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Abstract: A gas nanosensor is an instrument that converts the information of an unknown gas
(species, concentration, etc.) into other signals (for example, an electrical signal) according to
certain principles, combining detection principles, material science, and processing technology.
As an effective application for detecting a large number of dangerous gases, gas nanosensors have
attracted extensive interest. However, their development and application are restricted because
of issues such as a low response, poor selectivity, and high operation temperature, etc. To tackle
these issues, various measures have been studied and will be introduced in this review, mainly
including controlling the nanostructure, doping with 2D nanomaterials, decorating with noble metal
nanoparticles, and forming the heterojunction. In every section, recent advances and typical research,
as well mechanisms, will also be demonstrated.
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1. Introduction

In our life, we have contact with various harmful and flammable gases, some of which cause air
pollution and affect our physical health. Based on the requirement for detecting these gases effectively,
gas sensors have attracted much research interest due to their advantages, including their low cost,
compact structure, long lifespan, and simple circuit [1–3]. Furthermore, the metal oxide semiconductor
(MOS) gas sensor, one resistive type sensor, has become a hotspot in the field of gas sensors.

To estimate the performances of gas sensors, some parameters have been proposed,
mainly including response, operation temperature, detection limit, response/recovery time, and
selectivity [4,5]. Response cannot be measured directly, but can be calculated by two parameters—Ra

and Rg, where Ra is the resistance while exposed to air and Rg is the resistance while exposed to
aimed gas. Because the change trend of resistance is related to the type of semiconductor and aimed
gas, the method of calculation is distinct. The conductivity of the n-type semiconductor increases
when in contact with reducing gas; yet the conductivity of the p-type semiconductor increases in an
oxidizing atmosphere. Therefore, for the n-type semiconductor, the response is Rg/Ra in oxidizing gas
and Ra/Rg in reducing gas; for the p-type semiconductor, the condition is the opposite (as shown in
Table 1). Obviously, response illustrates the changing extent of sensitive materials and further denotes
the sensitivity of sensors to a certain gas. Selectivity demonstrates if the specific recognition of one
certain gas can be achieved by gas sensors. The operation temperature is the temperature at which
sensors obtain an optimal response and generally, the response will increase first and decrease next
with the increasing of the temperature. Apart from these parameters, other indices are also defined to
indicate the gas sensing properties of sensors. The detection limit refers to the lowest concentration of
aimed gas that sensors can respond to, which determines the application field of gas sensors. Response
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time is the period from when aimed gas is injected to when the resistance reaches a stable value in
aimed gas; so, recovery time is the period from when aimed gas is removed to when the resistance
reaches a stable value in air. These parameters determine the application of gas sensors.

Table 1. Response of gas sensors in different conditions.

Type of Sensitive Material Type of Aimed Gas Response(S)

n-type oxidizing Rg/Ra
reducing Ra/Rg

p-type oxidizing Ra/Rg
reducing Rg/Ra

To a great degree, these indices are related to sensitive materials that play a vital role in gas
sensors and even can be seen as their core. Therefore, to tackle the disadvantages of gas sensors, such
as their low response, poor selectivity, high operation temperature, and long response/recovery time,
approaches to more sensitive material have been studied widely over a long period in the past. With
more research about material, it has been found that nanomaterial (at least one dimension is in the
nanoscale, i.e., the range of 1 ∼ 100 nm) is a more suitable candidate than traditional material for gas
sensing because its unique properties (such as its optical property, electrical property, thermal property,
magnetic property, mechanical property, etc.) resulted from specific effects, for example, the quantum
confinement effect, surface effect, macroscopic quantum tunneling effect, and small size effect [6]. For
gas sensing properties, nanostructure and morphology, denoting the combination and arrangement of
basic units (electrons, ions, atoms, or molecules, etc.) that make up nanomaterials, are effective. As
more investigations have continued, it has been found that a regular and ordered nanostructure and
morphology, decorating or doping with other materials, and forming a heterojunction could exert
additional influences on materials and further improve their gas sensing properties, which will be
introduced in the following sections.

2. Controlling the Type and Morphology of Nanostructures

2.1. The Type and Morphology of Nanostructures

2.1.1. The Type of Nanostructures

Generally, according to the number of dimensions in the nanoscale, nanostructures can be
classified as one of three kinds: zero-dimensional structure (0D structure), one-dimensional structure
(1D structure), and two-dimensional structure (2D structure). Besides, composite structures constructed
by one or more low dimensional structures are also known as a three-dimensional structure
(3D structure). The classification of nanostructures and corresponding typical morphology are shown
in Table 2.

Table 2. The classification of nanostructures and typical morphology.

The Character of Structure Typical Morphology

0D structure three dimensions are in the nanoscale Nanoparticle [7], quantum dot [8], nanocluster [9]

1D structure two dimensions are in the nanoscale Nanowire [10], nanofiber [11], nanorod [12],
nanotube [13,14]

2D structure one dimension is in the nanoscale Nanosheet [15], nanobelt [16], superlattice [17]

3D structure assembled by one kind or more low
dimensional materials Nanoflowers [18]

The type of nanostructure has a significant influence on the properties of nanomaterials. In other
words, the same nanomaterials with different nanostructures may exhibit distinct properties and
be suitable for different applications. For example, Ma et al. [19] fabricated ZnO nanorods by
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the hydrothermal method without any catalyst and obtained ZnO nanoflowers composed of their
as-prepared nanorods. After a series of tests, they found that nanorods showed the potential of an
excellent photocatalyst for decomposing methyl orange; however, nanoflowers exhibited a preferable
gas sensing performance. Recently, Wei et al. [20] synthesized WO3 nanorods, WO3 nanospheres, and
WO3 nanoflowers by employing different reagents and hydrothermal times at the temperature of
180 ◦C. Additionally, the test results of C2H2 sensing properties indicated that the three examples all
exhibited a good linear relationship between the response and the concentration of C2H2. Moreover,
for exposure to 200 ppm C2H2 at 275 ◦C, the response/recovery time of the nanoflowers was the
shortest, and their response was about 15, which was twice that of the nanorods and 1.5 times that of
the nanospheres.

2.1.2. The Morphology of Nanostructures

In general, various methods for synthesizing nanomaterials can be grouped into three major
categories: solid phase method, vapor phase method, and liquid phase method, according to the
state of reactants, as shown in Table 3. Compared to other preparation methods, the liquid phase
method has been studied widely because of its moderate reaction condition and good products with
less defects and a better orientation. Therefore, in the next paragraphs, nanomaterials prepared in
solvent condition will be discussed.

Table 3. The type and characters of preparation methods of nanomaterials.

Method Advantages Disadvantages Examples

solid phase method simple synthesis process,
high yield, less pollution

uneven distribution of
particle size, high

agglomeration

ball milling method [21], shear
milling method [22]

vapor phase
method

high purity powder,
small particle size, less

agglomeration

high cost, high requirements
for instruments

molecular beam epitaxy [23],
cathode sputtering [24]

liquid phase
method

simple synthesis process,
controllable particle size

low distribution,
low uniformity

sol-gel method [25],
micro-emulsion method [26],
hydrothermal method [27]

The morphology is related to the formation of nanocrystals. In fact, the crystal formation process
can be seen as the process of the solute precipitating out of the solution, of which there are three main
steps: (1) Nucleation. For a certain solvent, any substance has a corresponding solubility, and when
the solution is supersaturated, the solute can precipitate, forming crystal nuclei; (2) Growth. After
nuclei form, they aggregate together and the degree of supersaturation becomes lower to allow nuclei
formation again, and a balance is reached. Obviously, in this period, a shorter nucleation time leads
to a more uniform grain size; (3) Ripening. Ostwald ripening is the period in which larger particles
continue to grow, while the smaller particles become smaller and eventually dissolve, which does
not happen until reactants are depleted as the reaction goes on. The concentration of solution and
hydrothermal time are also important factors [28,29].

In the process, nucleation and growth should be separated to manufacture quantities of nanograins
with a uniform size and good morphology, which can be accomplished by using high-reactivity
reagents that are difficult to prepare and store. Due to the small size of nanomaterials, there are a large
number of suspended and unsaturated chemical bonds on their surface and they are in a high-energy
state, thus it is difficult to control their morphology and size [30]. On the contrary, preparing a
“passivation layer” on the surface of the nucleated nanograin can satisfy this requirement in a moderate
condition, which can be accomplished by surfactants. First of all, surfactants can aggregate orderly
to form an aggregation such as a microemulsion, lipsomes, like a “micro-reactor”, which indicates
that they act as soft templates. Besides, at the early stage of the crystal formation process, surfactant
molecules adsorbing on the crystal surface effectively prevent the agglomeration phenomenon and
make nanomaterials more stable. Moreover, due to the different binding force between the surfactant
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molecules and different crystal surfaces, the former will accumulate on a specific crystal surface, which
will slow down the growth rate of this crystal surface and thus play a role in guiding the direction
of accumulation.

For example, Zou et al. [31] prepared three kinds of group samples by adding PVP (sample 1), PEG
(sample 2), and no surfactant (sample 3), respectively, into Fe2(MoO4)3 to detect ethanol. By choosing
varied surfactants, a wide difference in the morphology and structure was generated among these
samples—sample 1 consisted of uniform spherical nanoparticles, sample 2 was assembled by templates,
and sample 3 was not regular and orderly, as shown in Figure 1. It can be seen that the surfactant is
vital in the formation process of nanomaterials, and its dosage and species influence the results.
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Recently, Ren et al. [32] have reported an ordered mesoporous Fe doped NiO (Figure 2) based
ethanol gas sensor with a high response, good selectivity, and short response/recovery time resulting
from an excellent morphology and structure. In their study, polystyrene-b-poly was used to direct the
growth of NiO and finally as-prepared NiO had a special dual mesoporous, high surface, as well as an
interconnected crystalline structure.Sensors 2019, 19, x 5 of 25 
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2.2.1. Nanorod

The high surface-to-volume ratio and effective transformation of the chemical species on the
surface [33] prove that 1D materials are suitable candidates for gas sensing materials, of which
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the nanorod is a typical example. For example, Dewyani and co-workers [34] used a simple
co-precipitation/digestion method to synthesize Co3O4 nanorods exhibiting excellent CO sensing
properties. Especially, the response time was as short as ~3–4 s and the recovery time was ~5–6 s; the
operation temperature was comparatively low at 250 ◦C. Their nanorods demonstrated prominent
potential as CO sensors.

Generally, the growth of nanorods in the form of arrays needs a platform provided by the substrate
that can be made from various materials. For instance, Narayanan et al. [35] reported an H2 sensor
prepared by ZnO nanorods grown from the ZnO seed layer on microslide glass substrates [36] via a
hydrothermal method. When exposed to 100 ppm H2, the sensor had a low operation temperature
of 200 ◦C and the response was found to be 0.7484. As shown in Figure 3, Oh et al. [37] successfully
fabricated vertically aligned ZnO nanorod arrays (the average diameter and length were 50 ppm
and 500 ppm, respectively) based electrochemical gas sensors. Their sensors could be obtained by
introducing the 20 kHz ultrasonic waves with a density of 39.5 W/cm2 into the mixed solution
(including 0.1 M zinc nitrate hexahydrate and 0.01 M hexamethylenetetramine), into which the
substrate was immerged; the substrate was made from Al2O3 on which the Pt electrode was deposited,
immediately followed by the deposition of a Zn thin film. As a result, at a relatively low operation
of 250 ◦C, the response was up to 824% when exposed to 100 ppb NO2, the detection concentration
limit was as low as 10 ppb and the response was faster than previous NO2 gas sensors, which was
attributed to the well-aligned arrangement and high areal density in their opinion.Sensors 2019, 19, x 6 of 25 
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However, some researchers have also proposed the substrate-free method. Long et al. [38] realized
the synthesis of WO3 nanorod arrays under a simple hydrothermal condition without any substrate.
Moreover, a series of measurements demonstrated that their nanorods have a good potential in NH3

sensing. The response can reach 8.3 while exposed to 50 ppm NH3 at 200 ◦C.

2.2.2. Nanosheet

Due to abundant active sites and strong interconnections, nanosheets have more electron transfer
channels, which can improve the reaction ratio between the materials and aimed gas [39]. However,
researchers often use nanosheets to assemble other nanostructures or modify them.

Li et al. [40] synthesized hollow dodecahedrons built by Co3O4 nanosheets via a controllable
two step self-templated process. Their sensitive materials not only had a good morphology, but were
also suitable for being modified easily and uniformly. Furthermore, their experiments suggested
that the optimal operation temperature was 100 ◦C for trimethylamine; after the modification of
PdO, the detection limit could reach 250 ppb and the response time was as short as 4.5 s. Zhang et
al. [41] prepared ZnO microflowers assembled by nanosheets with the modification of Pd nanoparticles
(as shown in Figure 4), which were applied to fabricate gas sensors exhibiting enhanced selectivity,
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a shorter response/recovery time, and a lower working temperature. Wang et al. [42] achieved the goal
of detecting H2 at room temperature by considerng FeOCl nanosheets decorated with Au nanoparticles
as the sensitive materials.
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2.2.3. Micro-/Nano-Structured Hollow Spheres

Hollow micro-/nano-structured materials have been investigated widely and applied to
photocatalysts [43], the treatment of organic pollutants [44], the purification of plasmid DNA [45],
and supercapacitors [46], etc. due to their advantages of a higher surface-to-volume ratio and shorter
distance of charge transport [47], lower density, and better permeability [48] than solid structured
materials. In this part, micro-/nano-structured hollow spheres will be mainly illustrated as typical
3D curved structures. Currently, hollow spheres can be synthesized by the hard-template method,
soft-template method, sacrificial-template method, and template-free method. However, the first two
technologies are time-consuming, so we will only talk about the latter two.

Han et al. [49] successfully synthesized In2O3 hollow spheres by using Cu2O as sacrificial
templates, exhibiting short response/recovery time toward acetone gas. In their experiments, In2O3

was obtained by calcining In(OH)3, of which In3+ ions were from InCl3 as the indium source and the
OH− ions were the products of the reaction between Cu2O and S2O3

2− ions as the coordinating etchant.
Although the template-assisted method has been widely adopted to fabricate hollow spheres,

the cost of materials used as a template has urged searchers to develop the template-free method.
Recently, Zhai et al. [50] reported an excellent triethylamine gas sensor, the sensitive materials of
which were the WO3 hollow microspheres assembled by nanosheets via only a simple template-free
hydrothermal process, as shown in Figure 5. They found that the sensor had a better response to
triethylamine than other tested gases (the response toward 50 ppm methylbenzene, 50 ppm ethanol,
50 ppm methanol, 50 ppm acetone, 50 ppm ammonia, 50 ppm triethylamine is ∼ 2, ~2, ~2, ~4, ~1 and
~16, respectively). Furthermore, the optimal operation temperature was 220 ◦C and at this temperature,
the sensor had a surprisingly short response time of only 1.5 s and a recovery time of 22 s, far better
than other triethylamine gas sensors. They mainly attributed the prominent sensitive performance to
the many active sites provided by the numerously tiny sized pores, as well as the idea of using acidic
metal oxide (WO3) to detect basic gas (triethylamine).
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nanostructures are attracting wide attention. Wang et al. [51] have fabricated gas sensors with 3D SnO2

nanoflowers assembled by 2D SnO2 nanosheets via a simple one-pot hydrothermal method at 90 ◦C.
In the experiment, SnCl2·2H2O as tin resource was reacted with NaOH and CTAB was also added
into the solution to assist the forming process of the nanostructure. As shown in Figure 6, they found
that the nanostructure was related to the molar ratio OH− to Sn2+—with the molar ration increasing
from 4/1 to 10/1, the thickness of nanosheets descended from 44.7 nm to 6.2 nm; from 4/1 to 8/1, the
beautiful grown nanoflowers could be seen and were varied when changing the molar ratio; when the
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The gas sensing properties were tested in the ethanol ambient at a relatively low temperature of 240 ◦C.
When the concentration of ethanol gas was only 10 ppm, the gas sensor exhibited a considerable
response of 2.8 that increased if the concentration was higher. Besides, the gas sensors showed a
fast response to ethanol gas, including a response time within 25 s and a recovery time within 60 s.
Furthermore, other VOCs were also tested and the results indicated that the gas sensor could satisfy
the practical requirements.Sensors 2019, 19, x 8 of 25 
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Recently, Song et al. [52] reported ZnO nanoflowers (average diameter was 0.9~1 µm) without
other doping or decoration (Figure 7); however their nanomaterials exhibited a good selectivity to
NO2 and a room temperature operation. Their detection limit was low, at 0.5 ppm, and a high
response could be made to 1 ppm under room temperature. Besides, the stability was also fairly good.
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Obviously, the excellent performance is related to the morphology, because uniform flower petals
without aggregation can provide more sites for detecting NO2 molecules. Zhu et al. [53] synthesized
SnO2 nanoflowers assembled by nanosheets (Figure 8). Toward H2 at 350 ◦C, the response was 22 and
the response/recovery time was 10/less 10 s.
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2.2.5. Core-Shell Structure

Since the concept of a core-shell structure was proposed, nanomaterials with this structure
have been widely applied to supercapacitor electrodes [54,55], photodetection [56], ions
batteries [57,58], catalysts [59–61], and sensing [62]. Various nanostructured and various dimensional
core-shell materials have been developed and exhibited satisfying performances in gas sensing,
for example, nanoparticles [63], nanorods [64,65], nanofibers [66], nanobelts [67], nanowires [68],
nanoneedles [69], micro-/nano-spheres [70,71], and nanotubes [72]. Different core/shell material
systems could be formed by combining different materials, such as metal oxide/metal oxide [65],
noble metal/metal oxide [73], metal oxide/noble metal [63], noble metal/noble metal [74], metal
oxide/organics [75,76], and inorganics/metal oxide [77], etc.

It has been demonstrated that the application of a core-shell can further improve gas sensing
compared to a conventional nanostructure. For example, Park et al. [78] synthesized Ga2O3/WO3

core-shell nanostructures composed of nanobelts, nanoparticles, and nanowires through thermal
evaporation Ga2S3 powders followed by thermal evaporation WO3 powders and tested the gas sensing
properties of their sensors. Compared to pristine Ga2O3 nanostructured gas sensors, when ethanol
was the aimed gas, their sensors showed a stronger response, which can be illustrated by the surface
depletion layer method and the potential barrier-controlled carrier-transport method; at the same time,
the total sensing time (that refers to response time adding up to recovery time) was ∼ 50 s faster than
that of pristine sensors and the operation temperature had a reduction of 100 ◦C; in addition, their
sensors had an enhanced selectivity toward ethanol gas. Runa et al. [79] prepared well-performing NO2

gas sensors, of which the sensitive materials were flower-like core-shell nanostructured ZnO/ZnFe2O4

via a two step hydrothermal method under mild reaction conditions. Through the gas sensing test,
they found that their sensors had better performances than pure ZnO sensors toward NO2 gas and
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benefitted from the flower-like core-shell structure and the p-n heterojunction formed at the interface
between ZnO and ZnFe2O4.

For this structure, the thickness of the shell exerts an apparent influence on the gas sensing
properties. Uddin et al. [80] synthesized Pd− core/Pt− shell nanotubes structured materials by a
facile two step hydrothermal process and further investigated the influences of Pt film thickness on
fast response H2 sensing properties. In their experiments, the shell thickness was controlled by various
growth periods and the test results suggested that the optimal Pt coverage thickness is ultimately
∼ 5–10 nm. Under optimal conditions, the working temperature was as low as 150 ◦C.

3. Doping with Two-Dimensional Nanomaterials

In 2004, Geim’s research group prepared graphene that could exist stably, which broke the
previous consensus that two-dimensional materials could not exist independently. With the in-depth
study of the energy band structure and various properties of graphene, two-dimensional materials
represented by graphene have gradually became a research hotspot. In this section, graphene, MoS2,
and black phosphorus will be introduced as examples.

3.1. Graphene

Graphene refers to a single layer of graphite atoms. Its theoretical thickness is only 0.35 nm, and
its light transmittance can reach 97.7%. It is the thinest material known at present, but it is also the
material with the greatest strength known at present. Its plane is composed of six carbon atoms of a
cellular structure, of which each carbon atom is linked together to three other adjacent carbon atoms
by σ bonds and the rest of the electrons not bonded form π bonds, perpendicular to the graphene
surface in order that electrons can move freely, so it has excellent electrical conductivity and its electron
mobility is as high as 250, 000 cm2/(V·s) [81–83]. In addition, graphene with a two-dimensional
structure can be curled into fullerenes with a zero-dimensional structure or carbon nanotubes with
a one-dimensional structure, or it can be stacked into graphite with a three-dimensional structure
to form a complete carbon family (Figure 9) [84]. Due to its excellent properties, graphene and its
ramifications, such as reduced graphene oxide (rGO), have been used for catalysts [85], sensing [86],
supercapacitors [87], lithium batteries [88], and so on. Additionally, recently, rGO has been regarded
as a promising material for modifying MOS to obtain improving gas sensing properties [89–91].Sensors 2019, 19, x 10 of 25 
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Li and his co-workers [92] synthesized a Zn2SnO4(ZTO)/rGO nanocomposite showing better
ethanol sensing properties than bare Zn2SnO4 and investigated the influence of the ratio between
ZTO/rGO. Figure 10 shows the response of four kinds of materials to 100 ppm ethanol, and it
can be seen that although the operation temperature did not reduce, the response had an obvious
improvement, and the best ratio between ZTO/rGO was 8:1 (in the figure, nZTO/rGO means
that ZTO:rGO = n:1). Besides, the mechanism was further explained as follows. First, higher
surface-to-volume and more active sites for gas adsorption were obtained by avoiding the aggregation
phenomenon of ZTO nanoparticles by doping with rGO (as shown in Figure 11). Comparing Figure 11
b and c, it can be clearly seen that doping with rGO prevented the aggregation of ZTO nanoparticles to
a great extent. Furthermore, the interaction between ZTO and rGO generated numerous defects and
vacancies, which also provided more active sites. Additionally, because rGO has a better conductivity,
its introduction can improve the electric properties of ZTO and further facilitate electronic migration.
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3.2. MoS2

Molybdenum disulfide (MoS2), a typical material of transition metal dichalcogenides, is a black
powder with metallic luster and is the main component of molybdenite. Its chemical property is very
stable, thus it is insoluble in organic solvent, water, and dilute acid, but can react with aqua regia, hot
sulfuric acid, and hot nitric acid. Different from the zero band gap of graphene, MoS2 has a wider
band gap [93–95]. Because of specific physical and chemical properties, MoS2 is applied to a number
of fields, such as photoelectrical detecting [96], gas sensing [97], catalysts [98,99], energy storage [100],
lubricant [101], etc.

Figure 12 shows the specific structure of MoS2 [93]. MoS2 consists of vertically stacked layers,
each of which is formed by covalently bonded Mo− S atoms, and each neighboring layer is connected
by relatively weak van der Waals forces. These weak van der Waals interactions allow gas molecules
to infiltrate and diffuse freely between the layers. In this way, the resistance of MoS2 can dramatically
change with the adsorption and diffusion of gas molecules within the layers. Compared to traditional
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semiconductor gas sensing materials, MoS2 has several specific advantages, including a larger
surface-to-volume ratio, higher adsorption efficiency, and more crystal defects, which lead to its
significant position in the field of gas sensing. For example, Luo et al. [102] successfully synthesized
Pt-activated MoS2/TiO2 that can detect hydrogen at 100 °C. Obviously, the excellent gas sensing
properties were related to the heterojunction between MoS2 and TiO2 and the decoration with Pt.
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However, MoS2 is insensitive to gas composed of nonpolar molecules, to which applying noble
metal as a catalyst is an effective approach. Baek et al. [103] have reported a simple method for
fabricating H2 sensors with monolayer MoS2 functionalized by Pd. Sensors were prepared by some
simple steps including dripping MoS2 on SiO2 substrate, the deposition of Pd nanodots on the forming
MoS2 nanosheet, and finally fixing electrodes on the surface. With exposure to 1% H2, the MoS2 sensors
had no reaction. In contrast, the performances, including good repeatability, a short response time of
13.1 min, a short recovery time of 15.3 min, and a low detection limit of 500 ppm, of Pd-functionalized
MoS2 sensors displayed a huge improvement due to the formation of PdHx on the Pd nanodots while
exposed to H2. Besides, MoS2 is apt strongly to oxidizing in air, limiting its application in gas sensing.

3.3. Black Phosphorus

Black phosphorus (BP), the most stable allotrope of phosphorus, was first fabricated by Bridgman
in 1914 [104]. However, there was a long period where BP did not receive much attention until
phosphorene (monolayer phosphorus) was successfully prepared for the first time by mechanical
exfoliation in 2014 [105], which can be regarded as the beginning of its extensive study and application.
Similar to graphite, BP also comprises separate layers bonded to each other by weak van der Waals
forces. The unique anisotropy crystal structure (Figure 13) means that BP has various specific properties
and advantages [106]. In the latter part, the black phosphorus what we talk about only refers to
phosphorene rather than bulk phosphorus.
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BP possesses a moderate and direct band gap bridging the gap between graphene and MoS2.
Besides, its comparatively large carrier mobility (600 ∼ 1000 cm2/(V·s)) and moderate on/off
ratio (103 ∼ 105) bridge the gap between graphene with an extraordinarily high carrier mobility(

103 ∼ 105 cm2/(V·s)
)
, as well as quite small on/off ratio (5 ∼ 44), and TMDs with a low carrier

mobility (10 ∼ 500 cm2/(V·s)), as well as inversely large on/off ratio (104 ∼ 108) [107]. The
value of these electrical parameters above are relevant to layers of BP. Owing to excellent properties
including the optical property, thermal property, mechanical property, biocompatibility, etc. [108],
apart from the electrical property, BP has been broadly applied to FETs [109–111], batteries [112,113],
photodetectors [114], gas sensors [115], protease detection, and inhibitor screening [116].

Two-dimensional materials are quite ideal candidates for gas sensing, thus BP is not an exception
and has even better performances resulting from higher surface-to-volume because of its puckered
crystal structure. For example, Han et al. [117] fabricated TiO2 doped with BP via the sol-gel method.
Through their experiments, they found that 5 mol% was the optimal concentration and an obvious
response could happen at ~116 ◦C, as shown in Figure 14. BP as a dopant could not only provide more
active sites, but also form a heterojunction with TiO2, which facilitated gas sensing properties.
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4. Decorating with Noble Metal Nanoparticles

The term noble metal often refers to eight kinds of metal elements, such as Au, Ag, Ru, Rh, Pd,
Os, Ir, and Pt, most of which have gorgeous luster and a strong chemical stability. Recently, numerous
researches have verified the fact that decoration with noble metal particles facilitates sensors’ sensitive
performances, including a higher response, better selectivity, and shorter response/recovery time,
etc. [118,119].

In this paragraph, ZnO, a typical n-type semiconductor, will be used as an example to illustrate
the working mechanism of this approach. While exposed to air, zinc oxide could adsorb the oxygen
molecules on its surface, and these adsorbed oxygen molecules could then trap free electrons from
the conduction band of ZnO and consequently transform to O2

−, O−, and O2− by ionizing (as shown
in Equations (1)–(4) [120–122]), which caused the formation of the depletion layer on the sensitive
material’s surface, making the conductive channel narrow and the resistance increase.

O2(gas)→O2(ads) (1)

O2(ads)+e—→O2
— (2)

O2
—+e—→2O— (3)

O—+e—→O2— (4)

2CO+O2
—→2CO2+e— (5)

CO+O—→CO2+e— (6)

CO+O2—→CO2+2e— (7)

When reduced gas is diffused, it will be oxidized by oxygen ions on the surface, so the captured
electrons will be released into the conduction band of ZnO (as shown in Equations (5)–(7) [120–122]).
As a result, the thickness of the electron depletion layer of ZnO becomes thinner, the concentration of
free electrons in ZnO increases, and the resistance decreases [123–125].

Generally, two mechanisms can illustrate the role of noble metal in enhancing gas sensing
properties, i.e., chemical sensitization and electronic sensitization: (1) Chemical sensitization [126,127].
Oxygen molecules are prone to adsorbing on noble metal particles, hence these excessive molecules will
further “spill” onto the surface of ZnO, increasing the number of reactive oxygen molecules involved
in the reaction process and at the same time, providing more active sites, as shown in Figure 15 [127];
(2) Electronic sensitization [128–130]. Because zinc oxide has a lower work function than noble metal,
when noble metal particles are decorated on the surface, a portion of free electrons will transfer from
ZnO to those particles so that Schottky junctions will be formed at the contact interface, which can
further decrease the concentration of free electrons in the conduction band of ZnO and deepen the
thickness of the electron depletion layer. Besides, noble metal oxides are a big acceptor of oxygen;
while making contact with reducing gas, they are also reduced to noble metal, which contributes a
bunch of electrons. Also, the modification of noble metals can obviously shift the Fermi level of ZnO
and reduce the required energy for electron transition, as shown in Figure 16 [131].
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Noticeably, different effects will be produced if different kinds of noble metal particles are
employed. Esfandiar et al. [132] reported that TiO2 nanoparticles decorated by Pd and Pt had an
improved sensitivity toward hydrogen than pure TiO2. In their experiment, they first synthesized TiO2

nanoparticles via the sol-gel method, and then used the chemical reduction method to decorate the
hybrid structures with Pd and Pt, and the results of gas sensitivity are shown in Figure 17. From the
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The concentration of noble metal particles loaded on the surface of sensitive materials is also
an important factor, because the sensitivity of the gas sensor is not only related to the chemical
reaction between material and gas, but is also affected by gas transport and utilization. It can be
easily understood that with the continuous increasing of particles, the agglomeration phenomenon
will happen, and a lot of wasted active sites and the too thick layer of noble metal particles will
produce a negative influence on gas transport. Arunkumar et al. [123] prepared a highly selective and
sensitive CO gas sensor by decorating Au nanoparticles on a zinc oxide (ZnO) nanostructure through
the solution impregnation technique. They found that the response was higher with the changing
concentration of Au nanoparticles from 1 wt % to 3 wt % and would decrease if more Au nanoparticles
were applied.

In addition, the synergistic effect means that a bimetallic catalyst is a preferable option. In the
past years, bimetallic catalyst systems which have been frequently investigated are Au-Pt [133–135],
Pt-Pd [136–140], Au-Pd [141,142], Au-Ag [143], etc. Kim et al. [144] have reported an acetone gas sensor
with excellent sensitive performances. They synthesized WO3 nanorods by the thermal evaporation
method, and these nanorods were then submerged into the mixed solution composed of acetone,
HAuCl4, and PdCl2 preceding UV irradiation and annealing. At 300 ◦C, the sensitive properties
of four samples were examined, including pure WO3, Au −WO3, Pd −WO3, and AuPd −WO3

(as shown in Figure 18). From Figure 18, it can be seen that WO3 nanorods after being decorated with
noble metals and the synergistic effect between two kinds of noble metals can obtain a better result.
Although the response and response time were both improved, an obvious change did not occur with
respect to the recovery time.Sensors 2019, 19, x 16 of 25 
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5. Forming the Heterojunction

The heterojunction refers to the contact transition region formed at the interface between two
semiconductors with different band gap widths. As we all know, semiconductors consist of p-type
semiconductors (hole concentration > free electron concentration, such as Cu2O, NiO, VO2) and n-type
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semiconductors (free electron concentration > hole concentration, such as ZnO,Ta2O5). Therefore,
a heterojunction can be classified as a homogeneous heterojunction (n-n heterojunction and p-p
heterojunction) and heteromorphic heterojunction (p-n heterojunction). Heterojunctions may occur in
various structures, such as nanoparticles [145], nanosheets [146], flower-like hollow microspheres [147],
core-shell structured nanofibers [148]/nanorods [149]/nanoneedles [150], etc.

Due to the different chemical parameters and physical parameters, including band structure,
dielectric constant, lattice constant, and electron affinity, etc. of the two materials, the mismatch
phenomenon at the interface endows the heterojunction with a lot of novel properties, which have
been attracting much research on heterogeneous materials and devices. In the past, heterojunctions
have made tremendous contributions to photocatalysts [151–153], solar cells [154], photovoltaic
applications [155], photoelectrochemical applications [156–158], diode devices [159], etc. The unique
properties of a heterojunction also make it an effective and practical candidate for gas sensors.

5.1. n-n Heterojunction

In 2012, Sharma and his colleagues [160] used sensors made from SnO2 film loaded with WO3

micro-discs to detect trace NO2 gas and obtained a good result. Compared to pure SnO2 or SnO2

and WO3 compounds, their sensors had a higher response of 54,000 and lower optimal temperature
of 100 ◦C, as well as a fast response/recovery time of 67 s/17 min. They supposed that the space
charge region caused by n-n heterojunctions played an important role in the enhancement of NO2

sensing properties.

5.2. p-p Heterojunction

Alali et al. [161] synthesized CuO/CuCo2O4 nanotubes via the electrospinning method and a
subsequent heat treatment process. Those nanotubes containing the p-p heterojunction could detect
n-propanol at room temperature and showed a response of 14 and a short response/recovery time of
6.3 s/4.1 s. At the same time, those nanotubes also had a better selectivity toward n-propanol than
other gases and a good stability.

Tai et al. [162] developed an NH3 gas sensor working at room temperature by using the
microstructure silicon arrays that polyaniline nanorods were deposited on. The unique 3D structure
and the formation of p-p heterojunction brought huge advantages in NH3 sensing.

5.3. p-n Heterojunction

Gong and his colleagues [163] reported an ultrasensitive NH3 gas sensor from n-type
semiconductor TiO2 microfibers attached by a p-type polymer polyaniline nanograin for the first
time. According to their test results, the detection limit was as low as 50 ppt in air and under this
condition, a high response could also be obtained. Noticeably, there had never been reports about tens
of parts-per-trillion levels of NH3 gas detection before their work.

Huang et al. [164] demonstrated a special heterojunction, i.e., an n-p-n heterojunction, existing in
the contact region between ZnO film and SnO2 nanorods. In their experiment, their sensitive materials
could be obtained by the preparation of pristine SnO2 nanorod arrays via the plasma-enhanced
CVD method at low temperature and then spin coating in the zinc acetate ethanol solution to form
one ZnO layer on the surface of nanorods. Toward 100 ppm H2—one typical reduced gas, totally
opposite to the n-type sensing response of pristine SnO2 sensors, an abnormal p-type sensing response
occurred in terms of their sensors and the maximum response of 18.4 could be obtained at the
optimal operation temperature of 350 ◦C. However, when other reduced gas, including CO, NH3,
and CH4, was injected, a reverse trend was displayed for the response to H2. Additionally, they
also found that the response type was related to the concentration and the humidity. The formation
of the n− ZnO/p− Zn−O− Sn/n− SnO2 heterojunction together with the unique nanostructure
contributed to the potential application of exclusive H2 sensors.
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6. Conclusions

In this review, four kinds of measures tackling issues restricting the application and performance
of gas nanosensors are mainly introduced, including controlling the nanostructure, doping
with two-dimensional nanomaterials, decorating with noble metal nanoparticles, and forming
the heterojunction.

Generally, a better nanostructure and morphology is very important to gas sensing properties
and can even be regarded as the base of an excellent performance, which can be accomplished by
surfactant. However, additional surfactant leads to the influence of humidity on gas sensing, which is
acceptable. Because the enhancing effect caused by the nanostructure is finite, to further improve the
sensing properties and satisfy more requirements, additional decoration or dope are developed and
combined with an ordered structure and morphology. Compared to other methods, the preparation
process of 2D nanomaterials is harder, the cost is higher, the period is longer, and they are prone to be
oxidized in air, which is difficult to solve, so the other two methods are preferred by researchers due to
their comparatively moderate preparation condition and proven technology. Noble metal has been
employed widely due to its unique performance and plays an important role in gas sensors. Besides,
the high price can be compensated for by their excellent enhancing effect. Due to the distinction of the
performance in different materials, the heterojunction is very wide and its preparation is comparatively
simple and the cost is not too high.

Although many approaches have been put forward, there is still much room for improvement.
In terms of sensing gas, in my opinion, it is most important that materials must be stable in gas because
of its performance or can be improved by some processes. Only in this way can it be practical and
useful. At the same time, large surface-to-volume and not too difficult preparation and so on are also
significant. More materials suitable for gas sensors should be excavated and through these enhancing
approaches, can contribute a lot to gas nanosensors. Additionally, a more reasonable model for the gas
sensing mechanism should also be connected to develop it better.
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