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Abstract
Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular
dystrophy caused by mutations in the gene encoding dystrophin, a protein
required for muscle fibre integrity. So far, many approaches have been tested
from the traditional gene addition to newer advanced approaches based on
manipulation of the cellular machinery either at the gene transcription, mRNA
processing or translation levels. Unfortunately, despite all these efforts, no
efficient treatments for DMD are currently available. In this review, we highlight
the most advanced therapeutic strategies under investigation as potential DMD
treatments.
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Introduction
Duchenne muscular dystrophy (DMD) is a rare, severe, degenera-
tive X-linked myopathy caused by mutations in the gene (DMD) 
encoding the dystrophin protein. DMD affects about 1 in 3500 to 
4000 boys globally1,2, and one-third of cases is attributed to spon-
taneous new mutations3. Dystrophin plays a key role in joining the 
actin of the cytoplasmic cytoskeleton to the extracellular matrix 
surrounding the sarcolemma of muscle fibres directly binding 
a protein complex known as dystrophin-associated glycoprotein 
complex (DGC)4. Several proteins like alpha-dystrobrevin, syncoi-
lin, synemin, sarcoglycan, dystroglycan, and sarcospan are located 
at the DGC, where they mediate the muscle-networking signals that 
are essential for both muscle cell function and the development and 
maintenance of membrane integrity2,5. Mutations in the DMD gene 
usually cause partial or complete absence of dystrophin, leading to 
membrane instability and muscle cell death associated with progres-
sive tissue degeneration, muscle weakness, joint contractures, and 
kyphoscoliosis6,7. Both skeletal and cardiac muscles are affected in 
patients with DMD. In particular, the loss of dystrophin leads to 
respiratory failure8 because of the severely damaged diaphragm and 
to cardiomyopathy and heart failure9, which usually result in pre-
mature death by the age of 25 to 3510,11, although some long-term 
survivors have been observed12.

Despite more than 20 years of research and the clear understanding 
of the molecular basis of the disease, only limited advancement of 
therapeutic approaches has been obtained, and currently the only 
available treatment is a combination of physiotherapy and corticos-
teroids. Although these palliative treatments can provide a consid-
erable improvement in affected boys, they can only slow the course 
of the disorder. In this article, we will discuss the relevance of three 
approaches for the treatment of DMD: the gene addition approach 
by triple trans-splicing (TTS), the use of gene editing to correct the 
DMD transcript, and the exon-skipping approach to re-frame the 
faulty DMD pre-RNA. All of these methods are promising DMD 
treatments that tackle the cause of the disease and offer the poten-
tial to treat many DMD mutations.

Facing DMD challenges
The DMD gene is expressed mainly in skeletal and cardiac muscle. 
About 65% of the mutations affecting dystrophin are deletions of 
part of the gene with two predominant hotspots within the DMD 
sequence. Two types of mutations are associated with two allelic 
forms of the disease: the first leads to the expression of out-of-
frame mRNA that abolishes dystrophin production and causes the 
most severe form-of-the-disease, the DMD. The second type of 
mutation induces the expression of an in-frame mRNA, resulting 
in a milder form of DMD known as Becker muscular dystrophy 
(BMD), in which a shorter but still partially functional dystrophin 
is produced13.

There are currently many pharmacological approaches that can 
hinder DMD symptoms by focusing on secondary effects, yet they 
would treat just one aspect of DMD pathogenesis and may be asso-
ciated with possible side effects14. For a better understanding of 
the different potential therapies available for DMD, we firstly have 
to highlight which challenges they face. In this regard, one hur-
dle is that DMD is frequently caused by new mutations, meaning 

that many patients have no family history15. Furthermore, more 
than 60% of DMD mutations are due to intragenic deletions of 
one or more exons, resulting in disruption of the correct DMD open 
reading frame (ORF)16. Thus, DMD mutations can vary in severity 
and the phenotype is often unpredictable.

Therefore, the most urgent interest is to develop a genetic strat-
egy that can provide a treatment for all patients with DMD. The 
other crucial point is that the ideal DMD therapy should be sustain-
able and lifelong. Previous observations in patients with X-linked 
myopathy suggest that in order to prevent muscle weakness, at least 
30% of dystrophin must be expressed in skeletal muscle17. Even if 
this may seem a low level compared with the one in normal tissues, 
a crucial issue is that muscles of boys with DMD are substantially 
wasted and present a significant amount of fat and connective 
tissue that makes the remaining muscle tissue hardly accessible by 
the therapeutic agents delivered to the bloodstream. Furthermore, 
although most therapeutic agents have proven to be successful in 
small animal models (for example, rodents), human muscles are 
significantly larger and this requires scaling up the therapeutic 
agents’ manufacturing process, which usually is related to logistic 
and economical challenges. Nowadays, gene therapy has emerged 
as a promising applicable strategy, as DMD therapy can cure the 
genetic defect and not just its downstream effects.

DMD gene addition by trans-splicing
The vast majority of gene therapy-based clinical trials for other 
disorders are based on the gene addition “replacement” approach18. 
For DMD gene replacement, a point of major concern is the size of 
the very long DMD gene (exonic DNA >11 kb). Hence, a partially 
functional, intact, and usually shortened DMD copy is delivered 
into muscle cells in order to mimic the beneficial effect of a smaller 
but partially functional protein expressed in patients with BMD. To 
achieve that, many delivery systems have been studied for DMD 
gene replacement, yet so far the most efficient is the use of adeno-
associated virus (AAV)19–21. The main issue with AAV applications 
is that their limited packaging capacity of approximately 4.7 kb 
requires the delivery of substantially internally deleted (truncated) 
dystrophin expression cassettes. Additionally, when AAVs are used 
in large quantities, their capsid proteins could potentially activate 
an immunogenic response; consequently, strategies to attenuate the 
immune system are possibly needed for a clinically successful AAV 
approach3.

In preclinical tests, single AAV vectors were used to successfully 
deliver microdystrophins (<5 kb)—carrying about 30% of the 
coding sequence, both locally and systematically—and were associ-
ated with good improvement of muscle function22–25. Nevertheless, 
some domains of dystrophin, like the critical parts of rod-and-hinge 
domains, should be included to increase dystrophin functionality 
and stabilise the membrane as they contribute to the recruitment of 
other components of DGC, such as neuronal nitric oxide synthase, 
syntrophin, and dystrobrevin26,27, on the sarcolemma. In order to 
expand AAV packaging capacity and improve muscle functional-
ity, trans-splicing dual AAV vectors were developed about 15 years 
ago to deliver less than 10 kb minidystrophin28–30. In this approach, 
a large gene is divided, then packaged and delivered by two AAVs 
and ultimately expressed by dual trans-splicing. For this system to 
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work, the first vector (the 5′ DMD part) is tail-tagged with splicing 
donor signal while the second vector (the 3′ DMD part) provides 
a preceding splicing acceptor signal. By co-transduction of the 
two vectors, the AAV head-to-tail vector genome concatemerisa-
tion31,32 and the removal of viral sequences from the transcribed 
mRNA by the cellular splicing machinery allow the expression of 
the entire minidystrophin protein33. In two different studies, the 
localised injections of trans-splicing dual AAVs into a dystrophic 
muscle of a mouse model of DMD have shown successful minidys-
trophin expression in myofibres of a single muscle31,34. In another 
in vivo study, systemic injection led to high-level transduction 
within skeletal and cardiac muscles32. Another possible strategy is 
based on dual protein trans-splicing that was applied in a mouse 
model leading to therapeutic gene expression and improving dys-
trophic muscle morphology and histology35. Although the proof of 
principle for this approach was successfully demonstrated and 
muscle functions were slightly improved, transduction efficiency 
was too low to achieve the therapeutic level for a functional protein 
as minidystrophins still lack some potentially essential domains in 
the final dystrophin conformation.

This strategy may be improved by developing a system to deliver 
the full-length exonic DMD sequence and express an entirely 
functional dystrophin. In this regard, recent research has exam-
ined the possibility of dividing the whole native exonic DMD (~11 
kb) into three AAV vectors, creating the Triple transplacing-AAV 
(TTS-AAV) system by using different inverted terminal repeats 
within the three vectors to favour the formation of the correct head-
to-tail concatemers36. The proof of concept was demonstrated in 
the DMD mouse model, showing the expression of a full-length  
dystrophin protein co-localising with the expression of a tagged 
protein (enhanced green fluorescent protein, or eGFP), whose  
coding sequence was at the 3′ end of the gene36. However, the 
efficiency of the TTS-AAV system was very low. Only one out of 
four treated mice showed evidence of splicing between the three  
vectors. Further optimisation of this approach is essential to over-
come the low efficient expression by, for example, improving  
splicing elements, maximising gene expression, and directing the 
AAV vector concatemerisation more efficiently. The TTS-AAV 
system then could bypass the issue of the AAV vector-related size 
limitation and pave the way for similar gene therapy applications 
involving large defective genes.

DMD gene editing
Gene editing is the most exciting approach to treat DMD, as it har-
nesses the natural cellular repair mechanisms of non-homologous 
end joining (NHEJ) or homologous recombination (HR) to repair 
faulty genes at their endogenous loci. This approach would allow 
the gene to maintain its native regulation and to permanently cor-
rect the DMD defects. In somatic mammalian (including human) 
cells, the expected spontaneous NHEJ rate is approximately 1 in 
103 cells but for HR is approximately 1 in 106 cells37,38. Notably, 
these low spontaneous frequencies have limited both the experi-
mental and the therapeutic gene-editing strategies. Nevertheless, 
these rates could be increased via induction of site-specific DNA 
double-strand breaks (DSBs) by introducing custom designer 
nucleases to specifically cleave the DNA and then leave the  
cellular repair machinery to be recruited and correct the cleavage. 

In practice, engineered nucleases could be directed to target any  
defective gene within the genome by induction of site-specific DSBs 
that will be repaired by either NHEJ or HR. To date, nucleases such 
as meganucleases (MNs), zinc finger nucleases (ZFNs), transcription  
activator-like effector nucleases (TALENs), and clustered regularly 
interspaced short palindromic repeats (CRISPRs) systems have 
been tested in several models of disease.

The feasibility of designer nuclease-mediated gene editing has 
been shown in muscle disorders39–43. By applying MNs, the normal 
ORF of a dog microdystrophin containing a frame-shift mutation39 
was rescued while the expression of full-length dystrophin mRNA 
was restored in human patient myoblasts containing a deletion of 
exons 45–5244. This was the first example of successful genome 
editing of the DMD locus. ZFNs were used to target the dystrophin 
gene producing INDELs (insertion-deletions) of different sizes and 
leading to the restoration of the normal ORF40. Recently, ZFNs 
were applied to successfully remove exon 51 from the dystrophin 
transcript, restoring the dystrophin normal ORF in cells of patients 
with DMD. This approach may lead to the treatment of approxi-
mately 13% of mutations of patients with DMD43. The proof of 
principle of using TALENs for gene editing in primary dermal 
fibroblasts that originated from a DMD patient carrying a deletion 
of exons 46–50 was also recently published42. Again, the DMD 
normal ORF was restored and functional dystrophin was ultimately 
expressed by targeting and removing exon 51.

It has lately been shown that AAVs can be used to successfully 
deliver CRISPR/Cas9 system into mdx mice to remove exon 23 
from the dystrophin gene, leading to the expression of a partially 
functional dystrophin in skeletal myofibres and cardiac muscle, 
and also to improve muscle force45. Moreover, it has recently been 
reported that TALENs and CRISPR/Cas9 systems can be applied 
side by side to correct the dystrophin gene in induced pluripo-
tent stem cells derived from patients with DMD. In this case, the 
designer nucleases were used to disrupt the splicing acceptor to 
skip exon 45 of dystrophin, to induce small INDELs to correct 
the dystrophin ORF, and to knock in the exon 44 to restore full 
protein expression46. In another study, TALENs and CRISPR 
nucleases were used to achieve a permanent restoration of DMD 
ORFs in patient-derived muscle cells. To achieve DMD restora-
tion, short INDELs were incorporated at out-of-frame sequences 
to restore normal ORF, a splice acceptor was knocked out to skip 
exons permanently, and CRISPR-CRISPR or CRISPR-TALEN 
multiplexing was used to excise targeted exons47.

Particularly important for a successful gene-editing approach in 
muscle disorders is to achieve and maintain a sustainable genetic 
correction by targeting both post-mitotic muscle tissue and muscle 
stem cells. Indeed, the correction of endogenous affected muscle 
stem cells would be advantageous, as their self-renewal feature 
would allow long-lasting regeneration of a patient’s muscles with 
newly formed corrected muscle cells48. Despite promising results 
of applying designer nuclease-mediated gene editing for DMD 
treatment, there are still some crucial challenges: an efficient 
nuclease-based system should ensure a robust cleavage of the tar-
geted DNA but for a very short time in order to achieve the desired 
site-specific DSBs and to control post-delivery nuclease expression 
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at their target cells. Furthermore, possible related non-specificity and 
off-target cuttings (even at very low levels) are relevant concerns for 
the safety of this approach and preclude, at least with the currently 
available gene-editing tools, any in vivo application in humans.

DMD exon skipping
The exon-skipping approach for DMD is based mainly on deliver-
ing antisense oligonucleotides (AONs) targeting some sequences 
associated with the exons and normally recognized by the cellular 
splicing machinery. AONs mask these sequences so that specific 
exons are spliced out from the pre-mRNA and the dystrophin ORF 
are restored by the expression of shortened BMD-like dystrophin 
with partial function49,50. In more than 80% of all DMD mutations13 
(including the majority of out-of-frame deletions51), the skipping of 
one or two specific exons could lead to a correct DMD gene.

Since its first demonstration two decades ago52, exon skipping has 
witnessed many optimisations and modifications in murine53–55 
and canine56,57 models of DMD. Two AON chemistries have been 
used in clinical trial so far: 2′-O-methyl–modified ribose mol-
ecules with a full-length phosphorothioate backbone (2′OMePS) 
and phosphorodiamidate morpholino oligomers (PMOs). The 
largest group (13%) of all DMD patients could be treated by skip-
ping exon 5113. The first clinical trial, based on intramuscular 
delivery of PRO051, a 2’OMePS AON, to induce exon 51 skip-
ping was a success; sarcolemmal dystrophin was restored in 64 to 
97% of examined myofibres58. In subsequent phase II/III clinical 
trials, GlaxoSmithKline (London, UK) and BioMarin (formerly 
Prosensa) (Novato, CA, USA) tested the systemic delivery of 
the same AON, called drisapersen (latterly Kyndrisa). However, 
the results failed to demonstrate a statistically significant improve-
ment in some crucial tests (for example, 6-minute-walk test)59, 
and early this year, the US Food and Drug Administration 
(FDA) did not approve drisapersen as a marketable drug and this 
resulted in discontinuation of the drug60. In parallel, AVI BioP-
harma (now known as Sarepta Therapeutics, Cambridge, MA, 
USA) developed AVI-4658 based on PMO chemistry to skip the 
exon 51 of dystrophin. After intramuscular injection into boys 
with DMD, AVI-4658 showed a 44 to 79% increase of dystrophin 
expression61. The same AON tested systemically by Sarepta  
Therapeutics, renamed eteplirsen, increased dystrophin-positive 
fibres by 23% compared with placebo-injected controls62. Etep-
lirsen then was systemically injected in a phase II/III clinical trial 
but with results similar to those obtained by the 2′OMePS-based 
AON drisapersen63, and its approval by the FDA is currently  
under debate64.

Despite promising results of systemic delivery of AONs for exon 
skipping, both in animal models and in humans, the treatment 
suffers from relatively poor efficiency. Increasing drug effective-
ness by elevating dose levels over chronic time periods may not 
be feasible owing to the risk of toxic side effects. One other option 
is to increase the relative dose effectiveness without unduly exac-
erbating the risk of side effects. Thus, more research needs to 
be done to find better AON chemistries and possibly more effi-
cient strategies to deliver them. New chemistries have recently 
been tested as tricyclo-DNA, a DNA analog, which was sys-
tematically administered into two DMD mouse models, leading 

to efficient dystrophin expression in both skeletal and cardiac  
muscles and, to a lesser extent, in the brain65. Additionally, Gao 
et al. have reported that, in mdx mice, the repeated administra-
tion of peptide nucleic acid AONs, a synthetic chemistry, restores  
dystrophin in gastrocnemius, leading to amelioration of dystrophic 
pathology in DMD mice66. Moreover, it has been demonstrated that 
systemic administration of PMO conjugated to cell-penetrating 
peptides resulted in high levels of dystrophin restoration in major 
respiratory muscles, including the diaphragm, and improved the 
cardiac function in mdx mice67. Also, in an mdx model, it was 
recently demonstrated that dual exon skipping of dystrophin and 
myostatin pre-mRNAs using PMO conjugated with an arginine-
rich peptide improved dystrophin expression and decreased muscle 
necrosis, particularly in the diaphragm68. Likewise, the same princi-
ple was used to target dystrophin and Actvr2b to produce an inter-
nally deleted protein leading to comparable exon-skipping levels 
for both pre-mRNA targets when compared with individual PMO 
conjugates both in vitro and in vivo in mdx mice69.

Alternatively, exon skipping of dystrophin exons could be achieved 
by using other approaches like CRISPR-Cas9 nuclease. In this 
regard, it has recently been shown that exon 23 could be skipped 
by using the CRISPR-Cas9 system when delivered to postna-
tal mdx mice intraperitoneally at postnatal day 1 (P1), intramus-
cularly at P12, and retro-orbitally at P18. Two CRISPR systems 
were used, preceding and following the mutated exon in the DMD 
gene, and delivered by AAV9. Following this genome editing  
treatment, restoration of dystrophin expression was detected at  
varied levels in both cardiac and skeletal muscles up to 12 weeks 
after injection54. In a similar study, a dual CRISPR system was 
applied to induce a specific larger deletion across exons 50 and 54 
of the DMD gene, resulting in fusion of the targeted exons. Whereas 
the in vitro experiments were performed in cultured 293T cells or 
DMD patient myoblasts (with deletion of exons 51–53), the in vivo 
experiments were done in the humanised hDMD/mdx mice. Study 
results revealed that significant levels of hybrid exon 50/54 were 
formed in vitro in DMD myoblasts and that in hDMD/mdx mice  
in vivo the corrected DMD ORF was partially restored55.

The last two studies suggest that this gene-editing system may be 
advantageous over AON exon skipping, as a single injection leads 
to the permanent correction of the genome. However, no data 
on toxicity or off-target effects of using such gene-editing tools 
in vivo were reported. Those two studies highlight the importance 
of applying more than one approach to restore dystrophin. Indeed, 
a relevant amount of future research will focus on developing 
combined strategies to ameliorate the disease. As an example of 
this research direction, engineered CD133+ human DMD stem cells 
were transduced with lentivirus vectors that permanently deliv-
ered the cloned AONs rescuing murine dystrophin expression70. 
Moreover, lately it was reported that co-administration of PMOs 
with glucose enhances exon-skipping activity in mdx mice53.

Altogether, the DMD trans-splicing, gene-editing, and exon- 
skipping approaches, though still presenting some important issues, 
such as relatively low efficiency, possible associated toxic effects, 
or the need for chronic delivery, represent the most attractive and 
promising genetic treatments for DMD.
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