
Oculodentodigital dysplasia (ODDD) is a disorder 
affecting multiple tissues, including ocular anomalies, nasal 
dysplasia, digital malformation in the form of complete 
syndactyly of the fourth and fifth fingers, and enamel 
dysplasia [1]. Ocular abnormalities are characterized by 
microphthalmia and microcornea that are frequently associ-
ated with secondary glaucoma [2]. Such ocular abnormalities 
are congenital and can be easily characterized and quantified, 
while secondary glaucoma can lead to severe consequences, 
including blindness.

Variants in GJA1 (OMIM: 121014) are frequently associ-
ated with ODDD, rarely with syndactyly [3], heart malforma-
tions [4,5], craniometaphyseal dysplasia [6], erythrokerato-
dermia variabilis et progressiva [7], and palmoplantar kera-
toderma with congenital alopecia [8]. GJA1, the gap junction 
alpha 1 gene, is located at chromosome 6q22.31 and consists 
of two exons, where the second exon is the only coding exon. 
This gene encodes connexin 43 (CX43), a 43 kDa protein with 
two domains: a connexin domain and a connexin 43 domain 

(NCBI) [9]. Connexins comprise a family of vertebrate gap 
junction channel proteins that are composed of four trans-
membrane helices and two highly conserved extracellular 
loops [10,11]. Of all connexin proteins, CX43 is the most 
widely expressed in various human tissues [10]. Gap junction 
channels formed by CX43 are considered to function in direct 
exchanges from cell to cell and mediate crosstalk among 
multiple signaling pathways in cells and during development 
[5]. To clarify the characteristics of PPVs in GJA1 and the 
correlation between glaucoma and GJA1, we analyzed GJA1 
variants systematically based on in-house data and published 
literature. Recognizing the characteristics of eye-associated 
potentially pathogenic variants (PPVs) in GJA1 may be 
helpful for clinical genetic testing and subsequent counseling 
and medical intervention.

In the present study, GJA1 variants were collected from 
in-house whole-exome sequencing data from 5,307 individ-
uals with various eye conditions. Multiple in silico bioinfor-
matics and genotype–phenotype analyses were used to define 
PPVs. Subsequent bioinformatics and genotype–phenotype 
analysis of information from online databases together with 
the in-house data provides a critical outline for heterozygous 
GJA1 PPVs associated with ocular abnormalities. This study 
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not only expends the variant spectrum of GJA1 but also 
characterizes GJA1 PPVs associated with ocular phenotypes.

METHODS

Subjects: The ocular phenotypes and venous blood samples 
for individuals in this study were collected by our group 
through a long-term, ongoing program for the genetic study 
of hereditary eye diseases at the Zhongshan Ophthalmic 
Center. Written informed consent was obtained from indi-
viduals or their guardians in accordance with the tenets of the 
Declaration of Helsinki and adhered to the ARVO statement 
on human subjects before clinical data and peripheral venous 
blood samples were collected. This study was approved by 
the institutional review board of the Zhongshan Ophthalmic 
Center. Genomic DNA was extracted from leukocytes from 
peripheral venous blood through a previously described 
procedure [12].

Exome sequencing analysis: Whole-exome sequencing 
was performed with an Agilent SureSelect Human All 
Exon Enrichment System (50M; Agilent, Santa Clara, CA). 
Enriched DNA fragments were subsequently sequenced 
using the Illumina HiSeq 2000 system (Illumina, San Diego, 
CA) with an average sequencing depth of 125X. Reads were 
mapped against the UCSC hg19 reference genome (Genome) 
using the Burrows-Wheeler Aligner (BWA). Variants calling 
were inferred from the Bayesian statistical algorithm based 
on SAMtools [13,14]. The remaining variants were annotated 
based on the human genome with ANNOVAR [15].

As for the remaining variants of GJA1, low-quality and 
effect-unknown variants were initially excluded, as were vari-
ants with a low read-depth (≤5 reads), variants in untranslated 
regions (UTRs) or in an intronic region without a significant 
impact on splicing, and synonymous variants. Based on 
the American College of Medical Genetics and Genomics 
(ACMG) guideline for defining PPVs [16], the remaining vari-
ants were analyzed as follows: (1) Because the prevalence of 
ODDD was 1 in 10 million [17], GJA1 variants detected in the 
gnomAD database were excluded. (2) Missense variants were 
evaluated with five in silico online tools, namely, REVEL, 
CADD, SIFT, PolyPhen2, and PROVEAN. For REVEL and 
CADD [18,19], which acted as ensemble annotations for 
predicting the pathogenicity of missense variants, variants 
with a score over top 5% or top 25% percentiles of missense 
variants from the gnomAD database were weighted as prob-
ably or possibly damaging, respectively. Missense variants 
were further graded by the significance of cumulative scores 
based on all five in silico tools and their sequential order of 

association with specific ocular phenotypes. (3) Truncation 
variants were directly forwarded to genotype–phenotype 
analysis. (4) In-frame variants if the inserted or deleted 
residues were conserved in multiple species remained. After 
these analyses, the remaining variants (including frameshift 
variants, missense variants predicted to be damaging by at 
least four in silico tools, and in-frame variants) were included 
as PPVs for further genotype–phenotype analysis. Sanger 
sequencing was used to confirm the PPVs [20]. The primers 
used were designed by the Primer 3.0 website.

Characteristics of PPVs in GJA1:

Truncation variants—Not all truncation variants in a 
gene are necessarily pathogenic, although such variants have 
been reported to be disease-causing [21]. First, clinical data 
from subjects with truncation variants were evaluated to 
determine whether they had related phenotypes. Then, the 
distribution of potentially pathogenic truncation variants was 
plotted on the coding frame and compared with all truncation 
variants from gnomAD to determine whether there was a 
biased distribution. The significance of the distribution bias 
was calculated with the chi-square test.

Missense variants—For most genes, only a subset of 
rare variants is disease-causing and is usually evaluated as 
damaging or possible damaging by multiple online tools, 
especially for dominant disease [21]. All missense variants 
were initially evaluated based on their frequency in the 
general population from the gnomAD database, predictions 
using five in silico tools, and the related phenotype. Similarly, 
the distribution of potentially pathogenic missense variants in 
the present study and HGMD was plotted on the coding frame 
and compared with all missense variants from gnomAD to 
determine whether specific regional enrichment was present. 
The significance of the biased distribution was also calculated 
with the chi-square test.

Review of ocular phenotypes of GJA1 variants: Ocular 
phenotypes were systematically reviewed based on a search 
for “GJA1” in HGMD (before April 2020) and related 
published literature. Available full-text articles in English 
were retrieved from PubMed, and the ocular phenotypes were 
calculated.

Statistical analysis: Statistical analysis was performed with 
IBM SPSS Statistics Version 25.0 (IBM Corp., Armonk, NY). 
The allele counts of the GJA1 variants in the present study, 
HGMD, and gnomAD databases were compared using the 
chi-square test and Fisher’s exact test. A p value of less than 
or equal to 0.05 was considered statistically significant.
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RESULTS

Heterozygous GJA1 variants identified in the present 
study: In total, 21 variants in GJA1 were detected in 32 of 
the 5,307 unrelated individuals with various eye conditions 
(Appendix 1). Among the 21, four heterozygous PPVs were 
detected in four probands, including two truncation vari-
ants (c.738_739delTT/p.Y247Pfs*60 and c.791_792delAA/p.
K264Ifs*43), one missense variant (c.124G>C/p.E42Q), and 
one in-frame deletion variant (c.890_892delCTT/p.S297del; 
Table 1). Each variant was confirmed with Sanger sequencing 
and was present exclusively in one proband but not in the 
remaining 5,306 (Figure 1A,B). All four variants are rare 
and absent from existing databases (gnomAD and 1000 
Genomes). Two variants (c.738_739delTT/p.Y247Pfs*60 and 
c.890_892delCTT/p.S297del) are novel, while the other two 
(c.124G>C/p.E42Q and c.791_792delAA/p.K264Ifs*43) were 
previously reported to cause ODDD or microcornea and glau-
coma [22,23], including in a different family reported by our 
group. The residues p.E42 and p.S297 were highly conserved 
in GJA1 among multiple vertebrates (Figure 1C), and p.E42Q 
was predicted to be damaging by all five in silico online 
tools. In addition, the missense variant was located in the 
first transmembrane helix involved in the connexin domain, 
while the two truncation variants were located outside the 
connexin domain (Figure 2A).

The available clinical data of the four probands are 
summarized in Table 2. Of the four probands with heterozy-
gous PPVs in GJA1, one (10651-II:2) exhibited a phenotype 
of ODDD, including microcornea, a narrow nose with hypo-
plastic alae nasi, prominent columella and thin anteverted 
nares together with a narrow nasal bridge, prominent epican-
thic folds, and syndactyly of the fourth and fifth fingers 
(Figure 3). The patient’s intraocular pressure was bilateral 
18.0 mmHg. Of the remaining three probands, two had 
microcornea and glaucoma, while the third patient (5395-II:2) 
had high hyperopia (PHH), a disorder also called posterior 
microphthalmia. The best-corrected visual acuity varied 
between bilateral 0.2 for patient 10651-II:2 with microcornea 
and bilateral 1.0 for patient 5395-II:2 with high hyperopia. 
Glaucoma seemed a cause of deteriorating vision, as vision 
acuity decreased from 1.2 to finger count in the right eye of 
patient 10779-II:4 with glaucoma and microcornea. Available 
fundus photos in two patients showed mild fundus changes, 
including tilted optic discs, abnormal branches of the retinal 
vessels, and tessellated retina (Figure 3). Corneal staphyloma 
resulting from advanced glaucoma was observed in the right 
eye of patient 10779-II:4 (Table 2, Figure 3).

Characteristics of potentially pathogenic variants in GJA1: 
Previously, 89 heterozygous GJA1 variants in 179 individuals 

from 121 families were identified as disease causing muta-
tion (DM) based on HGMD, including three truncations, 82 
missense, and four in-frame variants (Appendix 2) [1-4,7,8,22-
70]. In total, 73 PPVs associated with ODDD or microcornea, 
including 66 missense, four in-frame, and three truncation 
variants, were detected in 102 probands. Of the 82 missense 
variants, 49 are reported to be associated with ocular pheno-
type, 15 are reported to have non-ocular phenotypes, and one 
missense variant (c.977C>T/p.T326I) is likely benign, as it 
was present in two subjects without related ocular phenotypes 
in the study cohort.

All four heterozygous truncation PPVs in GJA1 identified 
to date, including three published PPVs and one novel PPV 
in the present study, are located downstream of the connexin 
domain. In contrast, four truncation variants associated with 
autosomal recessive ODDD in homozygous or compound 
heterozygous status are located inside the connexin domain, 
including c.6delT/p.D3Tfs*5, c.97C>T/p.R33*, c.301C>T/p.
R101*, and c.442C>T/p.R148* (Appendix 3) [71-74]. Of the 
four probands with recessive ODDD, seven of the eight 
carrier parents were normal, while the other one had microph-
thalmia. Intriguingly, all but one truncation variant in GJA1 
from the gnomAD database was statistically significantly 
enriched in the connexin domain (Figure 1, p=0.000113). The 
only truncation variant outside the connexin domain in the 
gnomAD database was at the last codon leading to a loss of 
the stop codon with unknown effect. Therefore, these lines 
of evidence suggest that heterozygous truncation variants at 
the N-terminal region (before or inside the connexin domain) 
are unlikely to be pathogenic, while those at the C-terminal 
portion (after the connexin domain) are likely pathogenic.

In total, 82 missense variants were detected in 164 
subjects from 115 families. All the 82 were absent in 
gnomAD, of which 49 (59.8%) were predicted to be damaging 
variants by at least four in silico tools and were present in 
68 of the 115 (59.1%) families. The missense variants within 
the connexin domain and predicted to be damaging by at 
least four in silico tools were statistically significantly more 
common in the patient group than in the gnomAD database 
(17/713, p=2.90E-77; Appendix 4). In addition, 89.0% (73/82) 
of PPVs were located in the connexin domain, and 64.4% 
(47/73) were predicted to be damaging variants by at least 
four in silico tools (Appendix 4). Of the 82 missense variants, 
ocular phenotypes were reported to be associated with 49 
variants. All but two of the 49 missense PPVs were located 
in the connexin domain, showing a statistically significant 
distribution bias compared with the variants in the gnomAD 
database (p=7.54E-55; Appendix 2; Appendix 4). These 
results indicate that heterozygous missense variants absent 

http://www.molvis.org/molvis/v27/309


Molecular Vision 2021; 27:309-322 <http://www.molvis.org/molvis/v27/309> © 2021 Molecular Vision 

312

Ta
bl

e 
1.

 H
et

er
oz

yg
ou

s 
G

JA
1 

PP
V

s 
de

te
ct

ed
 in

 o
ur

 c
oh

or
t.

E
xo

n
Po

si
tio

n
N

M
_0

00
16

5
N

M
_0

00
16

5
A

lle
le

In
 si

lic
o 

pr
ed

ic
tio

n
gn

om
A

D
H

G
M

D
R

ef

 
at

 C
hr

6
ch

an
ge

E
ff

ec
t

C
ou

nt
R

E
V

E
L

C
A

D
D

SI
FT

P
o

ly
-

Ph
en

-2
Pr

ov
ea

n
(v

2.
1)

 A
C

 
 

2
12

1,
76

8,
11

7
c.1

24
G

>C
p.

E4
2Q

1
0.

71
9

24
.6

0
D

D
D

/
D

M
[2

3]
2

12
1,

76
8,

73
1

c.7
38

_7
39

de
lT

T
p.Y

24
7P

fs
*6

0
1

/
/

/
/

/
/

N
ov

el
N

on
e

2
12

1,
76

8,
78

4
c.7

91
_7

92
de

lA
A

p.
K

26
4I

fs
*4

3
2†

/
/

/
/

/
/

D
M

[2
2]

2
12

1,
76

8,
88

3
c.

89
0_

89
2d

el
C

TT
p.

S2
97

de
l

1
/

/
/

/
/

/
N

ov
el

N
on

e

N
ot

e:
 D

=d
am

ag
in

g.
 “/

”=
no

t a
va

ila
bl

e,
 A

C
=a

lle
le

 co
un

t, 
D

M
=d

is
ea

se
 ca

us
in

g 
m

ut
at

io
n,

 “†
”=

on
e w

as
 re

po
rte

d 
in

 o
ur

 p
re

vi
ou

s s
tu

dy
 [1

8]
. P

er
ce

nt
ile

s s
co

re
 o

f R
EV

EL
: 7

5%
=0

.6
12

, 
95

%
=0

.8
82

, p
er

ce
nt

ile
s s

co
re

 o
f C

A
D

D
: 7

5%
=2

3.
80

, 9
5%

=2
7.

31
.

http://www.molvis.org/molvis/v27/309


Molecular Vision 2021; 27:309-322 <http://www.molvis.org/molvis/v27/309> © 2021 Molecular Vision 

313

in the gnomAD database, located in the connexin domain, 
and predicted to be damaging by at least four in silico tools 
are most likely pathogenic, at least in the eye, while the 
heterozygous missense variants outside the connexin domain 
or with poor computational prediction need further analysis 
to evaluate their pathogenicity.

Ocular phenotypes associated with heterozygous GJA1 vari-
ants: In total, 145 patients in 98 families with heterozygous 
GJA1 variants had ocular involvement, including the four 
families in the present study. Several specific ocular signs 

could be observed in 116 patients from 72 of the 98 families, 
including microcornea (62.9%, 73/116), microphthalmia 
(54.3%, 63/116), high hyperopia (6.0%, 7/116), cataracts 
(4.3%, 5/116), and a few rare and atypical clinical signs, 
including myopia, anterior eye-chamber defects, iris atrophy, 
and uveitis (Table 3, Appendix 2). Glaucoma, a common 
and severe complication secondary to microcornea and 
microphthalmia, developed in 31 of the 116 (26.7%) patients, 
including 19 with microcornea, seven with microphthalmia, 
and five with ODDD of unspecified ocular signs. Of these 
31, glaucoma was present in seven patients under the age 

Figure 1. The pedigree and sequence chromatograms of the four probands with PPVs in GJA1. A, B: Mx, mutant allele. Filled squares (male) 
or circles (female) represent these affected individuals, and the arrow indicates the proband in each family. The accession number of the 
corresponding human GJA1 transcript is NM_000165. C: Conservation analysis of the positions related to two missense and one in-frame 
deletion variants from the in-house data in multiple vertebrates.
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Figure 2. The distribution and allele count of heterozygous GJA1 variants identified in the general population in the gnomAD database, DMs 
in HGMD, and PPVs from in-house exome sequencing data. A: The spectrum of variants with minor allele frequency <0.01 in the gnomAD 
database, disease causing mutation (DM) in human gene mutation database (HGMD), and four potentially pathogenic variants (PPVs) from 
in-house exome sequencing data. B: The distribution and allele count of truncation variants from the gnomAD database, HGMD, and the 
study cohort. Connexin domain: p.3–233; Cx43, connexin 43 domain: p.293–312. Transmembrane region 1: p.19–46, transmembrane region 2: 
p.72–100, transmembrane region 3: p.147–184, transmembrane region 4: p.206–233. C: The distribution of reported biallelic GJA1 truncation 
variants. Variants marked with the same letters were identified in the same individual.
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of 10 years old and in 24 patients older than 10 years old 
(77.4%, 24/31), with an average age of onset at 25.5 years 
old; intraocular pressure ranged from 26 mmHg to 70 mmHg 
(36.90±11.93 mmHg). As glaucoma is an age-dependent 
blindness disease, it is expected that more of these patients 
will develop glaucoma later in life.

DISCUSSION

In the present study, four heterozygous GJA1 PPVs were iden-
tified in four probands with ODDD, microcornea, or high 
hyperopia, two of whom developed glaucoma. Of the four, 
one missense PPV is located in the connexin domain, while 
both truncation PPVs are located downstream of the connexin 

domain. Combined with systematic analysis of variants in 
HGMD and gnomAD, these results suggest that the patho-
genicity of variants in GJA1 is position- and type-dependent. 
For the heterozygous truncation variants, variants inside the 
connexin domain are likely benign, while those downstream 
of the domain are likely pathogenic. However, missense PPVs 
are predominantly located within the connexin domain. This 
position- and type-dependent pattern of GJA1 pathogenic 
variants resembles that of the pathogenic variants in CRX 
(Gene ID: 12951, OMIM: 602225) [21]. The exact mechanism 
of this pattern has yet to be explored with functional studies. 
A possible explanation might be that the pathogenicity of 
GJA1 variants acts through a dominant-negative effect 

Figure 3. The facial features of one 
proband with ODDD and the eye 
appearance of the proband with 
microcornea and bilateral cornea 
opacity. A: Proband 10,651-II:2 
showed typical facial features, 
including microcornea, sparse 
eyelashes and eyebrows, bilateral 
epicanthus, and ocular hyper-
telorism. B, C: Fundus imaging 
of the proband in 10,651 revealed 
increased numbers of vascular 
branches crossing the tilted optic 
disc and tessellated retina. D: 
The fourth and fifth fingers of 
both hands had previously been 

surgically released. E: Corneal staphyloma appeared in the right eye of proband 10,779-II:4, and bilateral microcornea and cornea opacities 
were also seen.

Table 3. Characteristic of GJA1-associated ocular phenotype.

GJA1-associated ocular phenotype (n=116)
Microcornea  62.9% (73/116)
 Glaucoma 26.0% (19/73)
Microphthalmia  54.3% (63/116)
 Glaucoma 12.7% (7/63)
High hyperopia  6.0% (7/116)
Cataract  4.3% (5/116)
Glaucoma  26.7% (31/116)
 Age at diagnosis (years) 25.5±19.89
 Maximal IOP (mmHg) 36.9±11.93
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rather than haploinsufficiency of the functional protein. A 
null allele is likely created by truncation variants inside the 
connexin domain that are tolerable, while partially functional 
abnormal proteins generated through truncation variants 
outside the domain would interfere with the activity of the 
protein encoded by the normal allele. Proteins encoded by 
missense variants in the connexin domain might interact with 
normal proteins and then form abnormal or invalid channels, 

resulting in a dominant-negative effect. Proteins bearing 
most of the missense variants outside the domain might be 
tolerable and normal-like proteins (Figure 4). This type of 
position- and type-dependent pathogenicity may be present 
in many other genes in addition to CRX and GJA1. Systematic 
genotype–phenotype analysis based on a large data set and 
online databases at the individual gene level, as performed 
in the present study, is necessary for genes associated with 

Figure 4. Outline of the pathoge-
nicity of different GJA1 variants.
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autosomal dominant diseases. Recognizing this phenomenon 
is critical in the era of the widespread application of clinical 
gene tests and subsequent genetic counseling, because loss-
of-function mutations are considered pathogenic if such 
variants have been previously reported to be disease-causing, 
even in the ACMG guidelines [16].

Connexin gap junctions, formed as a hexamer of 
connexin subunits, play a critical role in intercellular 
communication [75]. Mutations in at least ten connexin genes, 
including GJA1, have been reported to cause human diseases 
[65,67]. The mechanisms underlying the causative mutations 
in these genes can be briefly classified into two major groups: 
loss of hemichannel function or gain of hemichannel function 
[60,65,67]. The position- and type-dependent pathogenicity 
of mutations in GJA1 may be well explained based on these 
two mechanisms, as illustrated in Figure 4. The hexameric 
connexin subunits of CX43 encoded by GJA1 form gap junc-
tion channels connecting the two cytoplasmic compartments 
[10,76]. CX43 bearing missense PPVs might interfere with 
the assembly process of the hexameric subunits, and muta-
tions in the domain region would have more severe effects 
than outside the domain. Heterozygous truncated CX43 
in the domain is unable to incorporate into the hexameric 
complex, such that CX43 encoded by the normal allele can 
form structurally normal channels with reduced amounts, 
while heterozygous CX43 truncated outside the domain is 
able to incorporate into most hexameric complexes but is 
functionally inactive.

Most abnormalities in patients with mutations in GJA1 
are present since birth and stationary. Therefore, attention 
should be paid to the severe complications of ocular anoma-
lies, such as glaucoma. The development of secondary glau-
coma later in life may lead to irreversible blindness [77]. In 
our previous study, a large family with microcornea and glau-
coma illustrated the high risk of glaucoma in patients with 
GJA1 PPVs [22]. A review of the clinical data for patients with 
mutations in GJA1 revealed that at least 26.7% of patients had 
glaucoma, and the incidence of glaucoma increased with age, 
reaching 38.7% at approximately 30 years of age and probably 
increasing thereafter. Recognizing such severe complications 
is important as glaucoma is preventable and treatable with 
good outcomes if it is detected and managed at the early stage.

In summary, the characteristics of PPVs in GJA1 asso-
ciated with ocular phenotypes are defined as follows: The 
most common heterozygous GJA1 PPVs are missense variants 
inside the connexin domain and truncation variants down-
stream of the connexin domain. Further studies on GJA1 
are essential to validate this feature as well as its molecular 
mechanism. Severe eye abnormalities are frequently 

associated with GJA1 PPVs, including a high risk of glaucoma 
in adulthood. Early preventative treatment is important for 
preventing irreversible blindness.

APPENDIX 1. GJA1 VARIANTS DETECTED IN 
THE PRESENT STUDY.

To access the data, click or select the words “Appendix 1.”

APPENDIX 2. HETEROZYGOUS GJA1 VARIANTS 
ASSOCIATED WITH DIFFERENT PHENOTYPES.

To access the data, click or select the words “Appendix 2.”

APPENDIX 3. BIALLELIC GJA1 VARIANTS 
ASSOCIATED WITH HUMAN CONDITIONS.

To access the data, click or select the words “Appendix 3.”

APPENDIX 4. THE DISTRIBUTION AND ALLELE 
FREQUENCY OF MISSENSE VARIANTS FROM 
OUR COHORT AND HGMD.

To access the data, click or select the words “Appendix 4.” (A) 
Missense variants with MAF <0.01 identified in the gnomAD 
database. (B) Missense variants within the connexin domain 
and predicted as damaging ones through at least four in-silico 
tools from the gnomAD database (above), HGMD and our 
cohort (below). (C) Missense variants within the connexin 
domain. (D) Missense variants predicted as damaging ones 
through at least four in-silico tools. (E) Missense variants 
from inhouse data and HGMD related (above) and irrelevant 
(below) to the ocular signs.
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