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Abstract: It is not known how life arose from prebiotic physical chemistry. How did fruitful cell-
like associations emerge from the two polymer types—informational (nucleic acids, xNAs = DNA
or RNA) and functional (proteins)? Our model shows how functional networks could bootstrap
from random sequence-independent initial states. For proteins, we adopt the foldamer hypothesis:
through persistent nonequilibrium prebiotic syntheses, short random peptides fold and catalyze the
elongation of others. The xNAs enter through random binding to the peptides, and all chains can
mutate. Chains grow inside colloids that split when they’re large, coupling faster growth speeds to
bigger populations. Random and useless at first, these folding and binding events grow protein—xNA
networks that resemble today’s protein–protein networks.

Keywords: origins of life; DNA-protein networks; protocells

1. Introduction

How did life originate 3.5 billion years ago from the prebiotic world before it? This
puzzle is made more challenging by entangling three mysterious complexities together: di-
verse functional molecules (mostly proteins), molecules that store information and memory
(in xNAs, i.e., DNA and RNA) and encapsulation of biomolecules inside cells.

There have been speculations about what came first? like the chicken-and-egg problem.
Did life start as an RNA world [1–3]? Or, did metabolic reactions precede the enzymes that
could catalyze them [4,5]? Or, was encapsulation first in a “Lipid World” [6]?

On the one hand, a Something-Came-First World would certainly be a wonderful
convenience for modelers, requiring the fewest assumptions and parameters, at least for
that step of early origins. On the other hand, some form of cooperativity must have been
crucial to the story of the origins of life. Furthermore, what is convenient for modelers is
not necessarily what happened in reality. An alternative view is that biology originated
through the co-origination of multiple molecule types together, such as RNA and proteins
(along with small molecules) [7–10].

The attractiveness of the multi-molecule world lies in the fact that it does not require
an explanatory mechanism for the evolution of another molecule type. Both informational
and functional molecules exist and evolve concurrently. The importance and evidence of
mutually fruitful interactions between RNA and proteins at life’s origin has been recently
elucidated [11,12]. Cationic proto-peptides, synthesized under plausible prebiotic condi-
tions, were shown to react directly with RNA to produce mutually stabilizing partnerships:
proto-peptides had longer lifespans and RNA duplexes had enhanced thermal stability.

The modeling challenge we take up here is not to seek a simpler problem that avoids
the multi-molecule complexity, but rather to confront the more complex challenge of
assimilating all three components—function, information and encapsulation—into a single
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model. We posit a model in which peptides and xNAs are produced and elongated inside
protocells. The synthesis of new chains is coupled to the protocell growth rate and protocells
grow and split when they become large. The xNAs and peptides can interact. When these
biomolecules form complexes that accelerate chain elongation, protocell growth accelerates,
leading to increased populations. This process is self-sustaining and grows functional
biochemical networks that further increase protocell growth rates.

The present model builds upon the foldamer hypothesis [13]. In short, the hypothesis
outlines a dynamical mechanism describing two features: (a) the physical basis for how
short chains became longer chains with specific sequences; and (b) a structural and plausible
kinetic basis for a prebiotic autocatalytic system. Furthermore, the present modeling is
itself characterized as an autocatalytic system. Biomolecules in the system are sustained by
what is in the environment and each reaction is catalyzed by a biomolecule type produced
inside of the system. Autocatalytic systems are known to be important for life’s origin
and have been characterized and explored extensively [14]. More specifically, previous
work has indicated that autocatalytic sets could spontaneously develop in an RNA–peptide
world [15]. We remark here two principal properties which differentiate the present
model from previously elucidated autocatalytic sets: (a) catalysis, via the HP foldcat
mechanism [13], has a basis in molecular structure and physical chemistry; and (b) the
resulting chemical networks that form have topological properties with dependencies like
those in today’s biology.

2. The Background and the Model
2.1. The Premises and Assumptions

We describe a speculative mechanism for how chain elongations of proteins and xNAs
inside protocells otherwise acting stochastically could bootstrap prebiotic chemistry to grow
and sustain increasingly complex interaction networks. The premises are found below:

• A nonequilibrium driver. Because life is now, and always must have been, out of
equilibrium, we are at liberty to suppose some persistent nonequilibrium drive was
present. There are many potential sources. Here, we assume the availability of amino
acids and nucleic acids, and that both are persistently being polymerized. At first,
these would produce only short-chain random sequences of xNAs or peptides. Such
plausible syntheses have previously been demonstrated [16–19];

• A propagation principle. Today, life as a whole sustains, and never dies out, due to
the survival-of-the-fittest propagation principle. Moreover, it is resourceful, creative
and innovative, due to its ability to search and choose by mutation and selection.
Without it, there is no biology. It results because changes in biomolecules lead to
changes in cell growth rates, which lead to changes in cell populations. Here, we
assume a simple physical precursor dynamic. We assume peptides and xNAs are
encapsulated and polymerize inside colloids or vesicles, causing such protocells to
grow and to divide by known surface-to-volume effects [20–23]. We assume, as others
have done, that the amino acid and nucleic acid monomers from the surroundings
can pass freely into the protocells, but that the chains inside are too long to pass back
out [24–26];

• Funneling in the molecule space. We believe life originated more as a disorder-to-
order process, and less as specific sequence actions or specific binding actions or
specific recognition between polymers (such as the genetic code). Rather, we believe
such specificity must have emerged from the propagation mechanism (see above)
acting on random molecules.

Two of the premises, the propagation principle and funneling in the molecule space,
bear a striking resemblance to the idea of reciprocally coupled XNOR gating which allows
one to filter and link emergent life properties by interchanging antecedents and consequents
in a “strange loop” [27].

A key property of both proteins and xNA molecules is simply the lengths and growth
rates of their chains. We assume that nucleic acids polymerize to have chain length distri-
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butions that resemble most known polymerization processes [13,28–30], while peptides
polymerize into differently shaped chain length distributions by virtue of their ability to
collapse in water into compact—sometimes uniquely folded—structures and have sequence-
dependent abilities for functionality. We accept that peptides are hydrophobic–polar (HP)
polymers given by the previously elucidated foldamer hypothesis [13,31].

We note here that the difference whereby proteins are functional and xNAs are infor-
mational must have come early in the origins process; living systems need both functional
and informational biomolecules. Proteins can fold so sequence determines structure. In
contrast, xNAs are relatively stiff and rigid, so their properties are relatively independent
of their sequences. The main distinction here is that functional biomolecule types would
have needed to have a strong sequence–structure–function interdependence, whereas the
informational biomolecule types required a strong independence of sequence to structure
and function. Memory storage must be able to store any sequence without bias, so that
all sequences, in principle, could be searched and sampled by mutation. To that point,
functional biomolecules would therefore make for poor information storage units because
different sequences have different physical properties, thus biasing which sequences would
be searched and sampled by mutation.

Our present model recognizes the above distinction between molecule types. Fold-
ability is a property of peptides and proteins. Furthermore, while some xNAs chains can
also fold, they are stiffer chains, so they fold less frequently and without the sequence–
structure relationship. However, we acknowledge that certain xNA sequences can fold,
especially RNA sequences, and are capable of functional activity (i.e., ribozymes). However,
at the current level of granularity of the present model, we do not expect the presence of
ribozymes to dominate or change the observed conclusions. Ribozymes play a small role in
contemporary biology; thus, we suppose they play a role similar in magnitude here.

2.2. The Growth and Split Mechanism

The main property that we require here is the length distributions of xNA chains and
HP peptides. We consider the synthesis rate of a peptide of length L: If k(L) is the rate at
which a molecule of length L is produced it is therefore simply inversely proportional to the
length itself. If kx is the rate of elongation for polymers of type X, we have k(L) = kx/L; this
is simply obtained by assuming a constant time interval between each monomer addition.
Now we consider two different elongation rates for the informational molecule, kI, and
for the functional molecules, kF. We can now write the rate equations for the two types of
molecules as:

dmµ

dt
=

kI
Lµ

, (1)

dnj

dt
=

kF
Lj

, (2)

where mµ and nj are the copy numbers for each different type of NA chain of type µ and HP
chain of type j, respectively. Here, and in the rest of this paper, we will use Greek indices
for I-type molecules and Latin indices for F-type ones. So nj(t) represents the number
of functional molecules inside the droplet of type j, hence with length Lj, at time t, and
similarly for mµ(t). In this mechanism, the sole factor that determines the growth rates of
the vesicle/droplet/protocell is simply how fast the nucleic acids and amino acid chains
are elongating inside it. A visual schematic for protocell growth and splitting, due to chain
elongation, is shown in Figure 1.
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In water, nonpolar matter forms droplets due to the oil–water forces [32,33]. When
droplets grow big, they split into two. We define Vs to be the average droplet volume
at the splitting point. We define Ts to be the average time required to reach the splitting
volume. Now, taking vX to be the volume increase due to the addition of a monomer to the
molecule type X, and N and M to be the total number of different types of peptides and
xNAs, respectively, we get:

Vs =
N

∑
j=1

nj(Ts)vFLj +
M

∑
µ=1

mµ(Ts)vI Lµ. (3)

The time scale for the elongation of a given molecule is faster than the protocell
growth rate. Therefore, we assume that molecules which are incompletely synthesized (i.e.,
molecules shorter than the mature length of either Lj and Lµ) do not have an impact on the
overall growth. Now we can solve Equations (1) and (2); and place them into Equation (3):

nj(t) = n0
j +

kF
Lj

t, (4)

mµ(t) = m0
µ +

kI
Lµ

t, (5)

where n0
j ≡ nj(0) and m0

µ ≡ mµ(0). Now we take the intial time to be one of the splitting
events, when the volume of the droplet is exactly V0 = Vs/2, and calculate the time at
which the total population is sufficient to double this volume. Therefore, we have:

2V0 = V0 + (vFkF N + vIkI M)Ts, (6)

where V0 = ∑N
j=1 n0

j vFLj + ∑M
µ=1 m0

µvI Lµ is the reference volume; it is the volume of the
protocell right after a splitting event. From this expression we can calculate what effectively
is the growth rate of a protocell with a given composition of initial populations n0

j and m0
µ

as the inverse of the splitting time:

r0 =
1
Ts

=
vFkF N + vIkI M

∑N
j=1 n0

j vFLj + ∑M
µ=1 m0

µvI Lµ

, (7)

This is the reference growth rate for a system of protocells whose growing mechanism
is controlled solely by chain elongation. Parameters used to calculate the reference growth
rate are found in Table A1, Equations (A9)–(A11).

2.3. Intermolecular Interactions Drive Network Formation

In this model, proteins and xNA molecules in water interact through hydropho-
bic/polar interactions. xNAs are known to act not only by hydrogen bonding base pairing,
but also by hydrophobic base stacking [34]. Here, when a hydrophobic chain monomer
is exposed to water, it attracts other exposed hydrophobic monomers from either type of
chain. We note that this binary interaction is just a simplification for the present modeling.
Since many of the 20 amino acids were likely present at the origin of life, the full complexity
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of catalytic activities and binding interactions could have begun early. For our simple
model here, our HP coding is a stand-in for how these early simple polymers could fold,
recognize, bind, catalyze and react with one another.

Through this interaction mechanism, some random chains will associate with each
other. This means that interaction networks can form. Here, we call this a protein–
informational interaction (PII) network: every node represents one of the two molecule
types. A link between two nodes corresponds to some form of interaction between the two
corresponding molecules. A link can exist both between molecules of the same type (i.e.,
i − j or µ− ν for protein–protein and information–information molecules, respectively)
or between molecules of different type (i.e., j− µ for protein–information interactions).
Interactions can be of various types. While one outcome is aggregation (nonspecific interac-
tions), another outcome is protein machines that have some primitive functional activity
analogous to more contemporary enzymatic functions. The focus of this study is to explore
a primitive form of functional interaction, and aggregation is only treated as an average.

Here we single out for special focus those proteins that are information copy ma-
chines (polymerase-like proteins) and those that are information-to-protein copy machines
(ribosome-like proteins). We call them xNA copiers and protein copiers, respectively. Visual
representations of the network’s nodes and subgraphs can be seen in Figure 2. Protein
copiers are 3-molecule subgraphs; a protein that reads an xNA and produces another
protein. xNA copiers are 2-molecule subgraphs; a protein that approximately duplicates
an I-molecule. When such machines are catalytically active inside the protocell, they can
increase its growth rate. Copy machines are considered “catalytically active” when the
relevant completed replication or translation subgraph has been formed in the PII network.
The discovery of new interactions is a consequence of changes in the sequence structure
of a molecule type during foldamer-catalyzed elongation. We refer to these changes as
“mutations.” Below we describe the term on a granular level and then show how it is
represented in the present coarse-grain model.
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Figure 2. Defining the symbols representing the model’s PII nodes and important subgraphs. (Top
row, left to right) Four major types of molecules exist in the PII interaction network: xNA molecules,
protein molecules, ribosome-like proteins, and polymerase-like proteins. µ and i are iterators used to
further distinguish between the different types of xNAs and proteins in the network (i.e., molecules
which differ in sequence structure). Nodes represent the entire molecular population of a given type
of molecule. (Bottom row, left to right) The two important types of subgraphs which denote primitive
replicative function in the model: xNA copier subgraph and protein copier subgraph (see text).

In this present model, mutations are a consequence of life’s origin lacking specific
binding actions or specific molecular recognition. We accept the foldamer hypothesis
which posits that foldamers in autocatalytic sets can cross-catalyze foldamers of a different
molecular sequence or can catalyze the elongation of a foldamer of the same sequence [13].
However, without molecular specificity, these elongation processes could have resulted in
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foldamer variants being synthesized. If we consider the following scenario: (a) foldamers
of type A are responsible for catalyzing the elongation of a protein/xNA molecule of type
B; (b) a mutation in the molecular space causes the synthesis of foldamers of type A to
be polymerized as variants, AV; (c) foldamers of type AV now catalyze a new variant
of protein/xNA molecule of type B, hence BV; and (d) B-type molecules are no longer
synthesized, the population now reflects molecules of type BV; we can see how mutations
provide new sequence variations to molecule types existing in the PII network.

The consequence of the mutation is what is simulated in the present model. When
new molecular variants are synthesized, they will either gain or lose an interaction with a
pre-existing molecule type accounted for in the model. The mutational effects are subtle;
only a single interaction can be lost or gained at a time, per a single mutation. Mutations
were random events. A randomly selected Aij matrix element was selected and changed
to its opposite value: 1 → 0 or 0 → 1. Additionally, we did not track which of the two
molecule types was the new variant, simply we simulate whether the mutation led to the
loss or discovery of a molecular interaction between the two molecule types.

Most of the copy machines within the molecular population will not be functional;
we represent this by an effectiveness parameter (α and β below). Effectiveness represents
the catalytic accuracy of a population of a given copy machine type. It is assigned via
a randomized process; an integer between 0 and 1 is chosen at random and assigned
to a machine type. Larger effectiveness values (i.e., close to 1) indicate that the copy
machines are efficient in synthesizing new polymers with little error in the sequence. Lower
effectiveness values (close to 0) indicate that copy machines were error prone; only a few
machines produce polymers having the intended sequence structure. When machines are
effective, they can boost the production of polymers. When an F-molecule is interacting
with a protein copier, its rate of production is subject to the effectiveness parameter. So,
now the chain elongation rate is:

dnj

dt
=

kF
Lj

+ α ∑kµ
Ajk Akµnjnkmµδ(Lj, Lµ), (8)

where α is a parameter that measures how effective the protein copier is, and Ajk and Akµ

are the elements of the adjacency matrix of the network. These elements are 1 if there is a
link between the two index nodes or 0 otherwise, and the Kronecker delta function only
enforces that the transfer of information is possible if the lengths are the same. Similarly,
when an xNA copier interacts with an I-molecule the elongation rate is given by:

dmµ

dt
=

kI
Lµ

+ β ∑k Aµµ Aµknkm2
µ, (9)

where β is the effectiveness parameter of the xNA copier.

Protein Copiers as Peptides

We remark here that the protein copy machines in the present model are peptides,
which goes against the known structure of contemporary ribosomes [35] and the supposed
structures of primordial ribosomes (primarily RNA) [36,37]. We make three points here to
justify our treatment of protein copy machines below:

• The RNA fraction in contemporary ribosomes ranges from 1/3rd–2/3rd in different
organisms [38,39], indicating that the requirement of RNA as part of the machine is
not a strong constraint;

• Contemporary organisms are known to have some nonribosomal peptide synthe-
ses which are facilitated by other protein structures (i.e., nonribosomal peptide syn-
thetase) [40]. As far as we know, there are no known equivalents for xNAs being
duplicated by solely other xNAs;
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• At the current level of coarseness of the present modeling, we simply approximate
ribosomes as being catalytic elongators. Therefore, the network structure would not
differ much from the observed results.

2.4. Computing the Growth Dynamics

Now, with these growth laws, we can determine the time the protocell would take to
reach its splitting volume. These coupled differential equations can be solved numerically.
However, it is possible to solve in the case of a single graph of the types in Figure 2 and
then extrapolate the results in the case of many graphs of such type. In Equation (A5) we
show that the overall protocell growth rate can be written as:

r ≈ r0 + ∆r, (10)

where ∆r is a function of the topology of the interaction network. The process we now
model is that of networks that change through mutations of the molecular sequences,
leading to appearances or disappearances of links in the PII network. Mutations are
random and can occur either in peptides or xNAs.

2.5. Mutations Drive the Network to Discover New Functional Relations, Affecting the Protocell’s
Growth Rate

When the consequences of a mutation are modeled through the PII network (i.e., the
appearance or loss of an interaction), the system’s discovery of a new interaction can lead
to an increase in the growth rate of the protocell. Specifically, if the mutation leads to
the formation of the appropriate subgraph necessary to represent xNA or protein copier
function, the growth rate of the mutant-type protocell increases. Mutant-type protocells
which discover these copy machine functions have enhanced growth rates. The new growth
rate of the mutant is given by:

r ≈ r0 + ∆rR + ∆rC, (11)

where ∆rR is the change in the growth rate due to the introduction of a protein copier,
whereas ∆rC is that due to the introduction of a xNA copier. Details of their expressions are
given in Appendix A Equations (A1)–(A6). The growth rate r represents the growth rate of
the protocell system where foldamer, xNA copier and protein copier catalysis all contribute
to polymer elongation.

2.6. Polymer Aggregation Decrease Proto-Cellular Growth Rate

Polymer aggregation is a consequence of promiscuous interactions. When polymers
aggregate, we predict there is a decrease in the growth rate. Aggregation removes polymers
which are participating in replication or translation subgraphs and those used as templates
in foldamer catalyzed elongation reactions. Consequently, the growth rate contributions
from foldamer catalysis, protein copiers and xNA copiers would be less than their idealized
calculated values. To reflect this feature, we include an aggregation cost:

r = (r0 + ∆rR + ∆rC)−∑k g(k), (12)

where g(k) is the aggregation cost for each polymer type summed across all polymer types
k in the model. The aggregation cost is given by:

g(k) =
{

0, d(k) < D
δ d(k), d(k) ≥ D

, (13)

where the aggregation cost for a polymer type is zero if its number of links d(k) is less than
the threshold aggregation parameter, D; or its aggregation cost is given by δ d(k) if the
number of links to the polymer type exceeds or equals the threshold parameter. δ is a static
scaling parameter used to calibrate the aggregation cost to the magnitude of the growth
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rate. Parameters were set to D = 5 and δ = 0.005 to reflect the network size used and the
magnitude of the reference growth rate.

2.7. Mutations Can Be Advantageous or Noise

The present model predicts that protocell populations evolve through two mechanisms
which resemble natural selection and genetic drift: some changes in the distribution of
polymers in a protocell have a relevant effect on the overall duplication rate, resulting in
protocells with a higher chance to become common in a population; other changes have
minimal to no effect, increasing the diversity of polymers distribution.

When an individual protocell, existing in a system of protocells, undergoes a mutation,
there is a change in the sequence of one of the polymer types in its interaction network.
There are three possible outcomes. First, if the mutation results in the network discovering
some activity—the completion of either a xNA copier or protein copier subgraph—the cell
growth rate and fitness increase. As the protocell population grows and reproduces,
lineages from the mutant protocell have greater reproductive success than wild-type
protocells. Consequently, each generation of protocells progressively look more and more
like the mutant than the wild-type. In this way, beneficial mutations ultimately become
fixed within the population. Second, other mutations can be deleterious, decreasing the
growth rates of those protocells. Or, third, a mutation can be neutral, having no effect.

2.8. Mutations of the Individual Cells Propagate through the Population

In order to determine how likely a new mutation is to be selected by evolution,
hence fixed in the population, it is necessary to consider a model of natural selection.
The probability of fixation in such cases can be assumed to be given by Motoo Kimura’s
expression [41], which simply expresses the probability that a given mutation with some
selective advantage will ultimately be present in the entire population:

µ =
1− e−2s

1− e−4Ns , (14)

s = log rmut − log rwt, (15)

where s is the change in fitness due to a mutation, assuming that fitness is given by the log
of the growth rate. N is the size of the protocell system and a parameter in the simulation.
Simulated evolution trajectories used N = 100,000 protocells. Neutral mutations are fixed
with a probability of [41]:

µ =
1

2N
. (16)

2.9. Computer Simulations of the Model

The initial wild-type PII was a randomly generated Aij symmetric adjacency matrix
with a size given by N + M. Network sparsity was determined by an adjustable probability
whereby a given Aij matrix element is assigned a zero or a one. The adjacency matrix is
mapped into the corresponding adjacency graph, which is the first wild-type PII interaction
network for a protocell in a system of identical wild-type protocells; see Figure 3. The
nodes on that graph represent different types of functional polymers (blue), informational
polymers (red), a xNA copier (purple) and a protein copier (yellow). Each type of polymer
has an initial population size and an assigned length. A link (edge) in the graph indicates
an intermolecular interaction between polymers of either the same type (self-loop) or
different types.
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Figure 3. The available actions at each time step. (Top) A mutation can add a link (black line) or
remove one. (Middle) That link either becomes fixed into the network (bottom right, green link) or
not fixed (bottom left). The network now proceeds to the next time step.

The growth rate of a protocell with the given wild-type PII network was calculated us-
ing Equation (7). The first mutation is then introduced into the system and a link/interaction
is either lost or discovered. Here the growth rate of a protocell with the mutant PII net-
work is calculated using Equation (12). The log of the growth rate for both the wild-type
network and mutant network are taken and further evaluated using Equation (15) to give
the selective advantage, s. If s = 0, then the fixation of the mutation in the population is
driven by genetic drift. If s 6= 0, fixation is driven by natural selection. If it is not fixed by
either evolution force, then the wild-type network “wins out” over the mutant network
(left path in Figure 3). The mutant protocell’s mutation falls out of the population after
multiple generations of growth and selection with the wild-type PII network being the only
available alternative. The process then repeats again with the wild-type network. If the
mutation is fixed by either evolution force, then the mutant network becomes the domi-
nant network-type in the population (right path in Figure 3) after multiple generations of
growth and selection. The previous wild-type network is lost, and the mutant becomes the
wild-type network. The process then repeats until a preset number of mutations have been
introduced. Seven evolution trajectories were simulated for a protocell system containing
100,000 individuals. For each simulation 1,000,000 mutations were introduced into the
system and the simulation ended at the 1,000,000th mutation.

3. Results and Discussion
3.1. When a Network Discovers Complete Copier Subgraphs, Its Protocell Grows Faster

When the above processes are modeled, the model predicts survival-of-the-fittest
behavior. Figure 4 shows a time graph simulating introduced mutations in a protocell
population. When the network of a mutant protocell discovers a beneficial mutation (i.e.,
the discovery of either complete copy machine subgraph), it wins out against the alternative
wild-type in the population. This feature is highlighted by the ever-increasing growth rate
of the population. Protocell generations resemble parents that had discovered additional
ways to elongate their polymer chains. We can relate this to a simple tournament bracket
analogy. When we compare the growth rate of a wild-type and mutant-type protocell,
the one with the higher growth rate will be nonrandomly selected for and its lineage
continues onward to become the new wild-type. Another mutation arises in the population
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and the new mutant and wild-type are compared, with nonrandom selection once again
favoring the protocell with the higher growth rate. This cycle repeats with the result being
a maximization of proto-cellular fitness.
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to discover and lock in the specific interactions that specify the subnet machines in Figure 2.

We note here that periods of no change in the growth rate do no imply stagnation
in the evolution of the protocell population. Mutants with neutral mutations can still
win out over the wild-type variant, but this due simply to chance. Given the network
size chosen in our simulations, on average, <0.005% of all mutations out of 1,000,000
were beneficial. The remaining 95.995% of mutations were neutral. The frequency by
which neutral mutations occurred does not diminish their importance. Neutral mutations
are important for discovering the requisite interactions for completion of either copy
machine subgraph.

As a general principle of the model, novel protein copier links are harder to discover
and subsequently fix compared to links discovered for the xNA copier. The reason is
two-fold: the subgraph depiction for protein copier function in this model requires one
additional link than that of xNA copier function (Figure 2), and there is a length requirement
for primitive translation between the functional molecule and the informational molecule.
To maintain simplicity in the model we have assumed that the earliest form of the genetic
code had a one-to-one correspondence between an amino acid and a nucleic acid. In essence,
the functional molecule and the informational molecule in the translation subgraph must
be the same length. The addition of the length requirement increases the time it takes for
the first translation subgraphs to appear in the network. However, once a few of them have
been established, subsequent interactions among participating functional and informational
molecules in the established subgraphs become more facile.

Another key feature of the bootstrap model is that it simulates a form of cooperativity
that is known to occur in today’s cellular protein–protein interaction (PPI) networks [42].
In short, bigger subgraphs in PPI networks have higher probability of forming an added
link than smaller subgraphs have. In the present model, this applies to the two types of
subgraphs: the 2-link xNA copier (transcription) and the 3-link protein copier (translation).
When a 2-link translation or 1-link transcription subgraph is present, the probability that
the subgraphs will grow into their respective 3-link and 2-link subgraphs is enhanced. An
interaction which completes a copier subgraph brings with it an increase in growth rate.
Copier subgraphs which have some, but not all, of the requisite interactions for completion
bootstrap the formation and fixation of the remaining interaction(s) which complete it.
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This form of cooperativity is exemplified with the protein copier. When a few of the 3-link
translation subgraphs have already been discovered, the subsequent discovery for more is
enhanced. Consider the case shown in Figure 5.
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Figure 5. Cooperativity: when a network has at least two protein copier subgraphs, subsequent
formation of more becomes more facile; see text.

Functional and informational molecules participating in complete subgraphs have
pre-existing interactions with the protein copier. A new interaction which arises between a
functional and informational polymer on two different 3-link subgraphs can lead to the
immediate formation of another 3-link translation subgraph. Consequently, there is an
increase in growth rate. This observed cooperativity suggests that interactions between
functional and informational polymers in different protein copier subgraphs are more facile
than similar interactions elsewhere in the network.

3.2. Networks Evolve to Become Bigger and More Complex

Figure 6 shows an example trajectory of an evolving PII network. It grows in nodes
and edges. The network begins with only a few interactions. The average number of initial,
randomly generated interactions in the starting network was 64 ± 6. In a network size
of 50 different polymer types, split evenly between functional and information polymers,
the average interaction per polymer was 2 ± 2. After 1,000,000 mutations, where some
were fixed or lost, through processes resembling natural selection and genetic drift, the
final network averaged 160 ± 16 total interactions. Here, each polymer type had on
average 6 ± 3 interactions. Novel interactions between a polymer and either copy machine
made up a fifth of all newly discovered interactions. Calculations regarding the number
of interactions per polymer and the total initial and final network sizes were computed
averages taken from the results of seven simulations.

The giant component of the network starts out sparse, with only a few interactions
existing between polymer types. A component is defined as a group of nodes which are
connected either indirectly or directly. Therefore, we define the giant component as the
network component with the larger proportion of polymer types in it [43]. At time t = 0,
when no mutations have been introduced into the system, a protocell’s growth rate is
dictated solely by the chain elongation processes that occur from foldamer catalysis. To
reflect this, our initial networks did not contain any copy machine subgraphs. Networks
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also started with a slight degree of fragmentation. Some polymer types were not connected
with the giant component either through direct or indirect interaction. These polymer types
became connected later in evolution as new interactions were discovered.
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Figure 6. Example of a one-time evolution trajectory of a network. Initial network (left) is small and
sparsely linked. Later networks have grown and changed through mutations discovered and lost,
increasing the network’s complexity and size.

Mutations and selection result in an increase of network complexity. Interactions that
are growth-rate neutral are observed most frequently. Protein copier and xNA copiers
also discover fruitful interactions. The completion of a translation or transcription sub-
graphs provides substantial growth rate increases. Networks continue to grow in size as
nonconnected polymers discover interactions with the giant component.

3.3. Bootstrap Model Network Topologies Resemble Today’s PPI Networks

The bootstrap model predicts how simple initial networks grow into more complex
structures later in evolution. The structure and complexities of networks can be character-
ized by their topological features. Three are considered here: degree centrality, betweenness
centrality and closeness centrality. The mathematical definition for all three centralities
can be found in Appendix B, either written in text or shown in Equations (A7) and (A8).
Figure 7 shows that these features predicted from the bootstrap model resemble the corre-
sponding features of protein–protein interaction networks in present-day cells [42]. This
comparison is made by comparing the present model’s topological features in a dynamic
setting to those of static, fully evolved and simulated PPI network topologies. An important
distinction we make here is that while the size of our PII network does not allow for a
direct one-to-one comparison with known PPI networks, irrespective of that, the observed
topologies of each share similar dependencies.
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Figure 7. Topological node distributions of the bootstrap model networks resemble today’s cell PPI
networks. (Top row) Predicted from this bootstrap model for protein–informational interactions (PPI).
(Bottom) Measured protein–protein interaction (PPI) networks of humans (green), yeast (blue) and
fruit flies (red); adapted with permission from [42], © 2012, Peterson et al. Since the size of the present
simulation is far from a real-world PPI, direct comparison cannot be drawn; however the general
behavior of these topological features shows that the present bootstrap mechanism gives a plausible
evolutionary route to current cellular networks; see text.
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Here are the interpretations. First, if networks had many hubs—like many big cities
in a traffic network—then the degree centrality plot would show large p(k) values at large
values of k on these figures. However, that is not the case either from the bootstrap model
or the experimental PPI data. Most proteins are connected to relatively few other proteins.
There are very few hubs; they are mostly copy machines. Second, the between centrality
reflects the number of bridges in the network. These are situations in which one molecule
is a go-between linking two other molecules. In both the model and the PPI data, few
molecules are bridging any two other molecules. In the model, the bridging molecules are
largely the copy machines. Third, the closeness centrality shows the number of molecules
that are either highly centralized (close to many other proteins) or highly decentralized,
far away from other proteins. It measures the extent to which a molecule can interact with
all other molecules in the network. The peaks in these plots indicate that most molecules
are neither particularly isolated from others, nor crowded together with others. Our copy
machines have high closeness values because of their hub-like nature. Direct interactions
lead to many indirect interactions. A given molecule can make interactions with all other
molecules without specificity in this model. Molecules that are nodal neighbors to the copy
machines drive copy machines to become more centralized when they discover interactions
to periphery molecules in the network.

Lastly, we briefly comment on the nature of other types of interactions networks,
mainly DNA–protein networks, and RNA–protein networks. For brevity, we classify these
as xNA–protein networks. At present, sufficient data is not available to compare xNA–
protein network topology with the PII network. While recent efforts have been made to
elucidate xNA–protein interactions [44–47], the databases housing the data do not provide
graphical construction of the full interactome. Over the last decade, there has been a
standardization in the data format and quality of PPI network data, but such standards do
not exist for xNA–protein networks. Nevertheless, we are aware of a topological analysis
on one graphical dataset [48] of a noncoding RNA–protein interaction network in yeast,
but it only includes a small subset of interactions and not the full topological comparisons
we seek here.

4. Conclusions

We develop here the bootstrap model for how proteins and nucleic acids might have
evolved fruitful relationships in the origins of life. It is based on premises that we regard as
plausible physical chemistry and maximal initial randomness. It supposes that xNA and
protein molecules occupy vesicles. Since life requires nonequilibrium, our NEQ premise
is the availability of persistent random short-chain syntheses of both polymers. Since
life cannot exist without some form of survival-of-the-fittest propagation dynamic, we
assume protocell colloids grow from the growing chains inside, and split, converting cell
growth rates to cell populations. We suppose that the peptides are hydrophobic–polar (HP)
polymers, and accept the previously elucidated foldamer hypothesis, wherein short HP
peptides collapse hydrophobically in water, expose hydrophobic binding sites, and could,
in principle, accelerate chain elongations with primitive ribosome-like and polymerase-like
functionality. Random mutations can lead to growth advantages, spontaneous propaga-
tion and biochemical networks that have growing complexity. The biochemical network
topologies predicted by the bootstrap model resemble those of today’s PPI networks in
living cells.
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Appendix A

Here we give an approximate solution to the growth rate Equations (8) and (9). The
full solution of these coupled differential equations is not readily obtainable, at least by us.
However, it is possible to solve them for each single graph of the types in Figure 2 and we
can then extrapolate the results in the case of many graphs of such type.

For a single graph of the functional type, the amount of protein p would be given by
the following:

np(t) = n0
p exp

(∫ t

0
F(t′)dt′

)
+

kF
Lp

t, (A1)

where F(t) = α
(

n0
r m0

µ +
(

kFm0
µ + kIn0

r

)
t + kFkI t2

)
. Now we assume that the splitting

time τs is small enough that a first order approximation is valid. The result can be shown
to be:

τs ≈
Ts

1 + ακpn0
r m0

µ
, (A2)

κp =
vFn0

pLp

vFkF N + vIkI M
. (A3)

Since the second term in the numerator ακpn0
r m0

µ > 0 we see how the new splitting
time is always smaller than the splitting time in absence of such machine Ts. This testifies
that a single machine of this type is sufficient to boost the growth rate and hence the fitness
of the protocell. We now extrapolate this result, assuming that this linear approximation
holds on this case as well (true for sufficient small times) and we obtain the following
expression for the growth rate of the entire system:

r ≈ r0 + ∑pµr Apr Arµ
αr0Lp

kF N + kI MvI/vF
n0

Pm0
µn0

r , (A4)

where ∑pµr Apr Arµ indicates the sum over all graphs of the functional type. Similarly for
the xNA copiers, we can obtain an expression for the modified growth rate by solving
the corresponding differential equation for a single graph and then extrapolating to an
arbitrary number of graphs. The growth rate r summed over all possible graphs is:

r ≈ r0 + ∑
pµr

Apr Arµ
αr0Lp

kF N+kI MvI /vF
n0

Pm0
µn0

r

→ + vI
v0

∑pv Avv AvpβLv(m0
v)

2n0
p,

(A5)

≡ r0 + ∆rR + ∆rC, (A6)

where ∑pv Avv Avp indexes all graphs of the xNA type. A convenient definition of fitness is
the logarithm of the growth rate. Hence the rate can be decomposed into a component due
to protein copiers, ∆rR and a component due to xNA copiers, ∆rC.



Life 2022, 12, 724 15 of 17

Appendix B

The degree centrality is the measure of links, k coming off a given node. The between-
ness centrality is calculated using:

b = ∑
σst(v)

σst
, (A7)

where σst represents the totality of shortest path routes extending from arbitrary node s
to node t. The term of σst(v) represents the number of paths which pass through vertex v.
The closeness centrality is calculated using:

l =
N − 1

∑s d(t, s)
, (A8)

where s 6= t, d(t,s) is the length of the shortest path between nodes t and s in the network
and N is the total number of nodes.

Reported graphs for degree, betweenness and closeness represent the dynamic topolo-
gies for the network as it evolves over time. Topological values are recorded for a network
every 10,000 mutations. These values are compiled at the end of the simulation and a
probability distribution for each topological feature is generated. The generated graphs are
the median values of the probability distribution for each given value of k, b and l across
all simulations.

Reported closeness values of l = 0 are functions of randomized network generation
and fragmentation. Occassionally some nodes in the graph at t = 0 form a subgraph that is
disconnected from the giant component. Due to the very small size of the disconnected
subgraph, nodes will report high values for l because a centralized node might be connected
directly to every node in the outlying subgraph.

Appendix C

The magnitude of the reference growth rate was dependent on both static and dynamic
parameters. Static parameters were not changed between simulations. These parameters
included: N, M, vF, vI , kF, and kI . The preset values for each of these parameters can be
seen in Table A1.

Table A1. Static parameters for the reference growth rate.

N M vF vI kF kI

Static Presets 25 25 0.143 0.303 10 10

Total polymer types for proteins and xNAs were limited to 25. This preset was selected
as it offered good predictive power in relation to computational simulation time. Average
volumes were computed from published literature volumes [49,50] and converted from A3

to nm3 to ensure poper parametric scaling. We assume that the polymer elongation rate for
proteins and xNAs are equivalent, regardless of the mechanism behind polymerization. The
preset for elongation rates of proteins and xNAs had been kept at 10 to keep the reference
growth rate sufficiently small.

Dynamic parameters included: n0
j , Lj m0

µ, and Lµ. These parameters were reset
and reassigned at the beginning of each new protocell evolution trajectory. Lengths were
assigned to each type of protein and xNA molecule using an exponential length distribution
function adapted from the modeled data in the foldamer hypothesis [13]:

d(l) = 0.067e−0.106x, (A9)

where x were chain lengths ranging from 10 monomeric units to 50 monomeric units.
Subsequently, a list of 1000 pseudorandom variates were generated from the distribution
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and randomly assigned to each type of protein and xNA molecule in the model. The initial
population size for each protein type and xNA type in the model were calculated using:

n0
j =

0.067e−0.106(Lj)

0.067e−0.106(length o f shortest protein)
(n0

j o f shortest protein), (A10)

m0
µ =

0.067e−0.106(Lµ)

0.067e−0.106(length o f shortest xNA)
(m0

µ o f shortest xNA). (A11)

The initial population sizes of the shortest length protein type and xNA type were
set to 1000 for every simulation. Lengths of Lj and Lµ in Equations (A10) and (A11)
corresponded to the length of the biomolecule for which the initial population size was
being calculated for.
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