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The intricate interactions between the host cells, bacteria, and immune

components that reside in the female reproductive tract (FRT) are essential in

maintaining reproductive tract homeostasis. Much of our current knowledge

surrounding the FRT microbiota relates to the vaginal microbiota, where

‘health’ has long been associated with low bacterial diversity and Lactobacillus

dominance. This concept has recently been challenged as women can have

a diverse vaginal microbial composition in the absence of symptomatic

disease. The structures of the upper FRT (the endocervix, uterus, Fallopian

tubes, and ovaries) have distinct, lower biomass microbiotas than the vagina;

however, the existence of permanent microbiotas at these sites is disputed.

During homeostasis, a balance exists between the FRT bacteria and the

immune system that maintains immune quiescence. Alterations in the bacteria,

immune system, or local environment may result in perturbances to the FRT

microbiota, defined as dysbiosis. The inflammatory signature of a perturbed

or “dysbiotic” FRT microbiota is characterized by elevated concentrations of

pro-inflammatory cytokines in cervical and vaginal fluid. It appears that vaginal

homeostasis can be disrupted by two di�erentmechanisms: first, a shift toward

increased bacterial diversity can trigger vaginal inflammation, and second,

local immunity is altered in some manner, which disrupts the microbiota in

response to an environmental change. FRT dysbiosis can have negative e�ects

on reproductive health. This review will examine the increasing evidence for

the involvement of the FRT microbiotas and inflammation in gynecologic

conditions such as endometriosis, infertility, and endometrial and ovarian

cancer; however, the precise mechanisms by which bacteria are involved in

these conditions remains speculative at present. While only in their infancy,

the use of antibiotics and probiotics to therapeutically alter the FRTmicrobiota

is being studied and is discussed herein. Our current understanding of the

intimate relationship between immunity and the FRT microbiota is in its early

days, and more research is needed to deepen our mechanistic understanding

of this relationship and to assess how our present knowledge can be harnessed

to assist in diagnosis and treatment of gynecologic conditions.
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Introduction

The female reproductive tract (FRT) contains a complex

ecosystem including host cells, immune components,

microorganisms, and metabolites. The FRT consists of a

series of connected tissues and organs including the vagina,

cervix, uterus, two Fallopian tubes, and two ovaries. These

organs are further sectioned into the upper and lower FRT.

The lower FRT is comprised of the vagina and ectocervix.

The upper FRT refers to the endocervix, uterus, Fallopian

tubes, and ovaries (Figure 1). Epithelial cells act as a barrier

between “outside” and “inside.” The lower FRT has a protective

stratified squamous epithelial barrier. The structures of the

upper FRT are lined by a columnar epithelial monolayer

(1, 2). The reproductive microbiotas lie in close proximity and

oppose the epithelial cells lining the FRT. The human vaginal

microbiota is well-characterized and commonly associated with

Lactobacillus dominance, although evidence of polymicrobial

vaginal microbiotas not associated with any clinical symptoms

challenges the concept of what constitutes a “healthy” or

“normal” vaginal microbiota (3). Conversely, the other

reproductive tract microbiotas including the Fallopian tubes,

ovaries, and endometrium, are not as thoroughly characterized

but have distinct compositions (4–9). Additionally, inter-

individual variation in microbial communities exists and may

be influenced by different factors, such as living habits, ethnicity,

diet, and immunity (10).

FIGURE 1

Anatomy of the female reproductive tract. A visual depiction of the female reproductive tract (FRT), further subdivided into the upper and lower

reproductive tract. The lower reproductive tract consists of the vagina and ectocervix, lined by a stratified squamous epithelium. The endocervix,

lined by a monolayer columnar epithelium, and the uterus, Fallopian tubes and ovaries comprise the upper reproductive tract. Adapted from

“Female Reproductive System Anatomy,” by BioRender.com (2022). Retrieved from https://app.Biorender.com/Biorender-templates.

As a mucosal tissue, the FRT is crucial in the induction and

function of immune responses. Toll-like and nod-like receptors

expressed by cells in the vagina recognize pathogenic microbial

species and mount an immune response to avoid infection

(11). Within the FRT microenvironment, sex hormones (i.e.,

estrogen and progesterone), the vaginal microbiota, and

hormonal contraceptives all communicate with the immune

system (1). Interactions between components of the FRT

microenvironment are important in genital tract homeostasis

and a change in their balance may contribute to various

pathologies, compromising reproductive and gynecological

health. In fact, dysbiosis in the FRT coincides with genital tract

infection, poor pregnancy outcome, and gynecologic cancer

(10). Vaginal dysbiosis is characterized by loss of Lactobacillus

dominance and an increase in microbial diversity that disturbs

eubiosis; the interspecies balance within a host’s microbiota (12).

The FRT is not only home to bacteria but has a distinct

virome [viruses; reviewed in (13, 14)] and mycobiome [fungi;

reviewed in (15)], however the present review will focus solely

on the reproductive tract microbiotas (bacteria). Herein, we aim

to summarize the current literature describing the influence

of the FRT microbiota on inflammation and the consequences

of this inflammatory response. We also explore experimental

therapeutics. Additionally, while much of the existing literature

emphasizes the role of the FRT microbiotas and inflammation

in pregnancy [as reviewed elsewhere in (16, 17)] and sexually

transmitted infections (STIs) [reviewed in (18, 19)], this review
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will mainly focus on how the microbiotas might contribute to

different gynecological conditions via their interaction with the

host immune system.

Composition of the female
reproductive tract microbiotas

The vaginal microbiota

Studies report that the human body hosts around 4 ×

1013 bacteria, encompassing thousands of different bacterial

species, with each site of the body having its own unique

complement of microorganisms and communities: its

microbiota (20). The human microbiome has been shown

to play an important role in health and disease (21, 22).

Much of our knowledge of the FRT microbiota relates to the

vaginal microbiota, the native bacteria found lining the vaginal

epithelial cells that exists in a symbiotic relationship with its

host. The vagina contains ∼1010-1011 bacteria and therefore

has the greatest biomass of any component of the FRT (23). The

bacteria are found within the mucus layer that coats the surface

of the genital tract epithelial cells, which act as the first line of

host defense. These epithelial cells express pattern recognition

receptors (PRRs) capable of identifying microorganisms, and

recruiting inflammatory factors and cells as necessary to ward

off microbial invasion (24, 25), as will be discussed in greater

detail below.

Although the vagina is a mucosal tissue, the microbiota at

this location is very different from that found lining the mucosal

surface of the gut. Gut health is associated with high microbial

diversity and loss of microbiota diversity leads to intestinal

dysbiosis (26), whereas in the vagina an absence of Lactobacillus

dominance (and therefore increased microbial diversity) leads

to dysbiosis (12). Vaginal “health” is associated with low

bacterial diversity, and dominance of Lactobacillus species.

Indeed, several community state types have been reported, the

majority of which are dominated by lactobacilli. At least five

community state types (CST) exist in the vaginal microbiota

of reproductive age women (3, 27). CST-I is dominated

by Lactobacillus crispatus; CST-II by L. gasseri; CST-III by L.

iners; and CST-V by L. jensenii. CST-IV is more polymicrobial,

but can be dominated by anaerobic bacteria, have partial aerobic

bacteria (classified as aerobic vaginitis, AV) or contain a small

proportion of Lactobacillus spp., essentially making CST-IV a

Lactobacillus-deficient vaginal microbiota (28). Various studies

have demonstrated the human vaginal microbiota usually

contains one of the four CSTs dominated by Lactobacillus species

which thrive in the glycogen-rich vaginal environment and

protect their host against pathogens by producing bacteriocins,

hydrogen peroxide, lactic acid or by competitively excluding

other bacteria (23, 28). The role of hydrogen peroxide in FRT

has been challenged by in vivo studies (29); the hypoxic nature of

the cervicovaginal environment does not support the production

of oxygen in large amounts which is required for hydrogen

peroxide production to achieve antimicrobial activity in FRT

(30–32). Moreover, hydrogen peroxide levels have been reported

using in vitro conditions that do not appropriately represent the

cervicovaginal environment (30, 33). Therefore, future research

should focus on the antimicrobial mechanism of Lactobacillus

spp. that is translatable in vivo. The fifth community (CST-IV)

is dominated by anaerobic bacteria (28). Lactobacilli are Gram-

positive, anaerobic, rod-shaped bacteria that produce lactic

acid by metabolizing different glycogen breakdown products in

the vagina. The production of lactic acid results in a vaginal

pH range of 2.8–4.2 (34–36). The resultant low vaginal pH

(34) hinders growth of potentially harmful bacteria (34, 37,

38). Another method by which lactobacilli offer protection

from other potential pathogens is through competition for

space by adhering to the vaginal epithelial cells and producing

compounds that are toxic to other bacteria, effectively making

it more difficult for other species to thrive (39). As a result,

lactobacilli are often abundant in the vagina. However, studies

have shown that lactobacilli have different protective capacities;

L. crispatus, L. gasseri, L. iners, and L. jensenii have been reported

as the most common bacterial species in the vagina (40), but L.

iners appears to provide a lesser degree of protection compared

to the other types of lactobacilli (41). This suggests that even

if a vaginal microbiota is dominated by lactobacilli, the level

of protection likely differs depending on which lactobacilli

are present [reviewed in (42)]. Furthermore, the concept that

Lactobacillus dominance is associated with health has been

challenged as there are asymptomatic, “healthy” women with

a polymicrobial vaginal microbiota or one dominated by

anaerobic bacteria. Indeed, the vaginal microbiota can vary in

women of different ethnic, geographic, and sociodemographic

backgrounds (3, 43), and its composition depends on a variety

of factors including host genetics, physiology, and behavior

[reviewed in (42)]. For example, a genetic polymorphism in

TLR4, the cell-surface receptor for innate immune recognition

of Gram-negative bacteria, or the anti-inflammatory mediator

IL-1 receptor antagonist influences the composition of the

vaginal microbiota (44, 45). The vaginal microbiota is also likely

subject to the influence of an individual’s innate and adaptive

immunity, as well as practices including contraceptive method

and sexual behaviors (46–48).

Longitudinal studies have found the vaginal microbiota

to be relatively stable, with transient changes in composition

tending to coincide with altered physiology (e.g., menstruation)

or behavior (e.g., sexual activity, douching) (28, 49–51). In

general, hormonal fluctuations during the menstrual cycle do

not appear to dramatically change the vaginal microbiota,

however hormones are certainly involved in its modification.

The major hormonal shifts occurring at puberty significantly

change the vaginal microbiota from mainly anaerobic bacteria

to one dominated by lactobacilli (52). Conversely, at menopause
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the vaginal microbiota reverts to mainly anaerobic bacteria

(53, 54). Unsurprisingly, estrogen is believed to be the main

hormone responsible for these shifts, and a positive correlation

between estradiol and lactobacilli concentration can be seen

in post-menopausal women receiving estrogen-based hormone

replacement therapy (53–55). Furthermore, the rise in hormones

including estrogen during pregnancy stabilizes the vaginal

microbiota; typically, the vaginal microbiota of a healthy

pregnancy is Lactobacillus dominant (56, 57). The vaginal

microbiota of pregnancy, and the correlation between dysbiosis

and adverse reproductive outcomes has been reviewed elsewhere

(58, 59). In addition to physiology affecting composition of

the vaginal microbiota, sexual intercourse, use of antimicrobial

agents, contraceptives, lubricants, vaginal douching, and other

behaviors can also influence its composition [reviewed in

(42)]. Indeed, it appears as though the microbiota fluctuates

when exposed to a change in its milieu; one that enhances

or diminishes the competitive advantage of certain vaginal

microbes over others. For instance, both antibiotics and

sexual intercourse modify host physiology or the vaginal

microenvironment and are associated with a loss of vaginal

lactobacilli (60). Similarly, menstrual blood at menses provides

a change in substrate for microorganisms, and alters vaginal

pH (61), consequently changing the microbiota composition

[reviewed in (42)]. A recent study demonstrated that the vaginal

(and uterine) microbiota changes with age. In the uterine

cavity, bacterial alpha diversity (diversity within an individual’s

microbiota) decreases slightly with age, whereas the opposite

effect (i.e., an increase in diversity) is observed in the vagina.

In both locations, age and microbial diversity are correlated.

The authors hypothesize that this phenomenon is a result of

location: the vagina is not a closed environment, which increases

its susceptibility to changingmicrobial composition, whereas the

uterine cavity is “closed” which may confer greater stability of

the microbiota in that location (62).

The upper reproductive tract microbiotas

Moving up the FRT, the cervix, uterus, Fallopian tubes,

and ovaries have distinct, and lower biomass microbiotas than

the vagina (23, 63, 64). However, the existence of permanent

microbiotas at these sites has been challenged. The upper

reproductive tract was initially considered a sterile environment

(65, 66), but studies show specific microbial patterns in the

uterus, placenta, Fallopian tubes, and ovaries. The “sterile

womb” assumption was challenged when it was reported that

bacteria can ascend into the upper genital tract through the

cervix (67).

The cervical microbiota plays a role in removing toxic

compounds, strengthening the female genital tract epithelium,

and regulating the immune system (68–70). Studies have also

shown that the cervical microbiota is involved in carcinogenesis

of the endocervix (71, 72). Tango et al. compared the cervical

microbiota of healthy individuals and a high-grade cervical

intraepithelial neoplasia and cervical cancer (CIN2/3-CC)

group. They found that seven phyla (Firmicutes, Actinobacteria,

Bacteriodetes, Proteobacteria, Fusobacteria, Tenericutes, and

Saccharibacteria_TM7) were abundant in both groups, with

the phylum Saccharibacteria_TM7 being less abundant in the

CIN2/3-CC group compared to healthy controls (73). Another

study investigated the association of the cervical microbiota

with cervical cancer and reported that cervical pathology was

associated with lower abundance of Lactobacillus and higher

anaerobes. It has also been shown that in healthy women, there

is a lower relative abundance of bacteria in the endometrial

microbiota compared with the cervical microbiota (74–76).

For almost a century the uterus was believed to be sterile.

This assumption was challenged by targeted PCR identification

and culture-based technology at hysterectomy, and it was

reported that the uterus has its own microbiota containing

both Lactobacillus and non-Lactobacillus species (65, 77–79).

More specifically, the uterine microbiota has an abundance of

Lactobacillus, Gardnerella, Prevotella genera, and Bacteroides

and shares Firmicutes and Actinobacteria with the vaginal

microbiota. However, the endometrial microbiota has a lower

relative abundance and a higher microbial diversity than the

cervical and vaginal microbiotas (74, 75). The first evidence of

bacterial colonization in the uterine cavity dates back to over

30 years ago where Lactobacillus spp., Gardnerella vaginalis,

Enterobacter spp., and Mycoplasma hominis could be cultured

from 25 to 30% of the samples obtained transcervically or after

hysterectomy (80, 81). Later studies revealed the uterus contains

bacterial taxa different from those found in vaginal samples (82)

and that less bacterial DNA is detected in upper reproductive

tract samples compared to vaginal samples, confirming that the

microbiotas in the upper reproductive tract have a lower biomass

compared to the vaginal microbiota (82). Chen et al. confirmed

this and further demonstrated that the upper reproductive tract

contains 10,000 less bacteria than vagina (23). This difference

could be due to the cervical barrier inhibiting bacterial ascension

from the vagina.

Pelzer et al. investigated the Fallopian tube microbiota in

healthy women (7). It was reported that the Fallopian tubes

have robust microbial communities dominated by members

of the phyla Firmicutes, most notably Lactobacillus spp.,

Staphylococcus spp., and Enterococcus spp. Other common taxa

were Pseudomonads (Pseudomonas spp. and Burkholderia spp.)

and known genital tract anaerobes such as Propionibacterium

spp. and Prevotella spp. (7). However, there are limitations and

inconsistent findings between different studies. For example, Yu

et al. reported that bacteria from Fallopian tubes samples were

slightly above the negative controls, indicating the possibility of

low-level bacteria in Fallopian tubes (8). Moreover, using 16S

rRNA gene sequencing bacteria were detected in the Fallopian

tubes, ovaries, uterus, and cervix from patients undergoing
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hysterectomy with bilateral salpingo-oophorectomy (83). It was

reported that microbial communities of the Fallopian tubes,

endometrium, myometrium, and ovaries were more varied

in their compositions with the exception of Lactobacillus.

Additional studies with larger sample sizes will be necessary to

investigate and confirm the “core microbiota” associated with

these sites (83). To the best of our knowledge, except for Miles

et al. (83) there has been no other study investigating the ovarian

microbiota in the healthy or diseased state.

Taken together, the upper reproductive tract is evidently not

sterile, but there is limited research on the composition and

function of the upper reproductive tract bacterial communities.

This could be due to the complexity and invasive nature

of collecting samples from the upper reproductive tract.

Also, because most samples are collected during surgical and

explorative procedures, most currently available data captures

the upper reproductive tract microbiota composition in a

diseased state. Therefore, whenever possible future studies

should investigate the commensal bacteria and microorganisms

of the reproductive tract in the absence of gynecologic disease.

Biofilms

The presence of biofilms is another characterization of the

vaginal microbiota. Biofilms are colonies of microorganisms

covering a solid surface and they can be identified on the

surface of vaginal epithelial cells. Other microorganisms, such

as Candida spp. and G. vaginalis, exist in the cervicovaginal

microbiome in addition to lactobacilli. Overgrowth of Candida

spp. or G. vaginalis may lead to biofilm production, resulting in

microbial dysbiosis and an increase in the risk of acquiring STIs.

The inability of the immune system and antimicrobial agents

like antibiotics to fully eliminate biofilms result in persistent

infection and bacterial vaginosis (BV) has a higher relapse

and recurrence rate as a result (84–86). BV, which will be

discussed in greater detail below, contributes to more than

60% of all vulvovaginal infections which makes it the leading

vaginal disorder in women of reproductive age (87). BV is the

only clinical diagnosis related to the vaginal microbiota and is

a polymicrobial condition characterized by low abundance of

lactobacillus and overgrowth of anaerobes.

Immune homeostasis with the
female reproductive tract
microbiotas

Modulation of inflammation and immune
homeostasis by commensal bacteria

Here, we will discuss the current state of knowledge

surrounding the mechanisms by which epithelial and immune

cells in the reproductive tract sense the microbiota. We will

also discuss the complexities of these interactions and the

limitations surrounding our current knowledge. Similar to other

areas of the body harboring bacteria, the bacteria colonizing the

FRT interact with their host. A bidirectional relationship exists

between the bacteria and host wherein the bacteria appear to

tune inflammation and immunity while the host immune system

canmodulate themicrobiota. Nativemicrobiotas within the FRT

survive because they are tolerated by the host; the microbes

are sensed by pattern recognition receptors (PRRs) that are

present on both squamous epithelial cells lining the vagina and

columnar cells lining the upper FRT, but an immune response

is not directed against them. These receptors include dectin-

1 receptor, toll-like receptors (TLRs), and nucleotide-binding

oligomerization domain (NOD)-like receptors (88–92).

Epithelial cells in the FRT are colonized by commensal

bacteria which play an important role in preserving an

antimicrobial barrier against pathogens and thus help maintain

an intact, stable, and protective epithelial barrier. This

includes the secretion of antimicrobial peptides (AMPs) by

commensal bacteria upon binding to the epithelial cells (93,

94). Additionally, commensal bacteria produce mucin which

contributes to the stabilization of tight and adherens junctions

in the FRT (65, 95).Moreover, commensal bacteria canmodulate

immune responses at the molecular level (Figure 2A). Although

few mechanistic details (particularly in the upper FRT) are

known about how commensal FRT bacteria interact with the

host immune system, inferences can be gleaned by looking at the

gut. For example, commensal bacteria play a critical role in the

differentiation of CD4+ T cells (T helper cells) at the barrier sites

and can induce both pro- and anti-inflammatory CD4+ T cell

responses through different mechanisms in the gut (96). As first

suggested by adoptive transfer experiments in rodents, CD4+

regulatory T (Treg) cells play an important anti-inflammatory

role in maintaining tolerance to commensal bacteria in the

gut (97) and preventing an inappropriate immune response to

them (98–101). In the gut, studies suggest commensal bacteria

maintain immune tolerance by triggering antigen specific Treg

responses. For example, altered germ free mice introduced to

Schaedler flora (a known community of 8 bacterial species)

experienced an increased frequency of colonic Tregs as a result

(102). Clostridium clusters XlVa and IV (103, 104), along

with Lactobacillus reuteri (105), which are the major players

in the gut microbiome, have also been shown to increase

Treg cells frequency. Although little is known about immune

tolerance to commensals in the FRT, it is important to note

that Lactobacillus reuteri is a probiotic bacterium found in the

urinary tract (106), that may modulate immune tolerance at

this site. Fewer studies have focused on the role of Tregs in

FRT. There is an inverse association between T-regs and pro-

inflammatory cytokines in the endocervix; a higher frequency

of endocervical Treg is associated with lower pro-inflammatory

cytokines, such as IL-1β, IL-8, G-CSF, MIP-1β, Eotaxin, and
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FIGURE 2

Potential mechanism of immune homeostasis with the female reproductive tract microbiotas. (A) Commensal bacteria likely maintain

homeostasis by interacting with the epithelial cells via pattern recognition receptors (PRRs) and promoting induction of T-reg cells through

di�erent pathways: (1) commensal bacteria play an important role in preserving the epithelial barrier through antimicrobial peptide (AMP) and

mucin production, (2&3) commensal bacteria or bacterial metabolites can induce antigen presenting cells, such as dendritic cells (DCs) that

favor T-reg selection through production of retinoic acid (RA) and TGF-β, (4) commensals can also facilitate tolerance through signaling and

triggering toll-like receptors (TLRs). (B) The loss of commensal bacteria can lead to increased microbial diversity and changes in immune and

epithelial homeostasis likely through multiple mechanisms including: (1) production of pro-inflammatory cytokines and chemokines, (2)

decrease in T-reg frequency and increase in T-helper cells; ultimately resulting in (3,4&5) cytokine imbalance, barrier disruption, and immune

cell recruitment. Created with BioRender.com.

IL-1RA (107). A higher endocervical T-regs concentration is

also associated with lower CD4+ T cells which are required for

human immunodeficiency virus (HIV) to establish itself in the

mucosa, further suggesting an anti-inflammatory role for Tregs

in FRT (107). Taken together, the are many knowledge gaps

regarding the role of Tregs in FRT which need to be addressed

in future studies. Moreover, antigen presenting cells (APCs)

[such as dendritic cells (DCs)] favor Treg selection in the gut

because they produce higher levels of retinal dehydrogenase

which produces the vitamin A metabolite retinoic acid (RA)

(108–110). RA contributes to homeostasis of the gut microbiota

through inhibition of cytokine production by effector cells

(111) and promoting Treg cell selection (112). Dendritic cells

can produce transforming growth factor β (TGF-β) which

can further contribute to Treg selection in combination with

RA (113). O’Shea and Paul reported that T cells contribute

to homeostasis in the gut by promoting Treg cells in the

presence of TGF-β, RA, and IL-2 (114). Even though unlike

gut, the role of APCs in Treg selection in FRT is understudied,

APCs have been reported to also play an important role in

directing T cell responses in FRT (115). Duluc et al. for the

first time demonstrated that human vaginal mucosa harbors four

major myeloid-originated APC subsets (LCs, CD14− LP-DCs,

CD14+ LP-DCs, and Mφ) which direct T cells to orchestrate

the vaginal immune responses (115). Moreover, Tan et al.

reported that mice receiving all-trans-retinoic acid were more

resistant to vaginal infections due to a stronger T cell recall

response in situ, suggesting the role of RA in T cell selection

and FRT homeostasis (116). With respect to FRT homeostasis,

TGF-β has been mostly studied in relation to fetal-maternal

immune tolerance. TGF-β has been shown to assist estradiol

in inhibition of vaginal antigen presentation and orchestrating
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immune response against sperms (117) along with increasing

the vaginal Tregs to help reduce fetal loss (118). TGF-β also

plays a role in immunosuppression at different menstrual cycle

stages (119, 120). Another plausible pathway for Treg selection

is through microbiota itself. Commensal bacteria have been

reported to facilitate tolerance through signaling and triggering

TLRs in both the gut and FRT (121). Fazeli et al. reported

that TLR4 which is present in endocervix, endometrium, and

uterine tubes, may play an important role in immune tolerance

in the lower parts of the FRT (122). Moreover, different studies

have shown that vaginal and uterine Treg cells play an integral

role in maintaining a healthy microbiota during pregnancy and

homeostasis (123, 124) (Figure 2A).

Interplay between the FRT microbiotas and cells of

the immune system exists to prevent infections with other

potentially harmful bacteria and to create an immune-

tolerant environment (18). When vaginal bacterial homeostasis

is disturbed (as in both symptomatic and asymptomatic

BV), epithelial cells become damaged and apoptotic, an

effect mediated by caspase-3 activation (125, 126). Thus,

the microbiota is critical in maintaining tissue integrity

and homeostasis. The female sex hormones estrogen and

progesterone also play an essential role in the interplay

between the FRT microbiotas and immune system by inducing

production of pro-inflammatory cytokines, such as IL-6 and IL-

8, and anti-microbial peptides, such as alpha- and beta-defensin,

by vaginal epithelial cells to help prevent infection (127). Steroid

hormones, such as estrogens and progesterone, modify both

adaptive and innate immunity (128–130). Estrogens regulate

the expression of genes involved in proliferation, reproductive

functions, and cell survival by binding to estrogen receptor alpha

(ERα) or ERβ, transcription factors (TFs) of nuclear receptor

(NR) superfamily (131, 132). Estrogens have both anti- and

pro-inflammatory effects depending on the context and target

gene (133, 134). On the other hand, progesterone which can act

of DCs, T-cells, and macrophages, exert its anti-inflammatory

effects by decreasing leukocyte activation and producing pro-

inflammatory mediators (130). Additionally, sex hormones can

modify bacteria; for example, estrogen was shown to increase the

survival and growth of Gram-negative bacteria and estradiol can

enhance the virulent mucoid biofilm phenotype of Pseudomonas

aeruginosa (135). Additionally, an in vitro study showed that

estrogen can increase the growth of Escherichia coli (136) which

aligns with E. coli causing urinary tract infections (UTIs), one of

the most commons infections in women (137).

Cytokine production is an important part of the host

immune response and essential for protective immunity. For

instance, the reproductive tract is capable of increasing IL-1β

concentration followed by IL-8 in response to the presence

of pathogens and plays an important role in activating both

adaptive and innate immune response against BV-associated

bacteria (138). Moreover, TLRs on mucosal cells can bind

and identify a broad range of bacterial pathogen-associated

molecular patterns (PAMPs) and initiate a signaling cascades

aimed at clearing the infection if required (139, 140). However,

sustained production of cytokines can cause epithelial barrier

damage and induce T cell infiltration into the genital mucosa,

which can be detrimental to the FRT (141), and lead to

increased infections.

Potential mechanism of dysbiosis in FRT

During homeostasis, a balance exists between the FRT

bacteria and the immune system; one that maintains immune

quiescence. Although understudied, it appears as though Tregs

are involved in tolerance of the cervical and vaginal microbiotas

(142). However, it seems this balance can be tilted toward

inflammation under the influence of certain factors (e.g., stress,

disease, infection, pathology, antibiotic therapy, sexual practices,

lifestyle choices, etc.), perhaps due to their direct effect on

bacteria or their indirect effect on the microenvironment

supporting the bacteria. Moreover, it has been shown that some

stresses such as poor housing conditions, poor nutrition, low

income, and interpersonal conflicts increase the risk of BV

(143, 144). For example, it was found that a 5-unit-increase in

Cohen’s Perceived Stress Scale was associated with higher risk of

acquiring BV, suggesting that stress can change the composition

of the vaginal microbiota (145). Moreover, maternal stress can

change the abundance of vaginal Lactobacillus and proteins

related to vaginal immunity during pregnancy (146).

Loss of Lactobacillus dominance leads to increasedmicrobial

diversity and changes in immune and epithelial homeostasis in

the vagina through multiple mechanisms, such as production

of pro-inflammatory cytokines and chemokines, immune cell

recruitment, and reduction in the viscosity of the cervicovaginal

fluid (147, 148) (Figure 2B). Perturbances to the bacteria,

immune system, or local environment may result in microbial

dysbiosis, defined as an atypical microbiota composition.

However, the direction of initiation of dysbiosis is largely

unknown (e.g., whether overgrowth or a change in FRT

bacteria due to a perturbance results in dysbiosis, or whether

an immune response alters the native microbiota and results

in dysbiosis), although it seems reasonable to expect both

situations are possible. Nevertheless, many studies discuss

an association between inflammatory states and bacterial

dysbiosis. For example, alterations in the vaginal microbiota

inhibit chemokine secretion and chemotaxis and increase

pro-inflammatory cytokines [reviewed in (18)]. Additionally,

an increase in anaerobic bacteria and loss of Lactobacillus

dominance increases bacterial diversity and can lead to dysbiosis

of the vaginal microbiota. Furthermore, diversity of the vaginal

microbiota has been linked to a compromised genital epithelial

barrier, high levels of mucosal inflammation, and increased risk

of STIs such as (HIV) (149, 150). Moreover, it has been shown

that unlike the gut microbiome (151, 152) the short chain fatty
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acids (SCFAs) in the vagina contribute to the pro-inflammatory

environment and less significantly to antimicrobial activities

(153, 154). The concentration of SCFAs increase during vaginal

dysbiosis which enhances TLR2 and TLR7 ligand-induced

production of IL-8 and TNF-α in a dose-dependent manner.

SCFAs also mediate pro-inflammatory cytokine production

partly by generation of reactive oxygen species (ROS) (155).

Although much of our knowledge on the mechanisms

governing immune tolerance to the native microbiota comes

from the gut literature, a few studies are beginning to provide

support for a role for the female reproductive microbiotas

in maintaining immune tolerance, and tuning inflammation

(Figure 2).

Microbial dysbiosis, inflammation
and gynecologic conditions

Microbial dysbiosis and inflammation

Bacterial vaginosis

Vaginal dysbiosis has been defined as a perturbance to the

resident microbiota in the vaginal tract (156) or as a non-

Lactobacillus dominant vaginal microbiota (150). Regardless

of the precise definition, the literature agrees that dysbiosis

is a departure from homeostasis between the FRT bacteria

and the immune system. Bacterial vaginosis (BV), a condition

characterized by non-optimal vaginal microbiota, is common

among reproductive age women (157). A shift in vaginal bacteria

toward a non-optimal state can increase the risk of BV, UTIs,

or STIs such as HIV (42, 62). There has been a recent shift

to use the term “non-optimal” over “dysbiotic” in the context

of BV, as the latter may inadvertently stigmatize individuals

with asymptomatic BV and low genital inflammation, whose

microbiota represents their baseline or “healthy” state (157).

The available diagnostic criteria for BV are the Amsel criteria

and Nugent score (158). The Amsel criteria is a clinical

assessment based on vaginal discharge, vaginal pH > 4.5, the

presence of clue cells in a wet mount, and a “whiff test”

(amine odor when vaginal secretions are treated with potassium

hydroxide solution). To diagnose BV, 3 out of 4 criteria must be

present (159). The Nugent scoring system is a laboratory-based

method that evaluates Gram staining and the concentration of

lactobacilli and other bacterial morphotypes in a vaginal smear

(160). This system is considered the diagnostic gold standard,

however both diagnostic methods are equally reliable, therefore

the Amsel criteria are an efficient and cost-effective diagnostic

alternative when lab equipment is not readily available (158).

Interestingly, the extent of vaginal dysbiosis is usually positively

correlated with Nugent score and vaginal pH (150). However,

we and others report this is not always the case (28, 48). In

our previous study 63% of sex workers with a diverse vaginal

microbiota classified as CST-IV by 16S rRNA gene sequencing

had low Nugent scores and were not symptomatic for BV

(48). These findings call the current concept of a Lactobacillus

dominant vaginal microbiota as “healthy” into question. Not

all individuals with BV are symptomatic (157) and evidently

microbial diversity can exist in some people in the absence

of clinical symptoms or a Nugent score indicative of BV. As

the aforementioned study did not exclude the possibility that

subjects with a polymicrobial vaginal microbiota in the absence

of BV had genital inflammation, they would be colonized by a

non-optimal vaginal microbiota as defined by McKinnon et al.

(157). An interesting consideration for future research would

be to assess inflammation in women who have a polymicrobial

vaginal microbiota in the absence of BV by Nugent score. We

propose that perhaps every individual has a different threshold

of bacterial tolerance, and only once this threshold is reached

will an immune response be elicited.

The inflammatory signature associated with
microbial dysbiosis of the FRT

In optimal and non-optimal conditions alike, cytokines

regulate the vaginal microbiota (161). When any pathogen

or “foreign invader” reaches the vaginal mucosa, the mucus,

epithelial cells, and underlying immune cells offer the first

line of resistance poised to counter the threat. However,

vaginal dysbiosis can elicit an immune response (162), induce

inflammation, and compromise this first line of defense (163).

Genital inflammation also ensues as the host fights the pathogen

or STI (164). Antigen presenting cells, CD4+ T cells, and

epithelial cells mediate FRT inflammation (165). Having an

intermediate vaginal microbiota, defined as a Nugent score

between 4 and 6, or BV (Nugent score > 7) is associated with

an increased rate of incidentNeisseria gonorrhoeae,Trichomonas

vaginalis, Chlamydia trachomatis or human papilloma virus

(HPV) infection (164). The main mechanism by which this

occurs is that BV induces chronic inflammation, which

consequently disrupts the epithelial barrier (164), granting the

infections easier access to underlying tissues and cells. When

microbes activate PRRs expressed on epithelial cells lining the

FRT (specifically the squamous epithelial cells that comprise the

vaginal lining and columnar cells of the upper FRT), they initiate

a signaling cascade of cytokines and chemokines. Cytokines

including IL-1β, TNF-α, IL-6, and IL-8 are secreted by the

epithelial cells lining the vaginal tract, which recruit or activate

cells of the innate and adaptive immune systems, including

but not limited to macrophages and cytotoxic (CD8+) T cells,

respectively (17).

Many authors have extensively studied the inflammatory

signature of women with a polymicrobial vaginal microbiota.

Higher bacterial diversity is associated with greater

inflammatory cytokine concentrations (164), and one of

the strongest independent predictors of genital inflammation

in a recent study was a vaginal microbiota subtype that
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predominantly included women with high Nugent scores

(i.e., increased microbial diversity) (166). Indeed, BV is

characterized by a proinflammatory vaginal mucosa (25).

Associations between BV and individual inflammatory

mediators in cervicovaginal samples are inconsistent, however

most studies report that cervicovaginal secretory leukocyte

protein inhibitor (SLPI), an antimicrobial peptide, is decreased

while IL-1β is increased [reviewed in (92)]. IL-1β, IL-8, and

IL-6 differentially regulate biofilm growth and production by

vaginal microbiota. Specifically, IL-1β and IL-8 promote S.

aureus and E. coli to grow and produce biofilms (161). The

presence of Dialister micraerophilus, Eggerthella type 1, and

Mycoplasma hominis in vaginal swabs is associated with elevated

vaginal TNF-α levels. Detection of the aforementioned bacterial

species with the addition of Parvimonas type 2 is associated

with elevated vaginal IL-1β concentrations (167). IL-1β can

direct the activation of naïve cord blood CD4+ T cells to a

pro-inflammatory phenotype, which induces secretion of other

proinflammatory cytokines in vitro (168). Women with a high

diversity cervicovaginal microbial community such as CST-IV,

and an associated elevation in genital inflammation, have

high numbers of HIV-infectable CD4+ T cells in the cervix

(169). Anahtar et al. demonstrated this relationship between

pro-inflammatory cytokine levels and high bacterial diversity

(i.e., low Lactobacillus concentrations) of the cervicovaginal

microbiota in asymptomatic HIV-negative women from South

Africa. Compared to CST-III women, CST-IV women are four

times as likely to have high levels of pro-inflammatory cytokines

in the genital tract. A CST-IV microbiota is a stronger predictor

of inflammation than having an STI or BV (169). CST-IV

and herpes simplex virus (HSV)-2 infection enhance HIV

susceptibility (170). Furthermore, IL-8, IL-1β, and IL-1α are

elicited at higher levels by Prevotella amnii, Mobiluncus mulieris,

Sneatha sanguinegens and S. amnii compared to L. crispatus

(169). Increased mucin 5B and 5AC, increased proteolytic

activity, and elevated proinflammatory cytokines are associated

with increasing bacterial diversity of cervicovaginal samples

(171). High diversity community state types and the presence

of Gardnerella vaginalis and Prevotella bivia are associated with

cervicovaginal inflammatory cytokines (170). Campisciano

et al. were the first to characterize the clinical impact of

cytokine modulation of vaginal dysbiosis. A distinct pattern

of inflammatory mediators—IL-1β, IL-8, MIG, MIP1-α, and

RANTES—distinguished the severity of vaginal dysbiosis (162).

To further illustrate the link between polymicrobial bacterial

communities and inflammation in the lower FRT, treatment of

BV with the antibiotic metronidazole in HIV-infected women

decreases IL-1β, IL-8 and RANTES in cervical samples (172).

Elevated IL-5 and IL-13, two Th-2 secreted cytokines, are

associated with depleted Lactobacillus spp., G. vaginalis, and

Ureaplasma spp. (162). Th-2 cells are a subset of CD4+ T-cells;

Th-2 cytokines create an anti-inflammatory response, which

balances the complementary Th-1 mediated proinflammatory

response (173). The results of the Campisciano et al. study

suggest that Th-2 activationmay have a role in restoring eubiosis

in the vagina, and the authors suggest IL-5 and IL-13 could be

explored as indirect markers of vaginal dysbiosis (162). A recent

study established a temporal relationship between dysbiosis

and cervical immunity (156). By studying a longitudinal cohort

of HIV-negative women (22% of which acquired HIV during

the study), the authors were able to report patterns of cervical

immunity that preceded and predicted vaginal dysbiosis [which

they defined as candidiasis, BV, or an intermediate Nugent

score (4–6)]. This pattern included a proinflammatory state that

consisted of upregulated IL-1 signaling, and downregulation of

SLPI. This study appears to be the first to provide evidence that

changes in genital tract immunity can precede cervicovaginal

infection or an altered vaginal microbiota (156). Taken together,

the literature appears to suggest that vaginal homeostasis

can be disrupted by two different mechanisms: first, a shift

toward bacterial diversity can induce vaginal inflammation, and

second, that local immunity is altered in some manner, and the

microbiota change in response to environmental alteration.

Microbial dysbiosis and inflammation in the
upper FRT

Much of our understanding of the link between microbial

dysbiosis and inflammation in the FRT is derived from studies

with vaginal and cervicovaginal samples, and thus a large gap

in the literature remains with respect to uterine, Fallopian,

and ovarian dysbiosis as they relate to inflammation. While

the microbiota of the upper FRT remains largely understudied,

limited data is available on the balance between the microbiota

and immunity of FRT structures distal to the vagina.Ureaplasma

parvum, a bacterium associated with pregnancy complications

such as preterm birth, can colonize cervical epithelial and

stromal cells, and weakly induce inflammation. U. parvum

increases the expression matrix metalloprotein (MMP)-9 in

endocervical epithelial cells and initiates the release of pro-

inflammatory cytokines IL-6 and IL-8 in both epithelial cells of

the endo- and ectocervix and cervical stromal cells (174). In this

study, the inflammatory effects of U. parvum do not seem to

account for preterm birth (174) but may be one part of a larger

interaction between the epithelium, bacteria, and inflammatory

mediators. These findings provide insight into the intimate

relationship between bacteria and the innate immune response

at the FRT epithelial barrier beyond the vagina. Furthermore,

in a seminal experimental animal study Wang et al. described

microbial translocation from the vagina to uterus and the

ensuing effects on uterine health (62). The authors used a rat

model to assess the possibility that vaginal bacteria can ascend

the cervix and transplant in the uterus, and to explore the

impact of dysbiosis on the uterine microenvironment. Vaginal

microbiota transplant from women with chronic endometritis,

BV, or healthy controls was performed via vaginal lavage

Frontiers in ReproductiveHealth 09 frontiersin.org

https://doi.org/10.3389/frph.2022.963752
https://www.frontiersin.org/journals/reproductive-health
https://www.frontiersin.org


Gholiof et al. 10.3389/frph.2022.963752

(62). Chronic endometritis—distinct from endometriosis—

is a benign, generally asymptomatic gynecological condition

caused by infection that is frequently associated with poor

outcomes during assisted reproduction (175). Rats that received

a transplant from women with chronic endometritis had

greater uterine inflammation, quantified by elevated mRNA

levels and concentrations of TNF-α, IL-1β, and CD38. This

demonstrates that the vaginal microbiota can induce uterine

inflammation, possibly following translocation via the cervix.

Further animal experiments in the same study revealed that P.

bivia or Clostridium perfringens transplanted into the vagina can

translocate to the uterus, initiate inflammation, and promote the

formation of endometritis-like lesions (62). Inflammation and

dysbiosis within the FRT are often studied at single sites, but

this valuable research reminds us that nothing exists in isolation.

These findings allow us to extend our understanding of FRT

dysbiosis, revealing that the spread of bacteria between body

sites may maintain or disturb homeostasis (62). Future studies

that examine the inflammatory effects and crosstalk between

bacteria at multiple sites in the FRT will continue to shed light

on complicated states of FRT dysbiosis and the implications for

reproductive health and disease.

The current literature linking inflammation and vaginal

dysbiosis presents comprehensive results derived from robust

sequencing and transcriptomic techniques and implies there

may be clinical applications to improve reproductive outcomes

and diagnosis of vaginal infections. However, it is important

to consider the populations from which study results were

drawn because of the impact of host genetics, physiology,

or behavior on the vaginal microbiota. For example, several

studies examine the vaginal microbiota in African women

(156, 165, 167, 169–171, 176) due to the geographic burden

of dysbiosis and HIV infection in this region (42, 150, 165).

One study evaluated the association between vaginal microbiota

composition and ethnicity in a sample of women representative

of the six dominant ethnic groups in Amsterdam, Netherlands

(177). Kumar et al. analyzed the vaginal cytokine composition

and microbiota of Asian women in association with delivery

outcomes (178) and Campisciano et al. studied the pathogenesis

of vaginal dysbiosis in a Caucasian population (162). It has

been established that community state frequency differs across

ethnic backgrounds, as previously discussed. Therefore, when

evaluating the cellular consequences of FRT dysbiosis and

extrapolating the clinical relevance of these findings, it is

essential to consider the populations in which these results

were obtained. The concept of health vs. dysbiosis in the FRT

appears to bemore complicated than a binary; rather, microbiota

composition exists on a spectrum that may be intrinsically

different across diverse people because of genetics, physiology,

behavior, and environment. Future research should aim not only

to capture this complex diversity, but to improve the utility of

diagnostic tools and treatments for FRT dysbiosis by validating

or tailoring their use in diverse populations.

Female reproductive tract microbiotas
and gynecologic conditions

A balance between the resident microbiota and the immune

system appears to be necessary to support reproductive health,

and an altered microbial balance and inflammation can

have negative effects. As mentioned above, the largest body

of literature linking the FRT microbiotas to gynecological

conditions is around STIs; in particular, dysbiosis of the

FRT microbiota is associated with an increased risk of HIV

acquisition (18, 156, 164, 167, 169, 171, 179). Anahtar et al.

proposed the mechanism behind this association was that

epithelial and antigen-presenting cells sense cervicovaginal

bacteria and activate inflammation via the NF-kB and toll-like

receptor pathways (169). Secreted chemokines recruit activated

CCR5+ CD4+ T cells (which are the target cells for HIV to

infect) to the site of inflammation. The authors hypothesized

that TNF-α and IFN-α may disrupt tight junctions of the

endocervical columnar epithelial barrier, which would make

it easier for HIV to access underlying target cells, and dually

increase the likelihood of infection (169). This is supported by

primary in vitro research demonstrating that TNF-α secreted

following HIV-1 exposure disrupts epithelial barrier function

(180); IFN-γ also increases tight junction permeability in

cultured human intestinal epithelial cell monolayers (181).

Robertson et al. argue that the cytokines present during

the pre- and peri-implantation period are essential for fetal

development and pregnancy outcome (182). Granulocyte-

macrophage colony-stimulating factor (GM-CSF) is essential

for blastocyst development, whereas the pro-inflammatory

cytokines TNF-α and IFN-γ have inhibitory effects on blastocyst

development. A symphony of cytokines orchestrates the window

for embryo implantation, including host immune tolerance of

the embryo. Experiments in a mouse model have demonstrated

that systemic exposure to low-dose lipopolysaccharide (LPS;

an endotoxin expressed by Gram-negative bacteria) during

the implantation period reduces embryo cell number, embryo

viability, and oviduct pro-inflammatory cytokine expression

(182). Like this delicate cytokine balance, the presence of

an “optimal” microbiota in the FRT also seems important

in the maintenance of fertility, and FRT dysbiosis is linked

to pregnancy-related adverse outcomes including preterm

birth, spontaneous abortion, and infertility [reviewed in (10)].

Women with both tubal infertility and Chlamydia trachomatis

infection have an increased abundance of vaginal L. iners

relative to L. crispatus and an overall decrease in Lactobacillus,

Atopobium, Streptococcus, Bifidobacterium, and Enterobacter

genera (183). During the second trimester of pregnancy, the

vaginal microbiota is more diverse in pregnant women living

with HIV than HIV-uninfected pregnant women. There is a

higher prevalence of L. iners dominant vaginal microbiota and

lower prevalence of L. crispatus dominance among pregnant

HIV-infected women (184). In general, L. crispatus dominance
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is more beneficial to vaginal health over L. iners (163). Increased

bacterial diversity and the presence of anaerobic bacteria

is associated with cervicovaginal inflammation in pregnancy,

which may contribute to preterm birth which is frequently

experienced by pregnant HIV-infected women (184). These

studies shed light on the interconnectedness of FRT infection,

microbial balance, and reproductive outcomes.

Beyond STIs, the FRT microbiotas also seem to be involved

in conditions including infertility; endometriosis; endometrial,

cervical, and ovarian cancer; and polycystic ovary syndrome

(PCOS). Although themechanism(s) by which bacteria might be

involved in these gynecological conditions remain speculative at

present, it may in part be via the intimate link we are beginning

to discover between the FRT bacteria and the host immune

system. As inflammation is a central aspect that unites these

gynecologic conditions, we will now explore the few studies

reporting perturbations in FRT microbiotas as they relate to

gynecologic conditions.

Endometrial microbiota and infertility

Although most studies focus on the vaginal microbiota

(with the traditional definition of vaginal health/optimal bacteria

being Lactobacillus dominant), there are some studies reporting

associations between other FRT microbiotas and gynecological

conditions, however, there is no consensus on what constitutes

an “optimal” microbiota at these other anatomical locations.

As previously discussed, this is in part because most studies

on FRT microbiotas (other than the vaginal microbiota) lack

a “healthy” control group but rather include women with

gynecological conditions, and there may be an increased risk

of sample contamination when upper FRT microbiotas are

collected because this is typically a transcervical procedure

(185). However, Moreno et al. found that in infertile women

seeking in vitro fertilization (IVF), a non-Lactobacillus dominant

endometrial microbiota during the receptive phase of the cycle

was associated with significantly reduced implantation rates,

pregnancy, ongoing pregnancy, and live birth compared to

a Lactobacillus dominant microbiota (63). A lower median

percentage of endometrial Lactobacillus was reported in women

undergoing IVF compared to healthy volunteers and non-IVF

patients (186). Together these studies suggest that Lactobacillus

dominant endometrial microbiota is favorable for embryo

implantation (63, 186). Non-Lactobacillus dominant microbiota

may trigger an inflammatory response that hinders embryo

implantation (63). Additionally, a recent study points to the

potential role of vaginal dysbiosis in primary ovarian failure

(POF) (187), i.e., failure of ovarian function in women under the

age of 40. Women with POF have significantly higher vaginal

microbial diversity compared to healthy controls. Ten bacterial

genera, including Gardnerella, Prevotella, and Bacteroides are

abundant in the POF vaginal microbiota (187).

A recent prospective study by Moreno et al. greatly

enriches our understanding of the relationship between

reproductive tract microbiota and reproductive success, as

the authors demonstrated the endometrial microbiota before

embryo transfer during IVF is associated with reproductive

outcomes (188). Specifically, patients with live births were

more likely to have a Lactobacillus rich microbiota. An

endometrial microbiota profile of Atopobium, Bifidobacterium,

Chryseobacterium, Gardnerella, Haemophilus, Klebsiella,

Neisseria, Staphylococcous, and Streptococcus was associated

with poor IVF outcomes defined as biochemical pregnancy,

no pregnancy or clinical miscarriage (188). However, others

report that IVF failure is associated with enriched uterine

Lactobacillus, suggesting that bacterial translocation from the

vagina to endometrium negatively impacts embryo implantation

(189). The disparity across studies highlights that the “desirable”

endometrial microbiota composition for successful pregnancy

has not yet been confirmed, but regardless, its composition

seems to influence IVF success. Indeed, a recent systematic

review concluded that the endometrial, cervical, and vaginal

microbiotas may play a role in fertility and assisted reproduction

outcomes, however a definitive relationship remains unclear due

to an overall lack and inconsistency in the available data (190).

Our understanding of the endometrial microbiota in pregnancy

is further complicated by a lack of knowledge of its composition

in fertile women who typically do not seek reproductive

technologies and are therefore largely underrepresented in these

studies. A procedure characterizing the endometrial microbiota

from endometrial fluid or biopsy may be a promising future

biomarker to predict reproductive outcomes prior to assisted

reproduction (188). While much of the existing literature

emphasizes the role of the FRT microbiotas in pregnancy [as

reviewed elsewhere in (16, 17)] and STIs [reviewed in (18, 19)]

there is evidence supporting the contribution of FRTmicrobiota

to infertility.

Endometriosis

Endometriosis is a chronic systemic inflammatory condition

marked by the presence of endometrial-like tissue in ectopic

locations. This debilitating condition affects up to 1 in 10

people assigned female at birth (191). Endometriotic lesions are

estrogen-dependent (192) and growth factors, inflammasomes,

and pro-inflammatory cytokines contribute to an inflammatory

peritoneal microenvironment which promotes the growth

of endometriotic lesions (193). To further complicate our

understanding of the pathophysiology of endometriosis, there is

some evidence supporting a bidirectional relationship between

endometriosis and the human microbiomes (194).

Endometriosis is associated with dysbiosis of the gut and

reproductive (vaginal, cervical, and endometrial) microbiotas

[reviewed in (195)]. Increased abundance of Proteobacteria,

Streptococcus spp., Enterobacteriaceae, and E. coli at different
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microbiome locations seems to be associated with endometriosis

(194). Several studies profiled the FRT microbiotas in women

with endometriosis and demonstrated differences vs. control

groups. For example, stage III endometriosis is associated

with increased bacterial richness and phylogenetic diversity in

urogenital samples (196). Compared to healthy controls, women

with stage III-IV endometriosis have increased abundance of

a range of pathogenic bacterial species (Gardnerella, Shigella,

Streptococcus, Escherichia, and Ureaplasma) in the cervical

microbiota. Furthermore, women with this stage of disease

lack Atopobium in the cervical and vaginal microbiota (197).

In women with endometriosis, the endometrial microbiota is

enriched with the Actinobacteria phylum, Oxalobacteraceae and

Streptococcaceae families, and Tepidomonas genus compared to

symptomatic controls (6). Even ectopic endometriosis lesions

display distinct bacterial compositions; deep endometriotic

lesions have diminished Lactobacillus concentrations and

elevated Alishwanella, Enterococcus and Pseudomonas (198),

suggesting there is some incompletely understood link between

bacteria and endometriosis.

Furthermore, there is evidence from experimental animal

models that the microbiota beyond the reproductive tract

is influenced by endometriosis. Mice with surgically induced

endometriosis have lower Firmicutes and higher Bacteroidetes

in the gut compared to control mice (193). When treated with

broad-spectrum antibiotics, mice with induced endometriosis

had significantly smaller lesions and reduced cell proliferation

compared to vehicle-treated mice. This antibiotic regimen

resulted in a reduced inflammatory response, as measured

by lower IL-1β, TGF-β1, TNF-α, and IL-6 in peritoneal

fluid and fewer macrophages present in endometriotic lesions.

Metronidazole, an antibiotic that targets Bacteroidetes, reduced

lesion growth. The authors suggested that gastrointestinal

bacteria promote inflammation, which fuels endometriosis

(193). Salliss et al. reviewed 6 animal studies and 28 clinical

studies to conclude that endometriosis is associated with

enriched bacterial diversity of the genital and gut microbiotas;

in human studies, endometriosis and infertility are usually

associated with Lactobacillus depletion and the presence of

BV-associated bacteria in the cervicovaginal microbiome (199).

Still, there is not a single microbiota profile characteristic

of endometriosis. It remains unclear whether endometriosis

contributes to dysbiosis in the FRT, or whether dysbiosis

contributes to the pathophysiology of endometriosis (195).

Nevertheless, epidemiological studies also support a link

between bacteria and endometriosis; two large population-based

studies found a 2-3X increased risk of having endometriosis in

women with previous lower genital tract infections or pelvic

inflammatory disease (ascension of pathogenic bacteria from

vagina to upper FRT) (200, 201). Returning to the complex

link between dysbiosis and inflammation in gynecological

disease, it has been suggested that fertility outcomes in

conditions like endometriosis and PCOS are partially mediated

by dysregulated cytokines in the FRT (182), perhaps a result of

microbial dysbiosis.

Endometrial cancer and endometrial polyps

Aside from infertility and endometriosis, microbial

dysbiosis may contribute to other gynecological conditions

including endometrial cancer and endometrial polyps.

Endometrial cancer is the most common malignant gynecologic

condition in the United States, with both incidence and

death rates increasing annually (202). The pathogenesis of

endometrial cancer remains poorly understood, but current

research points to a putative role of FRT microbiota in

its origin or progression. Across the vaginal, cervical, and

endometrial microbiota, women with endometrial cancer

have enriched Firmicutes, Spirochaetes, Actinobacteria,

Bacteroidetes, and Proteobacteria. The presence of A. vaginae

and Porphyromonas, in addition to elevated vaginal pH,

is significantly correlated with endometrial cancer (5).

Furthermore, mRNA expression of IL-6, IL-8, and IL-17 in

the endometrial microenvironment is significantly different

between women with endometrial cancer vs. benign uterine

lesions. Micrococcus abundance in the endometrial microbiota

is positively correlated with IL-6 and IL-17 mRNA, which

supports a plausible link between the endometrial microbiota

and inflammation in women with endometrial cancer (203).

The role of reproductive and gut microbiota dysbiosis and

inflammation in endometrial cancer is reviewed in Boutriq

et al. (204).

Endometrial polyps (EPs) are benign lesions that result

from overgrowth of the endometrium (205). EPs are often

identified upon examination in patients experiencing abnormal

vaginal bleeding or infertility (4). At the phylum level,

“healthy” women, and women with EP (with or without

chronic endometritis) have a uterine environment dominated

by Proteobacteria, Firmicutes and Actinobacteria. However,

the relative abundance varies across groups: compared to

healthy controls, women with EP have significantly elevated

Firmicutes and depleted Proteobacteria. Interestingly, uterine

Lactobacillus and Bifidobacterium are elevated in women

with EP (4). Prior research demonstrates that these species

inhibit apoptosis and upregulate cell proliferation, suggesting

that Bifidobacterium and Lactobacillus might be involved in

the etiology of EP (4). Finally, the Enterobacter genus is

diminished in the uterine microbiota of EP patients, which

may contribute to the characteristic endometrial overgrowth

(4). Several studies have characterized the composition of

the endometrial microbiota and demonstrated that a bacterial

signal in the uterus exists above what might be considered

contamination (185). Additionally, studies further demonstrate

the association of endometrial microbial diversity with a variety

of diseases of the endometrium, as well as adverse reproductive

outcomes (4, 6, 63, 188, 203).
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Cervical cancer

Cervical cancer, the fourth most common type of cancer

among women around the globe (206), is caused by persistent

HPV infection and compounded by other factors including BV

and STIs (207). The local immune, microbial, and metabolic

signatures in the FRT may favor HPV persistence, putting

the individual at greater risk for neoplastic disease (163).

The presence of TGF-β1 and IL-10, two immunosuppressive

cytokines, in the cervical cancer microenvironment enables

HPV infection persistence (207). A pilot study suggests the

cervical microbiota may modify local cytokine expression

during cervical cancer development (207). The authors

assessed microbial diversity and cytokine expression in cervical

specimens from women with non-cervical lesions (HPV-

positive or negative), squamous intraepithelial lesions, or

cervical cancer using a classification with eight community

state types to categorize microbial diversity. CST-VII samples,

composed mostly of cervical cancer cases, were dominated by

Fusobacterium spp. and had higher median levels of IL-4 and

TGF-β1 (207). It was found that the expression of common

cancer biomarkers in cervicovaginal lavage is correlated with

genital inflammation and vaginal Lactobacillus abundance

(208). Two out of three patient clusters identified in this study

(cancer-associated and high diversity/inflammation groups)

lacked Lactobacillus dominance, had high vaginal pH and genital

inflammation, in addition to elevated local expression of cancer

biomarkers. These features are associated with HPV infection

persistence and cervical cancer. The biomarkers investigated in

this study, which distinguished patients with increased genital

inflammation and vaginal dysbiosis vs. “healthy” women,

could be applied to predict HPV persistence, and consequently

cervical cancer risk (208). There is an increased abundance of

Actinobacteria, Proteobacteria, Bacteroidetes, and Fusobacteria

in the cervicovaginal microbiota of women with persistent

HPV infection (209). Cervical secretions from women with

HPV persistence (and therefore cervicovaginal dysbiosis)

have upregulated IL-6, TNF-α and immunosuppressive cells

compared to women with transient or an absence of infection

(209). Overall, several studies support a link between a

polymicrobial vaginal microbiota with HPV persistence and

consequently invasive cervical cancer development (210). The

increasing body of literature supporting the involvement of

the FRT microbiota and local inflammation in cervical cancer

and other gynecologic malignancies is reviewed in more detail

elsewhere (10, 163, 210–213).

Ovarian cancer and polycystic ovary syndrome

Moving up the FRT, there is evidence linking vaginal

dysbiosis to ovarian cancer and PCOS. As discussed, there are

barriers to studying the bacterial composition of the upper FRT

although bacteria have been identified in both cancerous and

non-cancerous ovarian tissue (214). Oncobiosis (i.e., dysbiosis

in a cancerous state) has been identified in ovarian cancer cases

in vaginal, cervicovaginal, upper genital tract, intra-tumoral, and

ovarian samples, in addition to peritoneal fluid, serum, and fecal

matter (215). Vaginal Lactobacillus dominance is a protective

factor against ovarian cancer (216). Meta-analysis established

that pelvic inflammatory disease is a risk factor for epithelial

ovarian cancer (217); organisms including C. trachomatis and

N. gonorrhea can lead to the establishment of this disease

(216), further supporting a possible link between the trifecta of

bacteria, inflammation, and gynecologic disease. Inflammation

itself drives oncogenesis, which seems to be the case in the

pathogenesis of ovarian cancer (215). The specifics of oncobiosis

in ovarian cancer include decreased Lactobacillus concentrations

and lactate production in the vaginal tract; in the tumor tissue

compartment proper, Gram-negative bacterial colonization,

inflammation, and lack of bacterial diversity are observed

[reviewed in (215)]. Microbial diversity and species richness

are reduced in the ovarian microbiota of ovarian cancer tissue

compared to distal Fallopian tube samples from healthy patients

(218). Specifically, the ratio of Proteobacteria to Firmicutes

is increased in ovarian cancer tissues; significantly elevated

Acinetobacter and depleted Lactococcus are also characteristic

of ovarian cancer (218). Banerjee et al. identified an oncobiotic

ovarian tumor signature with the predominant phyla being

Proteobacteria and Firmicutes (219). Taken together, these

primary studies suggest that FRT microbiome profiling may

prove useful as a biomarker of ovarian cancer (163). As for non-

malignant disease of the ovaries, PCOS patients have reduced

Lactobacillus concentrations and increased abundance of non-

Lactobacillus taxa in the cervical and vaginal environments

compared to healthy controls. Furthermore, pathways for

antigen processing and presentation, in addition to antibiotic

biosynthesis, are overactive in PCOS patients. These findings

suggest that PCOS patients have polymicrobial microbiota and

inflammation of the lower genital tract (220), and that bacterial

perturbances may be involved in ovarian cancer and PCOS.

Although still a relatively new area of research, an increasing

body of literature now reports alterations in the FRTmicrobiotas

associated with a range of gynecological conditions including

STIs, infertility, endometriosis, and gynecologic cancer. Future

studies should aim to characterize the precise mechanisms

governing these associations and consider how the information

gleaned might be used for diagnostic and therapeutic purposes.

Diagnostics and therapeutics

The FRT microbiota may be a promising diagnostic

and therapeutic target for different gynecological conditions

and malignancies (221). The homeostatic interplay between

the FRT microbiotas and host immune system may help

prevent the development of dysbiosis-associated infections.

The changes in the immune and metabolic signaling that
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take place during dysbiosis could affect the pathophysiology

of cancer, such as epithelial barrier breach, angiogenesis,

changes in cellular proliferation and apoptosis, and genome

instability, ultimately leading to gynecological cancer. For

example, there is an association between the vaginal microbiota

and vaginal intraepithelial neoplasia (VAIN), more specifically

the change in the composition of the vaginal microbiota with an

increased abundance of Atopobium, Gardnerella, Enterococcus,

Clostridium and Allobaculum and a higher viral load of HPV-

16, 52, and 58 contribute to the progression of VAIN and

growth of vaginal cancer (222). Studies have found specific

microbiota characteristics and signatures that are not only

potential diagnostic markers for gynecological cancers, but

also therapeutic targets. These microbiota characteristics are

different in the healthy compared to the cancerous state

(163). For example, Atopobium and Porphyromonas found in

the endometrium are associated with endometrial cancer via

pro-inflammatory cytokine and ROS production, leading to

inflammation and increased cell permeability (5, 65).

Diagnostics

An interesting clinical application for the resident

microbiotas in the FRT is its diagnostic potential. The human

microbiome could be the second human genome; a study

in China used the Vaginal Microecology Evaluation System

(VMES) as a tool for analyzing the vaginal microbiome

(223). VMES is mostly made of functional and morphological

microecological indicators. Functional indicators show the

microbial functional status and the activity of the several

enzymes, such as β-glucuronidase and acetylglucosaminidase

(224). VMES helps evaluate the vaginal ecosystem which helps

clinicians diagnose and improve treatment regimens for vaginal

infectious diseases.

Additionally, it has been proposed that the FRT microbiotas

can be used to diagnose gynecological conditions, such as

endometriosis. Perrotta et al. collected vaginal and rectal

samples from 35 women with and without endometriosis at two

different periods of the menstrual cycle (225). Gut and vaginal

microbiotas from patients with different revised American

Society for Reproductive Medicine (rASRM) endometriosis

stages were analyzed and rASRM stage I–II patients could be

differentiated from stages III-IV using the relative abundance

of an Anaerococcus operational taxonomic unit (225). Another

study investigated the effect of endometriosis on uterine and

cervical bacterial communities (196). Uterine washes and

urogenital swabs were collected from women undergoing

surgery for benign uterine/ovarian conditions or for pelvic

pain and suspected endometriosis. The bacterial community

composition significantly differed between the cervical and

uterine samples, and stage III endometriosis samples had a

significantly altered cervical bacterial community (196). These

findings could serve as a foundation for investigating the role of

FRTmicrobiotas in pathogenesis and diagnosis of endometriosis

and other gynecological conditions. However, future research

should focus on achieving external validation by replicating

these results with larger sample sizes.

The bacterial “signatures” present and/or the immune

response to bacterial dysbiosis in the FRT are not only

intriguing from an empirical perspective but may also have

clinical implications. Although our understanding of the

FRT microbiotas, particularly those other than the vaginal

microbiota, is still evolving, it is important to think about

the potential utility of reported and replicable differences in

terms of diagnostics and therapeutics. For example, the immune

signatures characterized by Campisciano et al. and Fichorova

et al. could prove useful in BV diagnosis, to predict recurrence

and assess recovery after treating a FRT infection (156, 162).

In another study, Masson et al. developed and validated a

biomarker panel able to identify women with asymptomatic

vaginal dysbiosis and STIs that cause vaginal discharge (e.g.,

C. trachomatis, N. gonorrhea, etc.) (176). An analysis of

cervicovaginal lavage samples from over 200 HIV-uninfected

women identified IL-1β and IFN-γ induced protein (IP)-10

as biomarkers of genital inflammation (226). A validation

study by the same authors demonstrated that IL-1α, IL-1β, IP-

10 could accurately diagnose BV or intermediate microbiota

status with 77% sensitivity and 71% specificity, deemed more

accurate than detection via clinical symptoms alone. The

accuracy of this panel was further increased when combined

with vaginal pH measurement. This test could be implemented

to refer women for further testing to elucidate the cause

of inflammation and to initiate appropriate treatment (176).

Furthermore, characterization of the vaginal microbiota will

pave the way for therapies including probiotics, prebiotics,

antibiotics, and hormonal therapies that can shape the FRT

microbiota composition to restore eubiosis (17). For example,

Wang et al. identified 34 bacterial genera that can predict POF

and propose the use of probiotics to re-establish vaginal eubiosis

in POF, with the goal of improving IVF success rates among this

population (187).

Probiotics

In addition to the diagnostic potential of the FRT

microbiotas, their therapeutic manipulation could offer

additional methods to treat and/or manage gynecological

conditions. Probiotics are defined as live microorganisms that

confer a health benefit if taken adequately (227). Probiotics

are commonly used for prevention or treatment of vaginal

disorders. Probiotics mostly include Lactobacillus species

and their role in vaginal health has been studied extensively.

Studies have shown that specific probiotic strains increase

lactobacilli counts in healthy women and women with Candida
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vulvovaginitis (vaginal yeast infection) and/or BV and assists

vaginal microbiota in recovering from antibiotics/antifungal

treatments (228, 229). Antimicrobial treatment of urogenital

infections is not always effective and associated with high

recurrence rates (230, 231). Infection recurrence could result

from a failure of antimicrobials to eliminate pathogens due to

biofilm resistance or because commensal bacteria are depleted

by the antimicrobial agents (232, 233). Therefore, probiotics

may be useful in replenishing commensal bacteria and

decreasing the recurrence rate of infections. It was reported that

daily L. acidophilus treatment was as effective as antimicrobial

treatment (trimethoprim/sulfamethoxazole) in reducing UTIs

(234). Another study showed that weekly application of L.

rhamnosus GR-1 and L. fermentum B-54 reduced the recurrence

of UTIs from 6 to 1.6 per year, further supporting the potential

of probiotics in prevention and treatment of urogenital

infections (235). Moreover, when the effect of a probiotic

vs. pasteurized yogurt on BV episodes was investigated, a

greater reduction in BV episodes (60%) was reported in

patients consuming probiotic compared to pasteurized yogurt

(25%) (236). However, discrepancies exist between different

studies due to suboptimal designs, considerable biases, and

small samples size that lack adequate statistical power to

detect between-group differences (237). Probiotics can have

beneficial effects through several mechanisms that include

production of hydrogen peroxide [as previously discussed

(29)] and lactic acid that lower the vaginal pH; producing

antimicrobial compounds and stimulating immune response

to help maintain eubiosis in the vaginal tract; and competing

for nutrients and restricting pathogen growth by adhering to

vaginal epithelial cells (12, 238–241). Moreover, lactic acid also

exerts anti-inflammatory effects in cervicovaginal epithelial

cells by producing the anti-inflammatory cytokine IL-1RA

which inhibits the production of inflammatory mediators IL-6,

TNF-α, RANTES, IL-8, and MIP3α from epithelial cell lines and

prevents IL-6 and IL-8 production by seminal plasma (242).

Moreover, Lactobacillus or Bifidobacterium dominant

uterine microbiota seems to be associated with better IVF

outcomes compared to other microbial profiles (63, 186). This

could be due to bacterial modification of inflammation and

host immune cell subsets that might be needed for embryo

implantation (243). Thus, animal models have been inoculated

with various bacterial strains in the uterus and the vaginal tract

to examine their effects on fertility. As beneficial reproductive

effects of lactobacilli are more commonly reported than

Bifidobacterium, most studies focus on strains of lactobacilli.

The intrauterine administration of L. buchneri was associated

with improved reproductive performance in cows and reduced

inflammatory cytokines (244), while vaginal inoculation with

L. plantarum restored fertility in mice that had previously

been inoculated with a sperm agglutinating strain of E. coli

(245, 246). Additionally, vaginal treatment with L. plantarum

was able to negate infertility caused by the intravaginal

administration of LPS, indicating that probiotics can ameliorate

inflammation-associated infertility, at least in a mouse model

(247). Importantly, no toxic effects were reported for the oral

administration of L. helveticus at doses up to 2000mg/kg with

respect to fertility, embryonic, or fetal development in rats

(248). With respect to Bifidobacterium, oral administration

of B. longum in mice improved experimentally induced BV

by reducing inflammatory factors in the vagina, uterus, and

gastrointestinal tract (249). Taken together, these experimental

studies suggest that Lactobacillus and Bifidobacterium-

containing probiotics may have the potential to improve fertility

by modifying the uterine environment. There are currently

three reports of probiotic use during human IVF cycles in

the scientific literature. In the first study, the intravaginal

administration of probiotics (human strains of L. acidophilus,

B. bifidum and B. longum) did not improve pregnancy rate

in women undergoing IVF (250), however a commentary on

the topic of probiotics and IVF suggested that the particular

probiotic employed in this study may not have been able to

produce the desired effect (251). Two subsequent studies,

however, were able to demonstrate a positive effect of probiotics

on pregnancy outcomes during IVF. Irollo et al. found that 2

months of oral prebiotic-probiotic treatment (type of probiotic

and regimen not mentioned in manuscript) prior to frozen

embryo transfer (FET) significantly increased the ongoing

pregnancy rate, and live birth rate in women with intestinal

dysbiosis as compared to women not receiving the treatment

(252). Kyono et al. describe a case series of 9 women with

non-Lactobacillus dominant endometrial microbiota who were

treated prophylactically with oral antibiotics in combination

with vaginal pre/probiotics (186). The uterine microbiota of all

9 women became Lactobacillus dominant following treatment,

and 5 of them became pregnant following FET (186). Taken

together, early studies suggest a potential therapeutic role for

probiotics in FRT health and fertility.

Vaginal microbiome transplant (VMT)

Other than probiotics, another potential avenue to modify

the vaginal microbiota is viaVMT. Interest in using transplanted

human material, more specifically vaginal microbiome for

microbial infection and dysbiosis, started after the success

of fecal microbiota transplantation for treating recurrent

Clostridium difficile infection (253). Additionally, vaginal

microbiome components have been found to transfer between

women who have sex with women based on a study that

showed 23 out of the 31 monogamous female couples had

identical rep-PCR fingerprints of Lactobacillus spp. (254). VMT

from a donor with an “optimal” vaginal microbiota has been

investigated as a potential therapy for women with BV or

other vaginal disorders. Lev-Sagie et al. showed that VMT from

healthy donors attenuated BV in four out of five participants
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with intractable, symptomatic, and recurrent BV (255). These

women showed improvement in symptoms, reconstitution of a

Lactobacillus-dominated VMB, and appearance of vaginal fluid

on a microscopic level. This lasted 5–21 months where the four

patients did not need repeated VMT or additional treatments

(255). The fifth subject also showed partial improvement of

symptoms and expansion of Lactobacillus species (255). There

are some risks associated with VMT, such as transfer of

antimicrobial-resistant microorganisms and pathogens from

donor to recipient, unintentional sperm transfer which could

result in unintended pregnancy, transfer of other phenotypes

and infectious diseases that may remain undetected using

current screening methods, and immunologic rejection (256,

257). In March 2020, a Safety Alert regarding the potential

for transmission of SARS-CoV2 via fecal matter in Fecal

Microbiota Transplantations was issued by the Food and

Drug Administration which may suggest a similar transmission

potential in VMTs (258). Therefore, having strict inclusion and

exclusion criteria and extensive testing of the donor samples

is necessary to minimize risks associated with VMT (259).

Currently there are two ongoing clinical trials investigating

the use of VMTs, one in Massachusetts General Hospital and

another at Johns Hopkins (260, 261). However, to the best of our

knowledge the only published research on VMTs is the Lev-Sagie

et al. study (255). Therefore, future research with bigger sample

size is required to further investigate the safety, effectiveness, and

durability of VMTs.

Antibiotics

Antibiotics are the first line therapy for BV (262).

These antibiotics include metronidazole, clindamycin, and

tinidazole that could be administered orally and/or topically.

Metronidazole is a nitroimidazole antimicrobial agent which

is used for managing protozoal infections such as anaerobic

infections and trichomoniasis and could be administered orally

or vaginally (263). Studies have shown that the cure rates

of women taking metronidazole for BV were between 58–

100%, which was higher than women taking placebo (5–29%)

(264, 265). Clindamycin is another antimicrobial agent used to

treat BV. This antibiotic is a subclass of the larger family of

macrolide antibiotics and could be used orally and vaginally.

A meta-analysis determined that clindamycin had a lower

treatment failure compared to the placebo (265). Tinidazole is

a nitroimidazole antibiotic and was first reported to be used for

BV treatment in Europe, Asia, and Latin America (266). The

effectiveness of tinidazole was assessed in a randomized control

trial and a higher cure rate (dose-dependent) in the tinidazole

group compared to the placebo was reported (267).

Although antibiotics are effective against BV, they are

associated with a high recurrence rate (50%−67%) and many

patients relapse after the treatment (86, 268, 269). This high

recurrence rate could be due to reinfection from sexual partners,

or it could be because antibiotics are not able to eliminate the

biofilm-associated bacteria of BV in the vagina (270–275). For

example, it was shown that after treatment with metronidazole

the BV-associated bacteria were largely depleted or fully depleted

in 58% of patients, possibly because the BV-associated bacteria

were sheltered by biofilms (273). Another study showed that

G. vaginalis biofilms persisted after the oral administration of

metronidazole (271). Antibiotics may not always be optimal in

treating BV due to resistance from bacteria and fungi which

could be a naturally acquired resistance or due to biofilm

formation (270, 276–278). Antibiotics could also lead to BV by

interrupting endogenous lactobacilli (274, 279). Another pitfall

of antibiotics is that they are not bacterial species-specific and

could deplete the commensal bacteria, and result in a decrease

in the “healthy” bacteria in the vaginal tract (280).

Interestingly, antibiotics have also been reported to

have potential therapeutic benefit in animal models for

other gynecologic conditions like endometriosis. Mice

with surgically induced endometriosis were treated with

broad-spectrum antibiotics or metronidazole; endometriotic

lesions were significantly smaller after 21 days with fewer

proliferating cells in mice treated with antibiotics compared

to vehicle (193). Moreover, mice treated with antibiotics

showed a significant reduction in inflammatory responses

which was measured by the concentration of IL-1β, IL-6,

TNF-α, and TGF-β1 in peritoneal fluid and the macrophage

marker Iba1 in lesions (193). These findings suggested

the microbiotas associated with endometriosis promoted

its progression, but further research is needed to evaluate

whether these findings can be translated to humans and

if new microbiota-based therapies could be developed to

manage gynecological conditions or serve as an adjuvant to

current therapies.

Conclusion

The FRT, similar to other mucosal sites, has a site-specific

microbiota that forms a mutualistic relationship with human

host and plays a critical role in health and maintaining

homeostasis. The vaginal microbiota is well-characterized, and it

was previously accepted that distal sites of the FRT were sterile.

In fact, the endometrial microbiota has been characterized in

several studies and shown to vary in composition in women

prone to adverse reproductive outcomes or benign/malignant

diseases of the endometrium (4, 6, 188, 203). Recent studies have

shown specific patterns of microbiota in the upper reproductive

tract (uterus, Fallopian tubes, ovaries, and placenta) and have

further contested the sterile assumption (7, 23, 67, 73, 74, 79, 83).

However, the upper FRT microbiotas are understudied due to

complex and invasive sample collection; thus, results of these

early studies require confirmation.
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FIGURE 3

Summary of the female reproductive tract microbiota, inflammation, and therapeutics and diagnostics. (A) An illustration depicting a summary of

the vaginal microbiota in homeostasis vs. a dysbiotic state (as in Bacterial vaginosis). In homeostasis, the native bacteria are tolerated by the host

immune system, while in a dysbiotic state the bacteria and/or metabolites induce an immune response and inflammation in the host. Barrier

disruption can occur as a result. (B) An overview of how the female reproductive microbiotas might be harnessed as potential therapeutics and

diagnostics for gynecological conditions involving inflammation and/or dysbiosis in the female reproductive tract. BV, Bacterial vaginosis; STI,

sexually transmitted infections. Created with BioRender.com.

The interaction between the FRT microbiotas and the

immune system is complex and necessary for maintaining

homeostasis and preventing infection and dysbiosis (Figure 3A).

However, to the best of our knowledge there are currently

no studies on the mechanism through which the commensal

bacteria and immune system interact in FRT. Based on

the commensal bacteria-host interactions in other bodily

systems, such as the gastrointestinal tract (99–101), it is

likely that under normal circumstances, such as healthy

diet and lifestyle, eubiosis is maintained through regulatory

T cells. However, under certain conditions such as stress

and infection this balance can be disturbed, resulting in

inflammation and dysbiosis. The literature discussed herein

demonstrates that the FRT microbiotas likely play a role in

gynecologic conditions, however whether microbial dysbiosis

leads to or is a result of gynecological disease has yet to be

elucidated. Whether malignant or non-malignant, a consistent

pattern emerges from the literature: Lactobacillus depletion and

increased abundance of “harmful” bacterial species appear to be

associated with disease of the FRT. There is a well-established

link between dysbiosis and infertility or adverse pregnancy

outcome. Furthermore, patients with gynecologic conditions

including endometriosis and PCOS often experience infertility.

Both conditions are associated with increased presence of

pathogenic microbial species throughout the FRT (6, 194,

220). An interesting avenue for future research would be to

investigate differences in FRT composition among women with

gynecologic disease, in association with prospective infertility

and reproductive outcomes in the same population. The FRT

microbiotas may be promising for diagnostic and therapeutic

purposes (Figure 3B). As discussed herein, the FRT microbiotas

can be modified using probiotics, VMTs, and antibiotics.

Some studies showed that endometriosis stages could be

differentiated using FRT bacteria (225). Moreover, probiotics

can re-establish vaginal eubiosis in POF (187) and treating mice

with surgically induced endometriosis with antibiotics reduces

lesion size (193). Therefore, microbiome-targeted interventions

could serve as preventive tools for gynecological conditions
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in the future. Additional studies should investigate the FRT

microbiotas to gain mechanistic insights for personalized

medicine and diagnostics.
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