in the same way to reflect if any culture in a year was positive. Measure-
ments are not evenly spaced, but we treat each interval as being a single year, and include for
analysis all pairs of consecutive years with data.

Due to the large changes in FEV1% associated with transplant, patients with a transplant in
the current or subsequent year are excluded. Because survivorship models for patients differ
greatly after transplant [33], we also exclude this set of patients from the current analysis. As
this is an analysis of annual transitions, we do not introduce a bias by censoring patients at
transplant, but may introduce biases by excluding some of the sickest patients from inclusion.

The main models use data from 1996–2011 to represent the current treatment era, with ear-
lier data from 1986–1995 creating a comparison group. Raw FEV1 measurements were nor-
malized to percent predicted FEV1 (FEV1%) [34]. We use the maximum value in each year as
the most consistently reproducible value, which also matches the pattern in the early years of
the CFFPR of reporting the best FEV1 in a year when reporting by centers was done on only an
annual basis. Lower values, often measured during an acute exacerbation, vary widely depend-
ing on severity and stage of each exacerbation and are not easily reproduced [17]. To test for
robustness, we repeated the analyses using the mean FEV1% in each year. Of the patient years
included in our analysis, 31.8% have a single measurement, 14.9% have two measurements,
17.6% have three measurements, and 35.7% have four or more measurements.

The models are built from analysis of annual change in FEV1% (ΔFEV1%) and bacterial
carriage, and the probability of death as a function of the current FEV1% and bacterial carriage.
We split the population into eight groups based on carriage of P. aeruginosa, MSSA, and
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Burkholderia. We divide groups that exceed 10,000 data points into 100 equally-sized sub-
groups based on quantiles of FEV1%, and smaller groups into 10 subgroups, with numbers of
patient-years indicated in Table 1).

We use regression (the lm package in R [35]) of transformed outcomes to estimate the coef-
ficients of the models (S1 Table, with those for patients before 1996 in S2 Table). The regres-
sions use the mean FEV1% in the subgroup as the independent variable, and the mean
outcome as the dependent variable. We use model selection to choose whether and how to
transform data for these fits.

The outcomes fall into three categories: mortality, change in FEV1%, and change in bacterial
carriage state.Mortality:We regress the observed mortality in each subgroup (deaths per year)
against FEV1%, increased by the reciprocal of the median number of patients per subgroup to
avoid zeroes. Log transformation of both variables provided the best fit. Change in FEV1%:We
model the mean and variance of annual change in FEV1% with piecewise linear functions with
a break point at FEV1% = 90% for each of the eight bacterial carriage states (slopes designated
with subscripts s and s2 in S1 and S2 Tables). This break point was chosen as the approximate
mean of break points found with piecewise linear regression (package segmented in R),
matching the lower limit of normal for FEV1%. Because few patients with high FEV1% test pos-
itive for Burkholderia, we find a single slope with high FEV1% for the four groups with a posi-
tive test. Bacterial acquisition and loss: The probability of acquisition of each bacterial species,
defined as the fraction changing from a negative to a positive test in one year, varied linearly in
FEV1% without transformation for all three bacteria. The logarithm of the annual probability of
loss of P. aeruginosa and Burkholderia increased linearly in FEV1%, and the untransformed
annual probability of loss of MSSA decreased linearly in the logarithm of FEV1%.

We also derive several lower dimensional models for comparison. The first tracks only
FEV1% without including any of the bacterial infections. A second set of three models tracks
FEV1% in combination with each of the bacteria individually, breaking patients into two rather
then eight bacterial carriage states. The third set examines the effects of bacterial interactions
in two ways. A model with no bacterial interactions estimates the probability of acquisition of
each bacterial species as a function only of FEV1%, without regard to the other two bacteria.
Because of the known importance of the interaction between MSSA and P. aeruginosa, we also
derive a model that excludes only this interaction [12]. In this case, we find the probabilities of
acquisition and loss of MSSA and P. aeruginosa as functions of FEV1% and current carriage of
Burkholderia only.

The estimated change in FEV1% is altered by survivorship bias, with an increase in FEV1%
observed in surviving patients with low FEV1% in the current year. We correct for this bias by
creating a normally distributed population with the observed variance in ΔFEV1% as a

Table 1. Number of patients in different bacterial carriage subgroups in the 1996–2011 CFFPR.

P. aeruginosa MSSA Burkholderia Number of patient-years Number of FEV1% subgroups

0 0 0 29331 100

1 0 0 76670 100

0 1 0 47085 100

1 1 0 54914 100

0 0 1 1855 10

1 0 1 2265 10

0 1 1 1769 10

1 1 1 1670 10

doi:10.1371/journal.pone.0156752.t001

The Dynamics of Disease Progression in Cystic Fibrosis

PLOS ONE | DOI:10.1371/journal.pone.0156752 June 1, 2016 4 / 17



function of current FEV1%. We pool over all bacterial carriage states because they have only a
small effect on this variance. The bias is the increase in the mean of the next FEV1% created by
the death of patients with low FEV1% (Fig 1a), which corrects for the deviation between the
regression model and the data (Fig 1b).

These analyses of annual change in patient state as a function of current state provide the com-
plete set of parameters for our mathematical model. To write as a system of partial differential
equations, we transform to continuous time. An event (death, or acquisition or loss of one of the
bacterial species) that occurs with probability p, corresponds with an annual rate r = −ln(1 − p).

Our equations track the density us(x, t) of patients, where x represents the current FEV1%, t
the time in years, and s the current bacterial carriage state. The distribution of FEV1% values in
the subsequent year conditional on its value in the current year is well-approximated by a nor-
mal distribution (S1 Fig), justifying the use of a diffusion model rather than an integrodifferen-
tial equation [36]. The equations take the form

@us

@t
¼ @

@x
DsðxÞ

@us

@x
� @

@x
vsðxÞus

� dsðxÞus �
X

s0 6¼s

rs!s0us þ
X

s0 6¼s

rs0!sus0
ð1Þ

Fig 1. Correcting for survivorship bias. a. Excess estimated FEV1% in the following year due to mortality
of patients with low current FEV1%. b. Change in FEV1% for all patients pooled estimated without (circles)
and with (stars) correction for survivorship bias, compared with the regression fit.

doi:10.1371/journal.pone.0156752.g001
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where s and s0 represent bacterial carriage states. Ds(x) is the diffusion coefficient (computed as
0.5 times the variance (Fig 2c)), vs(x) is the advection term found from the expected change in
FEV1% (Fig 2b), δs(x) is the death rate (Fig 2a), ρs ! s0(x) is the rate of transition from state s to

state s0 due to pathogen acquisition or loss (Fig 3).
We numerically solve these equations with the ReacTrans package in R [35]. Initial con-

ditions are normal distributions at ages less than 10 matched to the data in each of the eight
possible bacterial carriage states (S2 Fig, S1 Table).

We compare survivorship with Kaplan-Meier curves (the survfit function in R) for both
real patients and model output, and FEV1% and the fraction of patients infected visually using
the supsmu function in R. As a more formal comparison, we compute the likelihood of the
data given the model. Our likelihood incorporates all three model components: survivorship,
FEV1%, and bacterial carriage state. From the model output, we find the probability that a

Fig 2. Annual death rate, annual change in FEV1% (ΔFEV1%), and variance ofΔFEV1% as a function
of current FEV1% and bacterial infection state.Colors indicate the current bacterial status of patients
based on testing for P. aeruginosa, MSSA and Burkholderia (given as PMB in the legend, with 1 and 0
indicating a positive or negative test respectively). Each dot shows the average value for patients broken into
FEV1% bins by quantile for each bacterial status group, and the curves show the untransformed results of
linear regression of log transformed mortality against log FEV1% (a), and piecewise linear fits with a
breakpoint at FEV1% = 90% (b-c).

doi:10.1371/journal.pone.0156752.g002
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patient has a particular age, bacterial carriage state, and FEV1% rounded to the nearest integer.
We sum the natural logs of those probabilities over all patients alive in 2010 with data on
microbiology and FEV1% to find the log likelihood associated with FEV1% and bacterial car-
riage. To avoid repeating patients, we find the log likelihood associated with survivorship from
the start and end date for each patient. We sum the log probability of survivorship until 2011
or of death based on the survival curve computed from the model.

Results
Restricting to pairs of consecutive years for a given patient with sufficient data to compute
FEV1% measurements, complete microbiology, and no prior transplant, the Cystic Fibrosis
Foundation Patient Registry (CFFPR) during the years 1996–2011 includes data on 207,363
annual transitions, representing 28,538 patients with 1 to 15 years of data for each (mean 7.27,
summarized in Table 2). Without missing data, the total number of possible transitions for
these patients during these years is 215,946, giving us 96.0% complete data. Including trans-
plant patients increases the number of annual transitions with complete data to 213,497, or an
increase of less than 3%.

From the years 1986–1995, we have data on 72,473 annual transitions, representing 16,619
patients with 1 to 10 years of data for each (mean 4.36). The total number of possible transi-
tions for these patients during these years is 79,915, giving us 90.7% complete data. Including
transplant patients increases the number of annual transitions with complete data to 73,510, an
increase of 1.4%.

FEV1% shows strong and consistent relationships with one-year survivorship, annual
changes in FEV1%, and bacterial carriage status (Figs 2 and 3 and S1 Table). Low FEV1% is
strongly associated with mortality, particularly in combination with Burkholderia (Fig 2a).
Patients with FEV1% exceeding 90% show a large average decrease, which may be partially
attributable to measurement errors, however the finding is consistent with observations among
patients with normal or high lung function [25]. Variance in future FEV1% is always large,
with a standard deviation of roughly 10% that dominates the typically small average change
(Fig 2c). Patients with no bacteria or with only MSSA show little if any average loss of FEV1%,
while those with P. aeruginosa lose an average of approximately 2% per year, and those with
Burkholderia even more (Fig 2b). Low FEV1% predicts increased acquisition and decreased
loss of P. aeruginosa (Fig 3a and 3b) and Burkholderia (Fig 3c and 3d), and decreased acquisi-
tion and increased loss of MSSA (Fig 3e and 3f).

Interactions between bacteria appear as differences in the elevations of the lines. The highest
rates of acquiring and lowest rates of losing P. aeruginosa occur for patients without Burkhol-
deria Fig 3a and 3b). Similarly, the highest rates of acquiring and lowest rates of losing MSSA
occur in patients without P. aeruginosa Fig 3c and 3d), and the highest rate of acquiring Bur-
kholderia in patients without P. aeruginosa Fig 3e).

These interactions consist of one positive feedback loop between two damaging factors (P.
aeruginosa with low FEV1%), two negative feedback loops between bacteria (P. aeruginosa
with MSSA and P. aeruginosa with Burkholderia), and one positive feedback loop between two
protective factors (MSSA and high FEV1%) (Fig 4).

The numerical solution of Eq 1 accurately predicts the distribution of FEV1% for patients of a
particular age and bacterial carriage state (hypothesis H1, S4 Fig). If the models are based on the
average rather than the maximum annual FEV%, model results also closely track the data (results
not shown). These distributions can be summarized as averages (Fig 5). Using parameter values
from 1986–1995 predicts poorer survivorship, higher levels of P. aeruginosa and lower MSSA,
consistent with data [37, 38], and indicating the lifelong effects of improvements in treatment.

The Dynamics of Disease Progression in Cystic Fibrosis
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We use the model to test hypotheses H2–H4 presented in the introduction. First (H2), the
observed high annual variance in the change in FEV1% contributes strongly to the poor survi-
vorship of the population (Fig 6a). This results from the non-linearity in the mortality curve,
with high variance being more likely to dip patients, even if transiently, into the danger zone of
low FEV1% where death is more likely (S5 Fig). Second (H3), elimination of P. aeruginosa pre-
dicts a significant increase in survivorship, and the additional elimination of Burkholderia pro-
vides a synergistic benefit (Fig 6b). This synergism results from the predicted increase in
Burkholderia when released from competition with P. aeruginosa (S6 Fig). Elimination of
MSSA leads to only a small predicted improvement in survival. Finally, and contrary to our
original hypothesis (H4), removal of bacterial interactions produces essentially no change in
predicted survival (Fig 6c), as does removal of only the interaction between MSSA and P. aeru-
ginosa. This indicates that the main benefits of MSSA might be direct, through its reduction
of loss of FEV1% and mortality, rather than indirect through competition with P. aeruginosa
(S7 Fig).

Fig 3. Annual rates of acquiring or losing P. aeruginosa, MSSA, and Burkholderia as a function of
current FEV1% and bacterial infection state.Colors indicate current infection status, with each panel
including only those consistent with the transition under consideration. As in Fig 2, each dot shows the
measured rate in each set of patients binned into FEV1% groups, and curves fit data as described in the
Methods.

doi:10.1371/journal.pone.0156752.g003
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We also compare survivorship with four lower dimensional models: using only FEV1%,
FEV1% and P. aeruginosa, FEV1% and MSSA, and FEV1% and Burkholderia (parameter val-
ues in S3 Table). These models predict survivorship (Fig 6d) and FEV1% well (S8 Fig).

We use the likelihood to test whether our parameter values, estimated directly from the
data, provide the best fit to the data. Although the baseline parameters are rarely the best, they
are consistently close (Fig 7). In particular, models with lower diffusion and slower loss of
FEV1% provide better fits to the full course of data, likely due to lack of explicit inclusion of
measurement error in the models (see Discussion).

Table 2. Summary of characteristics of patients used in the analysis.

From the 1996–2011 CFFPR

age range number of data points FEV1% P. aeruginosa MSSA Burkholderia

age � 10 40331 101.8 0.389 0.572 0.0140

10 < age � 18 79722 84.2 0.583 0.561 0.0289

18 < age � 25 40991 70.7 0.765 0.449 0.0503

25 < age � 35 28025 60.9 0.814 0.366 0.0579

35 < age 18294 56.5 0.782 0.312 0.0435

From the 1986–1995 CFFPR

age � 10 16228 87.9 0.536 0.338 0.0132

10 < age � 18 28316 69.3 0.706 0.356 0.0396

18 < age � 25 14650 55.3 0.801 0.291 0.0639

25 < age � 35 10146 48.2 0.818 0.244 0.0505

35 < age 3133 44.8 0.794 0.219 0.0361

doi:10.1371/journal.pone.0156752.t002

Fig 4. Significant interactions among state variables. Positive interactions are indicated by solid black
lines and negative interactions by dashed red lines. Except for mortality, all relationships are reciprocal. For
example, carriage of P. aeruginosa leads to reduction of FEV1%, and higher values of FEV1% lead to
reduced carriage of P. aeruginosa.

doi:10.1371/journal.pone.0156752.g004
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Discussion
Starting with summaries of annual changes in pulmonary function, bacterial acquisition, and
bacterial loss from data in the Cystic Fibrosis Foundation Patient Registry (CFFPR), we
develop a system of partial differential equations to predict the course of lung function, bacte-
rial infection and survival in the population of patients with cystic fibrosis in the United States.
The equations follow the distribution of a key measure of lung function, FEV1%, and carriage
of any possible subset of three key bacteria, P. aeruginosa, methicillin-sensitive S. aureus
(MSSA), and members of the Burkholderia complex. We find that FEV1% is highly variable,
with the standard deviation of annual change greatly exceeding the mean annual change. The
data show that carriage of the damaging bacteria P. aeruginosa and Burkholderia complex con-
tribute to more rapid decrease in FEV1% and higher mortality. In turn, lower FEV1% enhances
acquisition of these bacteria, reduces their rate of loss, and increases mortality. MSSA, on the
other hand, reduces annual FEV1% decline and the rate of mortality, while being acquired
most quickly and lost most slowly at high FEV1%.

Fig 5. Predicted and observed survivorship, progression of FEV1%, and prevalence of the three main
infections as functions of patient age. The dots indicate the values in data from 2010, and the red line is
the model based on data from patients before 1996.

doi:10.1371/journal.pone.0156752.g005
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The data suggest that P. aeruginosa and MSSA have a strong antagonistic interaction, with
each reducing the rate of acquisition and increasing the rate of loss of the other. Burkholderia
complex shows a similar antagonism with P. aeruginosa but no significant interaction with
MSSA. We summarize these connections as one damaging positive feedback loop (P. aerugi-
nosa with low FEV1%), two negative feedback loops (P. aeruginosa with MSSA and with Bur-
kholderia), and one protective positive feedback loop (MSSA with high FEV1%) (Fig 4).

Models incorporating these interactions into a system of partial differential equations match
the long-term behavior of the population closely (Fig 5). The models support the hypothesis
that the observed high variance in FEV1% contributes to the overall poor survivorship in the
population (Fig 6a) and that existing models of survival in CF [8, 13, 17] may be improved by
including some measure of variance. Eliminating infection by both P. aeruginosa and Burkhol-
deria predicts improved survivorship and FEV1%, while elimination of MSSA reduces survivor-
ship. Contrary to our original hypothesis, removing the interaction between P. aeruginosa and
MSSA from the model predicts almost no change in the course of disease (Fig 6c).

Fig 6. Survivorship comparing different model assumptions and strategies.We compare the data-
based model with models that a. increase variance by a factor of 5 (High variance) or decrease variance by a
factor of 5 (Low variance), b. eliminate P. aeruginosa, eliminate Burkholderia, or eliminate both P. aeruginosa
and Burkholderia, c. eliminate MSSA, eliminate the interaction of MSSA with P. aeruginosa (No pairwise
interaction), or eliminate all bacterial interactions (No interactions), d. include only the given subset of
variables.

doi:10.1371/journal.pone.0156752.g006
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Statistical and medical studies have identified many other covariates, such as severity of the
CF mutation [40], pancreatic sufficiency, CF related diabetes, weight, number of acute exacer-
bations, and other infections, particularly methicillin-resistant S. aureus, or MRSA, that affect
changes in FEV1% and survivorship [8, 17, 24]. Although FEV1% is a powerful predictor, alter-
native measures of lung function might provide additional information about disease progres-
sion [24]. Emerging pathogens could further complicate the picture by increasing the
dimensionality of the model and the number of potential interactions [41]. We do not include
the considerable diversity within P. aeruginosa [42–44], nor the progression from non-mucoid
to mucoid types that is associated with poor outcomes [18, 26, 45]. Recent evidence indicates
that some members of the Burkholderia complex can also diversify in long-term CF patients
[46, 47]. Where sufficient data are available, we are working to extend the models to include
these factors, including the effects of interventions.

Fig 7. Log likelihood of the data as a function of altered parameter values. The horizontal axis shows
change in the basic value of the given parameter by a multiplicative factor, except for the advection coefficient
in b which is altered by adding the given amount. The vertical axis is the difference in the log likelihood from
the maximum for that parameter. The likelihood associated with the FEV1% is reduced in part by the wiggle
created in FEV1%when the formula for transformation to percent predicted switches from pediatric to adult
[39] (Fig 5b).

doi:10.1371/journal.pone.0156752.g007
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A recent paper uses threshold regression techniques to develop a one-year survival model in
cystic fibrosis [48], with the central innovation being to impose stochastic shocks onto a declin-
ing CF health index, with mortality occurring when shocks drop the health index below a criti-
cal threshold. The model presented here combines stochastic decay to implicitly model shocks
through the highly non-linear probability of death at low FEV1%. We are working to develop a
framework to unify these methods.

Our models treat the population of CF patients as a homogeneous cohort conditional on the
covariates included [24]. Our models absorb other components of this heterogeneity by look-
ing at the dynamics of the population. We treat FEV1% as a sufficient surrogate biomarker to
characterize the stage of the disease without explicitly including age [49], thus assuming that
the future course is independent of the past. Models including age explicitly do show a better
fit to to the progression of MSSA, but with little effect on the overall dynamics (results not
shown). We exclude transplanted patients who have a quite different course of disease and
associated causes of death, but aim to extend the models to include transition to the trans-
planted population and the resulting dynamics within that additional class of patients.

This model does not explicitly include measurement error in FEV1%, which falls in the
range of 4.5–6.3 FEV1% units [23, 50]. Using multiple measurements per year allows us to esti-
mate the error at 5.8%, within this range. Models which correct for this in our estimates of the
variance in the change in FEV1% fit the data well, but require additional correction factors in
the functions for mortality and and bacterial carriage. We are currently developing the meth-
ods to extend the modeling approach to fully incorporate measurement error in FEV1% and
false positives and false negatives in the microbiology. As an additional check, we repeated the
analyses using the mean rather than maximum FEV1%, based on a median of three measure-
ments per year, and found that the conclusions of the original analysis hold up, although the
magnitude of the observed variability in FEV1% is lower.

These models neglect multiyear associations among measurements [23], particularly for
bacterial infections where a positive test is much more likely after two consecutive years with
positive tests than after only one. Study of MRSA indicates that patients with persistent MRSA
show stronger declines of FEV1% than those with transient infections [51] and greater reduc-
tion in survival [52]. Our current methods do not distinguish between transient and established
infections, a close parallel with the clinical situation, and we are developing extensions to cor-
rect for measurement errors in order to be able to clearly define these alternative states.

These models provide a transparent way to summarize data and identify important trends
in disease dynamics, and an efficient modeling framework for predicting the population-level
consequences of potential medical interventions where experiments are impossible. Our key
findings about the importance of variance and the beneficial effects of MSSA point the way
toward a more mechanistic understanding of this complex disease.

Supporting Information
S1 Fig. Smoothed density of FEV1% in the next year. The panels show patients with current
FEV1% within 0.5 of a. 30%, b. 50%, c. 70%, and d. 100%. The dashed vertical red line is the
average of FEV1% in the current year, and the solid vertical green line the average of this
patient cohort in the next year.
(TIFF)

S2 Fig. Distribution of FEV1% for patients entering the database with age less than 10 for
the 8 possible infection states. The states are designated in the titles as in the legend to Fig 3.
(TIFF)

The Dynamics of Disease Progression in Cystic Fibrosis

PLOS ONE | DOI:10.1371/journal.pone.0156752 June 1, 2016 13 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156752.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156752.s002


S3 Fig. Input data for lower dimensional models. The first column shows mortality, variance
in ΔFEV1% and ΔFEV1% for a model that tracks only FEV1%. The next columns present mod-
els that track FEV1% and P. aeruginosa, MSSA, and Burkholderia respectively, including a
panel with acquisition (colored points and curve) or loss (black points and curve) of infection.
(TIFF)

S4 Fig. Distribution of predicted (solid lines) and observed (dashed lines) FEV1% at four
ages for all patients pooled and for those testing positive for each of the three infections.
Distributions are normalized to integrate to the total number of patients in that category.
(TIFF)

S5 Fig. Trajectories predicted by the model with altered variance. Variance is increased by a
factor of 5 (High variance) or decreased by a factor of 5 (Low variance) of a. FEV1%, b. P. aeru-
ginosa, c.MSSA, and d. Burkholderia.
(TIFF)

S6 Fig. Trajectories predicted by the model with P. aeruginosa acquisition eliminated, Bur-
kholderia acquisition eliminated, or when both have been eliminated.
(TIFF)

S7 Fig. Trajectories predicted by the model with MSSA acquisition eliminated, without the
pairwise interaction of MSSA and P. aeruginosa, and without any bacterial interactions.
(TIFF)

S8 Fig. Trajectories predicted by lower dimensional models with just FEV1%, FEV1% and
P. aeruginosa, FEV1% and MSSA, and FEV1% and Burkholderia.
(TIFF)

S1 Table. Coefficients of the full model.
(PDF)

S2 Table. Coefficients of the full model with patients from 1986–1995.
(PDF)

S3 Table. Coefficients of the lower dimensional models.
(PDF)

Acknowledgments
This work was supported by a 21st Century Science Initiative Grant from the James S McDon-
nell Foundation (to F.R.A.), and by research grants from the Cystic Fibrosis Foundation,
LIOU14P0, (Bethesda, MD, USA), the Ben B and Iris MMargolis Family Foundation of Utah
and the NIH/NHLBI, R01HL125520 (to T.G.L.). Opinions expressed in this manuscript by the
authors do not necessarily state or reflect those of the NIH, the NHLBI, or the Margolis or CF
Foundations.

We thank Nathan Moos, Taylor Block, Ann Granchelli for assistance with the data, Chris
Stockmann and Jim Keener for comments on the manuscript. The authors would like to thank
the Cystic Fibrosis Foundation for the use of CF Foundation Patient Registry data to conduct
this study. Additionally, we would like to thank the patients, care providers, and clinic coordi-
nators at CF Centers throughout the United States for their contributions to the CF Foundation
Patient Registry. Four anonymous reviewers provided detailed, challenging and insightful com-
ments that greatly improved the presentation.

The Dynamics of Disease Progression in Cystic Fibrosis

PLOS ONE | DOI:10.1371/journal.pone.0156752 June 1, 2016 14 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156752.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156752.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156752.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156752.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156752.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156752.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156752.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156752.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156752.s011


Author Contributions
Conceived and designed the experiments: FRA TGL. Performed the experiments: FRA. Ana-
lyzed the data: FRA TGL. Contributed reagents/materials/analysis tools: FRA TGL. Wrote the
paper: FRA TGL.

References
1. Dayananda PWA, Kemper JT, ShvartsmanMM. A stochastic model for prostate-specific antigen levels.

Math Biosci. 2004; 190:113–126. doi: 10.1016/j.mbs.2004.04.001 PMID: 15234613

2. Merion RM, Wolfe RA, Dykstra DM, Leichtman AB, Gillespie B, Held PJ. Longitudinal assessment of
mortality risk among candidates for liver transplantation. Liver Transplant. 2003; 9:12–18. doi: 10.1053/
jlts.2003.50009

3. Imai E, Horio M, Yamagata K, Iseki K, Hara S, Ura N, et al. Slower decline of glomerular filtration rate in
the Japanese general population: a longitudinal 10-year follow-up study. Hypertens Res. 2008;
31:433–441. doi: 10.1291/hypres.31.433 PMID: 18497462

4. Madec Y, Japhet C. First passage time problem for a drifted Ornstein–Uhlenbeck process. Math Biosci.
2004; 189:131–140. doi: 10.1016/j.mbs.2004.02.001 PMID: 15094316

5. Tsiatis AA, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Stat Sinica.
2004; 14:809–834.

6. Diggle P, Henderson R, Philipson P. Random-effects models for joint analysis of repeated-measure-
ment and time-to-event outcomes. In: Garrett F, Fitzmaurice MD, Verbeke G, Molenberghs G, editors.
Longitudinal Data Analysis. Chapman & Hall, CRC; 2008. p. 349.

7. Barrett J, Diggle P, Henderson R, Taylor-Robinson D. Joint modelling of repeated measurements and
time-to-event outcomes: flexible model specification and exact likelihood inference. J Roy Stat Soc B.
2014; 67:860–866.

8. Szczesniak RD, McPhail GL, Duan LL, Macaluso M, Amin RS, Clancy JP. A semiparametric approach
to estimate rapid lung function decline in cystic fibrosis. Ann Epidemiol. 2013; 23:771–777. doi: 10.
1016/j.annepidem.2013.08.009 PMID: 24103586

9. Prisman EZ, Gafni A, Finelli A. Testing the evolution process of prostate-specific antigen in early stage
prostate cancer: what is the proper underlying model? Stat Med. 2011; 30:3038–3049. doi: 10.1002/
sim.4329 PMID: 21826698

10. Zhu L, Hsieh F, Li J, Chi E. Modeling subject-specific phase-dependent effects and variations in longitu-
dinal responses via a geometric Brownian motion process. Stat Med. 2011; 30:2435–2450. doi: 10.
1002/sim.4294 PMID: 21751228

11. Chmiel JF, Davis PB. State of the art: why do the lungs of patients with cystic fibrosis become infected
and why can’t they clear the infection? Respir Res. 2003; 4:8–29. doi: 10.1186/1465-9921-4-8 PMID:
14511398

12. Klepac-Ceraj V, Lemon KP, Martin TR, Allgaier M, Kembel SW, Knapp AA, et al. Relationship between
cystic fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and Pseudomonas
aeruginosa. Env Microbiol. 2010; 12:1293–1303. doi: 10.1111/j.1462-2920.2010.02173.x

13. Emerson J, Rosenfeld M, McNamara S, Ramsey B, Gibson RL. Pseudomonas aeruginosa and other
predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol. 2002;
34:91–100. doi: 10.1002/ppul.10127 PMID: 12112774

14. van der Gast CJ, Walker AW, Stressmann FA, Rogers GB, Scott P, Daniels TW, et al. Partitioning core
and satellite taxa from within cystic fibrosis lung bacterial communities. ISME J. 2010; 5:780–791. doi:
10.1038/ismej.2010.175 PMID: 21151003

15. Zhao J, Murray S, LiPuma JJ. Modeling the impact of antibiotic exposure on humanmicrobiota. Scien-
tific Reports. 2014; 4.

16. Flume PA, O’Sullivan BP, Robinson KA, Goss CH, Mogayzel PJ Jr, Willey-Courand DB, et al. Cystic
fibrosis pulmonary guidelines: chronic medications for maintenance of lung health. Am J Crit Care
Respir Med. 2007; 176:957–969. doi: 10.1164/rccm.200705-664OC

17. Liou TG, Adler FR, Cahill BC, FitzSimmons SC, Hibbs JR, Marshall BC. A predictive 5-year survivor-
ship model of cystic fibrosis. Am J Epidemiol. 2001; 153:345–352. doi: 10.1093/aje/153.4.345 PMID:
11207152

18. Levy H, Kalish LA, Cannon CL, García KC, Gerard C, Goldmann D, et al. Predictors of mucoid Pseudo-
monas colonization in cystic fibrosis patients. Pediatr Pulmonol. 2008; 43:463–471. doi: 10.1002/ppul.
20794 PMID: 18361452

The Dynamics of Disease Progression in Cystic Fibrosis

PLOS ONE | DOI:10.1371/journal.pone.0156752 June 1, 2016 15 / 17

http://dx.doi.org/10.1016/j.mbs.2004.04.001
http://www.ncbi.nlm.nih.gov/pubmed/15234613
http://dx.doi.org/10.1053/jlts.2003.50009
http://dx.doi.org/10.1053/jlts.2003.50009
http://dx.doi.org/10.1291/hypres.31.433
http://www.ncbi.nlm.nih.gov/pubmed/18497462
http://dx.doi.org/10.1016/j.mbs.2004.02.001
http://www.ncbi.nlm.nih.gov/pubmed/15094316
http://dx.doi.org/10.1016/j.annepidem.2013.08.009
http://dx.doi.org/10.1016/j.annepidem.2013.08.009
http://www.ncbi.nlm.nih.gov/pubmed/24103586
http://dx.doi.org/10.1002/sim.4329
http://dx.doi.org/10.1002/sim.4329
http://www.ncbi.nlm.nih.gov/pubmed/21826698
http://dx.doi.org/10.1002/sim.4294
http://dx.doi.org/10.1002/sim.4294
http://www.ncbi.nlm.nih.gov/pubmed/21751228
http://dx.doi.org/10.1186/1465-9921-4-8
http://www.ncbi.nlm.nih.gov/pubmed/14511398
http://dx.doi.org/10.1111/j.1462-2920.2010.02173.x
http://dx.doi.org/10.1002/ppul.10127
http://www.ncbi.nlm.nih.gov/pubmed/12112774
http://dx.doi.org/10.1038/ismej.2010.175
http://www.ncbi.nlm.nih.gov/pubmed/21151003
http://dx.doi.org/10.1164/rccm.200705-664OC
http://dx.doi.org/10.1093/aje/153.4.345
http://www.ncbi.nlm.nih.gov/pubmed/11207152
http://dx.doi.org/10.1002/ppul.20794
http://dx.doi.org/10.1002/ppul.20794
http://www.ncbi.nlm.nih.gov/pubmed/18361452


19. Stutman HR, Lieberman JM, Nussbaum E, Marks MI. Antibiotic prophylaxis in infants and young chil-
dren with cystic fibrosis: a randomized controlled trial. J Pediatr. 2002; 140:299–305. doi: 10.1067/mpd.
2002.121930 PMID: 11953726

20. Govan JR, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and
Burkholderia cepacia. Microbiol Rev. 1996; 60:539–574. PMID: 8840786

21. LiPuma JJ, Spilker T, Gill LH, Campbell PW III, Liu L, Mahenthiralingam E. Disproportionate distribution
of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am J Crit Care
Respir Med. 2001; 164:92–96. doi: 10.1164/ajrccm.164.1.2011153

22. Schluchter MD, Konstan MW, Davis PB. Jointly modelling the relationship between survival and pulmo-
nary function in cystic fibrosis patients. Stat Med. 2002; 21:1271–1287. doi: 10.1002/sim.1104 PMID:
12111878

23. Taylor-Robinson D, Whitehead M, Diderichsen F, Olesen HV, Pressler T, Smyth RL, et al. Understand-
ing the natural progression in %FEV1 decline in patients with cystic fibrosis: a longitudinal study. Tho-
rax. 2012; 67:860–866. doi: 10.1136/thoraxjnl-2011-200953 PMID: 22555277

24. Horsley A, Siddiqui S. Putting lung function and physiology into perspective: cystic fibrosis in adults.
Respirology. 2015; 20:33–45. doi: 10.1111/resp.12382 PMID: 25219816

25. Konstan MW, MorganWJ, Butler SM, Pasta DJ, Craib ML, Silva SJ, et al. Risk factors for rate of decline
in forced expiratory volume in one second in children and adolescents with cystic fibrosis. J Pediatr.
2007; 151:134–139. doi: 10.1016/j.jpeds.2007.03.006 PMID: 17643762

26. Mayer-Hamblett N, Rosenfeld M, Gibson RL, Ramsey BW, Kulasekara HD, Retsch-Bogart GZ, et al.
Pseudomonas aeruginosa in vitro phenotypes distinguish cystic fibrosis infection stages and outcomes.
Am J Crit Care Respir Med. 2014; 190:289–297.

27. Stressmann FA, Rogers GB, van der Gast CJ, Marsh P, Vermeer LS, Carroll MP, et al. Long-term culti-
vation-independent microbial diversity analysis demonstrates that bacterial communities infecting the
adult cystic fibrosis lung show stability and resilience. Thorax. 2012; 67:867–873. doi: 10.1136/
thoraxjnl-2011-200932 PMID: 22707521

28. Zemanick ET, Emerson J, Thompson V, McNamara S, MorganW, Gibson RL, et al. Clinical outcomes
after initial Pseudomonas acquisition in cystic fibrosis. Pediatr Pulmonol. 2014; 13:542–549.

29. Rosenfeld M, Emerson J, McNamara S, Thompson V, Ramsey BW, MorganW, et al. Risk factors for
age at initial Pseudomonas acquisition in the cystic fibrosis EPIC observational cohort. J Cystic Fibro-
sis. 2012; 11:446–453. doi: 10.1016/j.jcf.2012.04.003

30. Cystic Fibrosis Foundation. Cystic Fibrosis Foundation Patient Registry: 2011 Annual Data Report.
Bethesda, Maryland: Cystic Fibrosis Foundation; 2012.

31. Knapp EA, Fink AK, Goss CH, Sewall A, Ostrenga J, Dowd C, et al. The Cystic Fibrosis Foundation
Patient Registry: Design and Methods of a National Observational Disease Registry. Ann Am Thorac
Soc. 2016 (in press). doi: 10.1513/AnnalsATS.201511-781OC PMID: 27078236

32. Ahlgren HG, Benedetti A, Landry JS, Bernier J, Matouk E, Radzioch D, et al. Clinical outcomes associ-
ated with Staphylococcus aureus and Pseudomonas aeruginosa airway infections in adult cystic fibro-
sis patients. BMC Pulmonary Medicine. 2015; 15:67. doi: 10.1186/s12890-015-0062-7 PMID:
26093634

33. Liou TG, Adler FR, Huang D. Use of Lung Transplantation Survival Models to Refine Patient Selection
in Cystic Fibrosis. Am J Crit Care Respir Med. 2005; 171:1053–1059. doi: 10.1164/rccm.200407-
900OC

34. Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general
US population. Am J Crit Care Respir Med. 1999; 159:179–187. doi: 10.1164/ajrccm.159.1.9712108

35. R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria;
2012. Available from: http://www.R-project.org.

36. Holmes EE, Lewis MA, Banks JE, Veit RR. Partial differential equations in ecology: spatial interactions
and population dynamics. Ecol. 1994; 75:17–29. doi: 10.2307/1939378

37. Razvi S, Quittell L, Sewall A, Quinton H, Marshall B, Saiman L. Respiratory microbiology of patients
with cystic fibrosis in the United States, 1995 to 2005. Chest. 2009; 136:1554–1560. doi: 10.1378/
chest.09-0132 PMID: 19505987

38. Hunter RC, Klepac-Ceraj V, Lorenzi MM, Grotzinger H, Martin TR, Newman DK. Phenazine content in
the cystic fibrosis respiratory tract negatively correlates with lung function and microbial complexity. Am
J Crit Care Respir Med. 2012; 47:738–745.

39. Miller M. FEV1 decline in cystic fibrosis. Thorax. 2013; 68:294–294. doi: 10.1136/thoraxjnl-2012-
202838 PMID: 23192882

The Dynamics of Disease Progression in Cystic Fibrosis

PLOS ONE | DOI:10.1371/journal.pone.0156752 June 1, 2016 16 / 17

http://dx.doi.org/10.1067/mpd.2002.121930
http://dx.doi.org/10.1067/mpd.2002.121930
http://www.ncbi.nlm.nih.gov/pubmed/11953726
http://www.ncbi.nlm.nih.gov/pubmed/8840786
http://dx.doi.org/10.1164/ajrccm.164.1.2011153
http://dx.doi.org/10.1002/sim.1104
http://www.ncbi.nlm.nih.gov/pubmed/12111878
http://dx.doi.org/10.1136/thoraxjnl-2011-200953
http://www.ncbi.nlm.nih.gov/pubmed/22555277
http://dx.doi.org/10.1111/resp.12382
http://www.ncbi.nlm.nih.gov/pubmed/25219816
http://dx.doi.org/10.1016/j.jpeds.2007.03.006
http://www.ncbi.nlm.nih.gov/pubmed/17643762
http://dx.doi.org/10.1136/thoraxjnl-2011-200932
http://dx.doi.org/10.1136/thoraxjnl-2011-200932
http://www.ncbi.nlm.nih.gov/pubmed/22707521
http://dx.doi.org/10.1016/j.jcf.2012.04.003
http://dx.doi.org/10.1513/AnnalsATS.201511-781OC
http://www.ncbi.nlm.nih.gov/pubmed/27078236
http://dx.doi.org/10.1186/s12890-015-0062-7
http://www.ncbi.nlm.nih.gov/pubmed/26093634
http://dx.doi.org/10.1164/rccm.200407-900OC
http://dx.doi.org/10.1164/rccm.200407-900OC
http://dx.doi.org/10.1164/ajrccm.159.1.9712108
http://www.R-project.org
http://dx.doi.org/10.2307/1939378
http://dx.doi.org/10.1378/chest.09-0132
http://dx.doi.org/10.1378/chest.09-0132
http://www.ncbi.nlm.nih.gov/pubmed/19505987
http://dx.doi.org/10.1136/thoraxjnl-2012-202838
http://dx.doi.org/10.1136/thoraxjnl-2012-202838
http://www.ncbi.nlm.nih.gov/pubmed/23192882


40. Cox MJ, Allgaier M, Taylor B, Baek MS, Huang YJ, Daly RA, et al. Airway microbiota and pathogen
abundance in age-stratified cystic fibrosis patients. PLoS ONE. 2010; 5:e11044. doi: 10.1371/journal.
pone.0011044 PMID: 20585638

41. Parkins MD, Floto RA. Emerging bacterial pathogens and changing concepts of bacterial pathogenesis
in cystic fibrosis. J Cystic Fibrosis. 2015; 14:293–304. doi: 10.1016/j.jcf.2015.03.012

42. Aaron SD, Vandemheen KL, Ramotar K, Giesbrecht-Lewis T, Tullis E, Freitag A, et al. Infection with
transmissible strains of Pseudomonas aeruginosa and clinical outcomes in adults with cystic fibrosis. J
AmMed Assoc. 2010; 304:2145–2153. doi: 10.1001/jama.2010.1665

43. Mowat E, Paterson S, Fothergill JL, Wright EA, Ledson MJ, WalshawMJ, et al. Pseudomonas aerugi-
nosa population diversity and turnover in cystic fibrosis chronic infections. Am J Crit Care Respir Med.
2011; 183:1674–1679. doi: 10.1164/rccm.201009-1430OC

44. Ashish A, Paterson S, Mowat E, Fothergill JL, WalshawMJ, Winstanley C. Extensive diversification is a
common feature of Pseudomonas aeruginosa populations during respiratory infections in cystic fibrosis.
J Cystic Fibrosis. 2013; 12:790–793. doi: 10.1016/j.jcf.2013.04.003

45. Marvig RL, Sommer LM, Molin S, Johansen HK. Convergent evolution and adaptation of Pseudomonas
aeruginosawithin patients with cystic fibrosis. Nature Genetics. 2015; 47:57–64. doi: 10.1038/ng.3148
PMID: 25401299

46. Traverse CC, Mayo-Smith LM, Poltak SR, Cooper VS. Tangled bank of experimentally evolved Bur-
kholderia biofilms reflects selection during chronic infections. Proc Nat Acad Sci. 2013; 110:E250–
E259. doi: 10.1073/pnas.1207025110 PMID: 23271804

47. Lieberman TD, Flett KB, Yelin I, Martin TR, McAdam AJ, Priebe GP, et al. Genetic variation of a bacte-
rial pathogen within individuals with cystic fibrosis provides a record of selective pressures. Nature
Genetics. 2014; 46:82–87. doi: 10.1038/ng.2848 PMID: 24316980

48. Aaron SD, Stephenson AL, Cameron DW,Whitmore GA. A statistical model to predict one-year risk of
death in patients with cystic fibrosis. J Clin Epid. 2015; 68:1336–1345. doi: 10.1016/j.jclinepi.2014.12.
010

49. Konstan MW,Wagener JS, VanDevanter DR. Characterizing aggressiveness and predicting future
progression of CF lung disease. J Cystic Fibrosis. 2009; 8:S15–S19. doi: 10.1016/S1569-1993(09)
60006-0

50. Stanbrook MB, Corey M, Tullis DE. The repeatability of forced expiratory volumemeasurements in
adults with cystic fibrosis. Chest. 2004; 125:150–155. doi: 10.1378/chest.125.1.150 PMID: 14718434

51. Dasenbrook EC, Merlo CA, Diener-West M, Lechtzin N, Boyle MP. Persistent methicillin-resistant
Staphylococcus aureus and rate of FEV1 decline in cystic fibrosis. Am J Crit Care Respir Med. 2008;
178:814–821. doi: 10.1164/rccm.200802-327OC

52. Dasenbrook EC, CheckleyW, Merlo CA, Konstan MW, Lechtzin N, Boyle MP. Association between
respiratory tract methicillin-resistant Staphylococcus aureus and survival in cystic fibrosis. J AmMed
Assoc. 2010; 303:2386–2392. doi: 10.1001/jama.2010.791

The Dynamics of Disease Progression in Cystic Fibrosis

PLOS ONE | DOI:10.1371/journal.pone.0156752 June 1, 2016 17 / 17

http://dx.doi.org/10.1371/journal.pone.0011044
http://dx.doi.org/10.1371/journal.pone.0011044
http://www.ncbi.nlm.nih.gov/pubmed/20585638
http://dx.doi.org/10.1016/j.jcf.2015.03.012
http://dx.doi.org/10.1001/jama.2010.1665
http://dx.doi.org/10.1164/rccm.201009-1430OC
http://dx.doi.org/10.1016/j.jcf.2013.04.003
http://dx.doi.org/10.1038/ng.3148
http://www.ncbi.nlm.nih.gov/pubmed/25401299
http://dx.doi.org/10.1073/pnas.1207025110
http://www.ncbi.nlm.nih.gov/pubmed/23271804
http://dx.doi.org/10.1038/ng.2848
http://www.ncbi.nlm.nih.gov/pubmed/24316980
http://dx.doi.org/10.1016/j.jclinepi.2014.12.010
http://dx.doi.org/10.1016/j.jclinepi.2014.12.010
http://dx.doi.org/10.1016/S1569-1993(09)60006-0
http://dx.doi.org/10.1016/S1569-1993(09)60006-0
http://dx.doi.org/10.1378/chest.125.1.150
http://www.ncbi.nlm.nih.gov/pubmed/14718434
http://dx.doi.org/10.1164/rccm.200802-327OC
http://dx.doi.org/10.1001/jama.2010.791

