
Research Article
New Construction of Family of MLCS Algorithms

Haihe Shi and Jun Wang

School of Computer and Information Engineering, Jiangxi Normal University, Nanchang, China

Correspondence should be addressed to Haihe Shi; haiheshi@jxnu.edu.cn

Received 3 December 2020; Revised 4 January 2021; Accepted 11 January 2021; Published 19 January 2021

Academic Editor: Hao Zhang

Copyright © 2021 Haihe Shi and Jun Wang. *is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

*e multiple longest common subsequence (MLCS) problem involves finding all the longest common subsequences of multiple
character sequences.*is problem is encountered in a variety of areas, including data mining, text processing, and bioinformatics,
and is particularly important for biological sequence analysis. By taking the MLCS problem and algorithms for its solution as
research domain, this study analyzes the domain of multiple longest common subsequence algorithms, extracts features that
algorithms in the domain do and do not have in common, and creates a domain feature model for the MLCS problem by using
generic programming, domain engineering, abstraction, and related technologies. A component library for the domain is designed
based on the feature model for the MLCS problem, and the partition and recur (PAR) platform is used to ensure that highly
reliable MLCS algorithms can be quickly assembled through component assembly. *is study provides a valuable reference for
obtaining rapid solutions to problems of biological sequence analysis and improves the reliability and assembly flexibility of
assembling algorithms.

1. Introduction

*e problem of finding the longest common subsequence
between sequences is called the longest common subsequence
(LCS) problem, and that of finding the longest common
subsequence among more than two sequences is called the
multiple longest common subsequence (MLCS) problem. *e
MLCS problem was shown to be an NP-hard problem in [1].
*is problem is widely used in the fields of bioinformatics
and computational genomics [2–4]. *e rapid development
of high-throughput sequencing technology [5] has pro-
moted the implementation of many international genomic
projects [6], and massive amounts of data have been gen-
erated in the field of bioinformatics. *is has led to the
formation of large-scale bioinformatics data, where this scale
continues to grow. *e LCS of a set of biological sequences
usually preserves informative segments (subsequences) that
are conserved during the evolutionary process on the
condition that no internal deletions or insertions occur
within contiguous segments. Finding the LCS of biological
sequences is the basic means and method of studying bio-
logical sequence data and forms the basis for further

sequence analysis (such as multiple sequences alignment,
gene prediction based on similarity, genome rearrangement,
and so on).

For over 40 years, significant efforts have been made to
find efficient algorithms for the MLCS problem. For the LCS
problem, the most effective algorithm is the dynamic pro-
gramming algorithm. *e normal dynamic programming
algorithm was first proposed byWagner and Fischer in 1974
[7]. However, when searching the LCS of large-scale data,
the normal dynamic programming algorithm has problems
such as excessive memory space occupation and high time
complexity. *erefore, the dynamic programming algo-
rithms that optimize space complexity were proposed, such
as Hirschberg algorithms [8], SB algorithms [9], and Smith-
Waterman algorithms [10]. *e dynamic programming
algorithms can effectively solve the LCS problem of double
sequences, but in practical applications, it is often necessary
to deal with theMLCS problem ofmultiple sequences. As the
number of sequences increases, the time and space com-
plexity of the dynamic programming algorithms increase
exponentially, resulting in a poor performance of the dy-
namic programming algorithms when dealing with MLCS
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problems. In order to solve this problem, many other MLCS
algorithms have been proposed, which can be divided into
the heuristic MLCS algorithms and the dominant point-
based MLCS algorithms. *e heuristic MLCS algorithms are
approximate algorithms, and the dominant point-based
MLCS algorithms are precise algorithms. *e approximate
algorithms for MLCS problem were first proposed in 1994
[11, 12], and then the Expa algorithm was successively
proposed [13], as well as best next for maximal available
symbols (BNMAS) algorithm [14, 15], ant colony optimi-
zation (ACO) algorithm [16], beam search (BS) algorithm
[17], and so on. In the ACO algorithm, Shyu and Tsai
transformed the MLCS search problem into a node state
change problem in the ant colony algorithm and defined
state transition rules and pheromone update rules. In the BS
algorithm, Blum transforms the MLCS problem into a
problem of tree search, first builds a search tree for all input
sequences, and then uses the heuristic tree search algorithm,
Beam search, to search for MLCS. *e efficiency and so-
lution quality of ACO algorithm and BS algorithm are better
than other heuristic MLCS algorithms. In practical appli-
cations of MLCS problem, there are many cases where the
exact solution needs to be calculated. *erefore, the dom-
inant point-based algorithms are most widely used in the
MLCS problem. In 1977, Hunt and Szymanski found that,
when using dynamic programming algorithms to solve LCS
problems [18], the actual data used is only the value of the
position of a few points with the same characters in the
dynamic programming score matrix, and the data at other
positions in the score matrix can be deleted. According to
the above findings, the idea of dominant point-based al-
gorithm is proposed: by calculating the dominant points
between a set of molecular sequences, and generating all the
dominant point data into a directed acyclic graph (DAG),
each longest path in the DAG is a longest common sub-
sequence of the input sequences. Compared with the dy-
namic programming algorithm, it greatly reduces the time
and space complexity. In 2006, Chen proposed the Fast_LCS
algorithm first using the successor table (a data structure)
[19]. *e successor table can quickly calculate the match
points of the molecular sequence and then quickly delete the
redundant match points through a defined series of pruning
operations to generate dominant points, thereby greatly
reducing the time to generate a DAG. In 2011, wang pro-
posed Quick_DP algorithm and its parallel algorithm
Quick_DPPAR by improving the pruning function of
Fast_LCS [20]. In 2016, Li proposed Top_MLCS algorithm
[21] by constructing Irredundant Common Subsequence
Graph (ICSG). ICSG removed all redundant and duplicate
matching points, which greatly improved the efficiency of
searching MLCS. In addition, there are some algorithms that
use heuristic functions as pruning functions to delete re-
dundant matching points, and achieve good results, such as
ProMLCS algorithm [22], MLCS-A∗ algorithm [23], MLCS-
APP algorithm [24], and so on.

Current research on the MLCS problem has focused on
optimizing specific steps of particular algorithms [25] or their
parallel implementation [26]. Due to the diversity and struc-
tural complexity ofMLCS algorithms,many users cannot select

appropriate algorithms that conform to the characteristics of
the given sequence, where this may lead to unnecessary errors
in the application process.*erefore, it is important to research
MLCS algorithms at the level of domain abstraction.*is paper
uses generic programming [27], domain engineering, feature
modeling [28–30], abstraction, and related technologies to
study the MLCS problem. We consider MLCS algorithms as
research domain and conduct a domain analysis. *e feature-
oriented domain analysis (FODA) [28] method is first used to
establish the model for the MLCS domain. Following this, the
PAR platform is used to describe, design, and implement
components of the domain that are involved in the MLCS
domain model to generate a highly abstract MLCS algorithms
domain component library. Finally, this component library is
used to assemble and generate executable MLCS algorithms.

2. Related Technology

2.1. Partition and RecurMethod. Partition and recur method
(PAR method) is a formal development method based on
division and recursion [31–35]; it is a unified algorithm
design method, covering a variety of known algorithm
design techniques, including dynamic programming
method, greedy method, divide and conquer method, ex-
haustive method, and so on. It contains an algorithm design
language (Radl, recurrence-based algorithm design lan-
guage), an abstract generic programming language (Apla),
and a unified algorithm design and proof method, as well as
a series of generation systems (the PAR platform). Among
them, PAR provides formal support for the process of de-
signing the Radl algorithm based on the problem; it provides
automated support for the generation of the Radl algorithm
from the Apla program to the executable language program.

PAR has established two formal program development
paths, and its platform architecture is shown in Figure 1.*e
first is that, for the quantization problem, the PAR method
can convert the Structured Natural Language (SNL) demand
model into a Radl protocol model, and then into a Radl
algorithm model, and then further into an Apla abstract
program model, and finally into a high-level language
program that can be run directly.*e second way is, for non-
quantitative problems, you can directly design the Apla
program through the SNL demand model, supplemented by
the corresponding formal proof, and then convert the Apla
program into an executable program.

2.2. Domain Modeling. Software reuse is considered an ef-
fective means of solving the software crisis and implement
the mode of industrialized production to the software in-
dustry [36]. Software reuse activity consists of two related
phases: the production phase of reusable software assets, and
the development phase of application systems based on
reusable software assets [37]. Domain engineering corre-
sponds to the stage of production of reusable software assets
(system identification) and can develop and organize re-
usable software assets in the domain to provide the necessary
material and technical foundation for the subsequent de-
velopment of the application system.
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Domain engineering is the main technical means of the
production of reusable software assets. It consists of three
stages: domain analysis, domain design, and domain reali-
zation. Domain analysis is based on an analysis of the re-
quirements of several typical systems in the domain. It first
considers such factors as expected changes in demand,
technological development, and objective constraints to
determine the appropriate scope of the domain. It then
identifies the commonality and variability in the domain to
obtain a set of domain requirements with sufficient reus-
ability. Finally, it abstracts the requirements to form a do-
main model. Domain design and implementation is based
on the domain model to identify, develop, and organize
reusable assets, such as frameworks and components in the
domain.When developing a new algorithm in the same field,
we need to determine the requirements of the algorithm
based on the domain model, select the appropriate algo-
rithmic framework, and use this as the basis for selecting
components for assembly to finally form the new algorithm.
In this way, new algorithms are no longer developed from
scratch but are based on the massive reuse of algorithmic
components in the stages of analysis, design, and
implementation.

FODA method [28] was introduced into the research
and practice of domain engineering in 1990. FODA uses the
relationship between features (feature model) as an im-
portant part of the domain model. Features in domain
engineering can be divided into two categories: mandatory
and variable features. Mandatory features are those that exist
in all parts of the domain, and variable features are those that
exist only in parts of the domain. Mandatory features clarify
the commonality of the domain and variable features clarify
its variability. Compared with commonality, variability is
more important to study. Variable features can be divided
into the following types:

(1) Optional feature (optional), which represents an
optional feature of the instance in the domain

(2) XOR feature, which represents that the instance in
the domain has and can only be selected one feature
in a set of XOR features, because the XOR features
are mutually exclusive

(3) OR feature, which means that the instance in the
domain contains at least one feature in a set of OR
features

*e mandatory feature and three variable features are
represented in the domain model as shown in Figure 2. In
this paper, the feature modeling method is used to establish
the domain feature model for the domain of MLCS algo-
rithms, and the abstract programming language Apla of the
PAR platform is used to formally implement the component
library of the domain.

2.3. Dominant Point. We use point P � [p1, p2, . . . , pn] to
denote a unit in the dynamic programming scoring matrix L

of n sequence, where pi(i≤ n) represents the position of a
character of sequence ai, and the value of position P in
matrix L is L[P].

Definition 1. *e point P is called the match point, if
a1[p1] � a2[p2] � · · · � an[pn]. *at is, the characters of
each sequence are consistent at point P.

Definition 2. For points P � [p1, p2, . . . , pn] and
Q � [q1, q2, . . . , qn], if there is pj ≤ qj for all j(1≤ j≤ n),
then we call P dominatingQ; if there is pj < qj for all
j(1≤ j≤ n), then we callP strong dominatingQ.

Definition 3. Point P is a k-dominant point when the fol-
lowing conditions are true:

(1) Point P is a match point
(2) L[P] � k
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Figure 1: Platform architecture of PAR, it contains two formal program development paths.
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(3) *ere is no point Q(Q≠P), the value in the matrix L

is L[Q] � k, and Q dominates P

3. MLCS Domain Modeling

3.1. Domain Analysis Process. *is section invokes research
on the commonly used MLCS algorithm and analyzes the
domain of such algorithms. *e FODA feature modeling
method is used to perform feature modeling on the service
(S), function (F), and behavior characteristics (B) in the
domain of MLCS algorithm. *e longest common subse-
quence search service is the core service in the field of MLCS.
*e main functions in this domain include dynamic pro-
gramming (dp) algorithm operation, heuristic multiple
longest common subsequence (HMLCS) algorithm operation,
and the dominant point-based multiple longest common
subsequence (DP-MLCS) operation. Among the core service,
the dp algorithm operation and the HMLCS operation are
optional functions, and the DP-MLCS algorithms operation
is a mandatory function. *e description of optional
functions only focuses on its main components. For the
mandatory function DP-MLCS, the main flow of its algo-
rithm operation is described in detail. *e dynamic pro-
gramming mode selection (dp_mode) is a significant
behavioral characteristic of the operation of the dynamic
programming algorithm, including two main behavioral
characteristics: standard dynamic programming algorithm
(normal) and dynamic programming algorithm that opti-
mizes memory consumption (space_opti). Heuristic mode
selection (heur_mode) is a significant behavior characteristic
of HMLCS. Here, only ACO algorithm and BS algorithm are
taken as its main behavior characteristics. *e operation
process of the mandatory function DP-MLCS is as follows:

(1) Check the validity of the sequence. *e input of the
algorithm is DNA sequence, and protein sequence.
Before the algorithm is executed, the sequence in-
formation needs to be checked for validity to de-
termine whether the input sequence is biologically
significant.

(2) Establish a preprocessing matrix for the input
sequence. *e data structure (successor table) was
first proposed in [19] for preprocessing input se-
quences. In the literature, the successor table has
been used to implement the Fast-LCS algorithm.
Using the successor table and its pruning opera-
tion significantly reduces the time and space
needed to calculate the match point. Most of the
existing MLCS algorithms based on the dominant
point use the successor table to preprocess the
input sequence.

(3) Use different pruning functions and heuristic
functions to filter the match points, remove re-
dundant match points, and calculate the dominant
points contained in the match point set.

(4) Use the obtained set of dominant points to establish
directed acyclic graph (DAG), and each longest path
in the DAG is a path of MLCS.

(5) Backtrack to obtain all the longest common subse-
quence characters through a depth-first search and
output the results.

*e flow chart of DP-MLCS algorithms is shown in
Figure 3.

*rough accurate analysis of a series of DP-MLCS al-
gorithms, the successor table (Successor Table, ST) operation,
the domination point calculation mode (domi_mode) se-
lection operation, the DAG operation, and the result output
(result_op) operation are subfunctions of the DP-MLCS
algorithms operation. *e sequence legality check operation
is the basic operation of the MLCS algorithm and is not
described in the model. Calculate match point (CMP) and
pruning mode (prune_mode) selection are the two signifi-
cant behavior characteristics of the domi_mode selection
operation. *ere are two main behavior characteristics
under the prune_mode: prune function (PF) and heuristic
function (HF). Backtrack (BT) is used as the significant
behavioral characteristics of the result_op operation. *e
MLCS domain model is shown in Figure 4.
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Figure 2: Representation of four feature relationships. (a) Mandatory feature, (b) Optional feature, (c) XOR feature, and (d) OR feature.
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3.2. Domain Design Process

3.2.1. Component Design. *e domain is designed
according to the above domain model of MLCS algo-
rithms. *e constraints and dependencies between the
features are designed and analyzed, and the dependency
graph of the algorithm component is established. *is
section only introduces the component dependencies of a
series of DP-MLCS algorithms in the MLCS algorithms as
a simple example. *e algorithm input in this domain is
molecular sequence. Before the algorithm is executed, the
sequence needs to be checked for legality. Combined with
the introduction of the operation steps of the DP-MLCS
algorithms in Section 3.1, the main component of this
type of algorithm is the sequence legality check component
(seq_check component), successor table component
(successor_matrix_mani component), dominant point
mode selection component (dominant_mode component),
directed acyclic graph component (DAG component),
result output component (result_op component), match-
ing point calculation component (cal_match_point
component), and backtrack component. *e line with
arrows indicates the dependency relationship of one
component to another component, and the dependency
relationship between components is shown in Figure 5.

3.2.2. Components Implementation. According to the above
domain feature model and component dependency rela-
tionships of MLCS algorithms, the PAR platform is used to
formally implement the domain component library. *e
Radl language is first used to accurately describe the func-
tional specifications of components of theMLCS field, which
are then integrated according to the dependencies between
them to form an ADT. Finally, the abstract programming
language Apla is used to implement all ADTs. *e

specifications of the key components cal_match_point and
prune_mode in the DP-MLCS algorithms are as follows:

1 cal_match_point component
| [ in successor matrix: set of successor table;
n: integer; init point []: array of integer;

out match_point: array of integer;
match _matrix: set of match_ point;

aux seqs [] []: array of character []; ] |
AQ: init _point[n]� [0, 0, 0, . . ., 0] ∧ n≥ 2
AR: ∀ match_point [i1, i2, . . ., in]: match_
point ∈match _matrix: seqs [1] [i1]� seqs [2]
[i2]� . . . � seqs[n][in]

In the formal specification, in, out, and aux are three
keywords defined by the PAR platform, which represent
input, output, and auxiliary variables.*e auxiliary variables
do not need to appear in the program implementation. *e
array, boolean, integer are predefined types in the PAR
platform. AQ represents the preconditions required by the
component, and AR represents the postconditions of the
component. *e cal_match_point component implements
the function to calculate the match points of input sequence
by inputting the successor table and the initial match points.
*e successor matrix is the set of successor tables; n is the
number of input sequences; match_matrix is the set of
calculated match points; and the auxiliary variable seqs
represents the input sequence, which stores all characters of
the input sequence.

2 prune_mode component
| [ in k: integer; match_matrix: set of all match_ point
that level� k;

P [p1, p2, . . ., pn]: array of integer;

Validity check 
of sequence

Construct 
successor 

table

Match 
point

Dominant
pointBacktrack

Input 
sequence

Output 
LCS

Construct
DAG

Figure 3: Operation flow chart of DP-MLCS algorithms. Arrows indicate the sequence of operations.
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Q [q1, q2, . . ., qn]: array of integer;
out flag: boolean] |
AQ: k≥ 0∧P∈ match_matrix
AR: flag� (∀Q :Q∈(match_matrix-P): ∃i: 0< i≤ n: p[i]
< q[i])

*e prune_mode component deletes the redundant
points in the matching points through the pruning function,
thereby calculating the dominant point of the sequence. In
the specification, k is the rank of the input matching point
(the position of the point in the longest common subse-
quence); match_matrix is the set of matching points with
level k; P and Q are the matching points with input level k.
*e output flag is a Boolean value. If it is true, it indicates
that the point P is the dominant point. Otherwise, the point
P is a redundant point and should be deleted.

By using abstract data types and abstract processes that
write programs directly, the Apla language can describe
algorithmic problems abstractly. *is makes it easy to verify
its correctness and in turn ensures the reliability of the
program. As the input language of the program generation
system of the PAR platform, Apla can be quickly and easily
converted into C++, Java, Python, and other programming
languages and platforms.

According to the MLCS domain feature model estab-
lished above, and by considering the dependencies between
components as well as the relationships between data types

and functions in the domain, we use Apla to define and
implement MLCS algorithms components to form a domain
component library. Owing to limitations of space, only the
formal implementation of the DP-MLCS algorithm is given,
and the specific implementation code is omitted.

1 Seqs ADT
define ADT Seqs (sometype elem);

type Seqs� private;
procedure read_seqs ();
function seq_check(Seqs): boolean;
procedure Generate_successor_matrix (Seqs;

proc successor_matrix (char_num, seq_num:
integer;

proc memory_successor_of_matrix (sometype
elemMatrix));

procedure set_value (i: integer; j: integer; k: integer);
function get_value (i: integer; j: integer; k: integer):

integer;
enddef

0.09ptConsidering that the functions performed by the
seq_check component and the successor_matrix_mani
component are all dependent on the input sequence, the
ADT Seqs encapsulates these two components as well as their
auxiliary components. Because the type of input data is

S

F

MLCS_searching

dp HMLCS DP-MLCS

ST domi_
mode DAG result

_op

B

dp_mode heur_mode CMP prune_mode BT

normal space
_opti

SB ACO HFPF

Figure 4: Domain feature model of MLCS algorithms, boxes represent features, and lines with dots represent the relationship between
features.
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temporarily uncertain, a type parameter elem is defined. *e
function read_seqs is used to obtain all the sequences to be
searched in the input text file. *e function seq_check is the
realization of the function of the component seq_check and is
used to check the legality of the input sequences.

*e subroutine Generate_successor_matrix is the re-
alization of the function to the successor_matrix_mani
component. *e generic subroutine successor_matrix in
Generate_Successor_matrix dynamically provides mem-
ory for the successor matrix according to the input data
and initializes the successor matrix. Of the input pa-
rameters, char_num is the character type in the input
sequences, and seq_num is the number of input sequences.
*is generic subprogram supports the instantiation of
different forms of successor tables required by different
algorithms. *e memory_successor_of_matrix subroutine
is responsible for calculating and storing the successor
matrix of the input sequence. *e get_value and set_value
subprograms, respectively, obtain and set the value in
successor_matrix.

2 MatchPoint ADT
define ADT MatchPoint (sometype elem);
type MatchPoint� private;
function cal_match_point (sometype elemMatrix):

sometype elemMatrix;
function pruning_tech (sometype elem Matrix, a []:

array[integer]): boolean;
function memory_dominant_point (b []: array[in-

teger]): sometype elemMatrix;
enddef

*e ADT MatchPoint encapsulates the dominant_mode
component related to operations of the match points. *e
ADT contains three functions. *e first is the cal_m-
atch_point function to calculate the matching point, where
elemMatrix is a type parameter. *e second is generic
function pruning_tech that chooses different pruning
techniques according to the input matrix. *is is a Boolean

function used to determine whether the matching points
satisfy the condition to become the dominant point. *e
third function is memory_dominant_point, used to store
information relevant to the hierarchically dominant point.

3 DAG ADT
define ADT DAG (sometype elem)
type DAG� private;
function Generat_graph (sometype elemMatrix):

sometype elemMatrix;
procedure backtrack (sometype elemMatrix; func

print_MLCS(): string);
enddef

*e ADT DAG encapsulates three operational compo-
nents related to directed acyclic graphs: the DAG, backtrack,
and result_op. *e function Generat_graph generates a DAG
based on the set of the input dominant points, and the
subprogram backtrack uses a depth-first search strategy to
traverse the DAG. According to the matrix of dominant
point, the subprogram will choose different traversal
methods, and it also includes a subfunction print_MLCS,
which is used to output the obtained MLCS, and record and
output the number of MLCS.

4. Applications

4.1. DP-MLCS Algorithm Assembly Based on ADT. We use
the ADT of MLCS algorithm component established in
Section 3.2.2 to assemble and generate one MLCS algorithm.
Part of the program is as follows:

Program MLCS:
const path_infile: string;/∗ file path of input sequence∗/
const path_outfile: string; /∗ file path of outputMLCS∗/
var
seqs: Array [String];/∗save the input sequence ∗/;
char_num, seq_num: integer;

DAG

cal_match
_point

successor_
matrix_mani

prune_mode dominant_mode

result_op backtrack

Figure 5: Dependency relationships of component to DP-MLCS. *e line with arrows indicates the dependency relationship of one
component to another component.
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/∗ successor matrix initialization, omit the matrix
initialization code ∗/
function successor_matrix (char_num, seq_num);
var
i, j: integer;

begin
foreach (i, j: 0≤ i≤ char_num, 0≤ j≤ n)
. . .;

end
/∗instantiation of functional components used by
DP_LCS ∗/
ADT Fast_Seqs: new Seqs ();
ADT match_point: new MatchPoint
(successor_matrix);
ADT dag: new DAG (Memory_dominant_point);
/∗MLCS Searching manipulate procedure∗/

procedure MLCS_search_mani (Check; Matrix;
Cal_match_point; Pruning_tech;

Memory_dominant_point; Graph; TB);
var
match_matrix, dominant_matrix:array[array

[integer]]
begin
Fast_Seqs. read_seqs (path_infile);
Fast_Seqs. seq_check (seqs);
Fast_Seqs. Generate_successor_matrix (seqs);
match_point.cal_match_point (successor_matrix);
match_point.pruning_tech (match_matrix);
match_point.memor-

y_dominant_point(dominant_matrix);
graph� dag. Generat_graph (dominant_matrix);
dag. backtrack (graph, result_op(path_outfile));

Table 1: Comparison of computation time of assembly algorithm and that of Clustal-W on sequences sets with different numbers of
sequences.

Sequence number Time of assembly algorithm (ms) Time of Clustal-W (ms)
3 597 760
5 2046 2559
7 5885 6657
9 6970 8120

Table 2: Comparison of computation time of assembly algorithm and that of Clustal-W on sequences sets with different lengths.

Sequence length Time of assembly algorithm (ms) Time of Clustal-W (ms)
30 200 176
50 2145 2443
70 6878 7600
90 17654 21565
110 45568 60780

Jungstology:-/DP-MLC5/mlcs:S ./a. out

start read

AATTAAACATCAACACTCGTCTCAACAACAACCTCCCACAATTCACAAACAGCACCCTGCTCCACAACGACGGGCGTACACCGGTTC
AATTAAACATCAACACTCGTCTCAACAACAACCTCCCACAATTCACAAACAGCACCCTGCTCCACAACGACGGGCGTACACCGGTTC
AACGGGAAATAAGGCTTGGCGGGCCGGCTCTAACGTTCAGGCCTGGTGGCCGGAAATTCTTGGGCCTCCGGAGGGGCCCAAGAGTTGCCCCGT
CCTCACCCCACCGGGACCTAACGCTGCGGGCGCCCACTCACGACTCCCCTCCCACCCAAGACACGGCCACACGACACCCACGGACCACACACCATCAACA
CCGATTAAGTAAGGAATTTTATTTAGGGCCCAGGCGGCAACATGACATACATGAGACCTAAGGTAGCTACCTAGCTAGCTACAGCAAATTAAGGACTTCCATG

read success

AAAAATGCCGCCAACATGCCTCCAAAGCAGGGCCCAAAGGCCT
AAATAAGCCGCCAACATGCCTCCAAAGCAGGGCCCAAAGGCCT
AAATAAGTCGCCAACATGCCTCCAAACCAGGGCCCAAAGGCCT
AATAATGCCGCCAACATGCCTCCAAAGCAGGGCCCAAAGGCCT
AAATAAGTCCCCAACATGCCTCCAAAGCAGGGCCCAAAGGCCT
AAATAAGTGCCCAACATCCCTCCAAACCAGGGCCCAAAGGCCT
AAATAAGTGCCCCAACTGCCTCCAAAGCAGGGCCCAAAGGCCT
AAATAAGTGCCCCAACGACTTCCAAAGCAGGGCCCAAAGGCCT
the number of MLCS is: 8
the length of MLCS is: 43

Figure 6: One experimental result of the assembly algorithm, which contains the input sequence, all MLCS, and the number and length of
MLCS.

8 Journal of Healthcare Engineering



end

4.2. Results. By using the Apla-C++ program generation
system of the PAR platform, we convert the Apla program of
the assembly algorithm into C++ code. *e generic pro-
grams and functions defined in Apla were converted into
separate class member functions in C++ to reduce the
coupling between components. In particular, the calling
functions were converted into indicator functions in C++,
and the generic parameter was converted into the pointer
parameter to implement the polymorphism of the Apla
program. After converting all ADTcomponents to C++, the
Apla code of the MLCS search operation was converted into
a main function, and finally an algorithm program that can
be run was generated by manually assembling the
components.

We tested our assembly algorithm on the rice gene se-
quence of the GenBank database and compared the per-
formance of our assembly algorithm with that of Clustal-W
algorithm [38], which is a popular algorithm for multiple-
sequence alignment and MLCS. First, we experimented with
different numbers of DNA sequences when the sequence
length is 50; the computation time of MLCS to the two
algorithms is shown in Table 1. Second, we tested the two
algorithms on five sequences sets with different lengths; the
result is shown in Table 2, and one computation result of the
assembly algorithm is shown in Figure 6. From Tables 1 and
2, we can see that our assembly algorithm is faster than
Clustal-W for sets with different numbers of sequences and
sequences sets with different lengths. Because Clustal-W is
not an exclusive algorithm for MLCS problems, the accuracy
rate of MLCS obtained by it is also lower than that of the DP-
MLCS algorithm we assembled.

Because of the excellent verifiability of high-level lan-
guage Apla, the MLCS algorithm formed by component
assembly in the domain of MLCS not only improves the
reliability, execution efficiency, and maintainability of the
assembly algorithm program, but also can be manually
assembled to form the specified algorithm according to
customer needs, and also enhances the generality of algo-
rithm components.

5. Conclusion

Sequence alignment is a key method and problem in re-
search on bioinformatics. Finding the longest common
subsequence among multiple biological sequences is an
effective technique for sequence alignment. *e MLCS al-
gorithms are widely used in bioinformatics, data mining,
information retrieval, and pattern recognition. *is article is
the first to consider algorithms to solve the MLCS problem
as a special field, research them at a high level of abstraction,
improve their reliability and developmental efficiency, and
reduce the likelihood of occurrence of suboptimal solutions
and errors.We used FODAmethod to analyze the domain of
the MLCS algorithms, extract its general and variable fea-
tures, and transform them into components. *e formalized
specification language Radl was used to accurately describe

the functional specifications of components of MLCS al-
gorithms, and the high-level language Apla was used to
implement the function components. Automatic or semi-
automatic methods are expected to be available to solve the
problems of the assembly and generation of highly reliable
components for specific problems. Finally, through a series
of program conversion systems on the PAR platform, it is
quickly converted into executable algorithms. *e final
experimental results show that our research has high
practicability.

*is paper combines the theories and techniques of
domain engineering, generative programming, formal
methods, etc., and the practical research carried out on the
MLCS algorithm family can provide new ideas for algorithm
research in other fields of bioinformatics. We have applied
this research method to the study of pairwise sequence
alignment problems and multiple-sequence alignment
problems and have achieved substantial achievement. *is
shows that the algorithmic assembly generation method in
this paper is extended to other types of problems and is
expected to develop into a method to solve a series of similar
problems. Next, we will design a graphical user interface
(GUI) for the component library to enable users to obtain
the required algorithms by selecting components on the
visual interface.
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