
����������
�������

Citation: Hossain, M.D.; Sultana, T.;

Hossain, M.A.; Layek, M.A.; Hossain,

M.I.; Sone, P.P.; Lee, G.-W.; Huh, E.-N.

Dynamic Task Offloading for

Cloud-Assisted Vehicular Edge

Computing Networks: A

Non-Cooperative Game Theoretic

Approach. Sensors 2022, 22, 3678.

https://doi.org/10.3390/s22103678

Academic Editors: Taehong Kim,

Youngsoo Kim and Seong-eun Yoo

Received: 8 April 2022

Accepted: 9 May 2022

Published: 12 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Dynamic Task Offloading for Cloud-Assisted Vehicular Edge
Computing Networks: A Non-Cooperative Game
Theoretic Approach †

Md. Delowar Hossain , Tangina Sultana , Md. Alamgir Hossain , Md. Abu Layek , Md. Imtiaz Hossain ,
Phoo Pyae Sone , Ga-Won Lee and Eui-Nam Huh *

Department of Computer Science and Engineering, Kyung Hee University, Global Campus,
Yongin-si 17104, Korea; delowar@khu.ac.kr (M.D.H.); tangina@khu.ac.kr (T.S.); alamgir@khu.ac.kr (M.A.H.);
layek@khu.ac.kr (M.A.L.); hossain.imtiaz@khu.ac.kr (M.I.H.); phoopyae@khu.ac.kr (P.P.S.);
gawon@khu.ac.kr (G.-W.L.)
* Correspondence: johnhuh@khu.ac.kr; Tel.: +82-10-9582-9789
† This paper is an extended version of Hossain, M.D.; Khanal, S.; Huh, E.-N. Efficient Task Offloading for

MEC-Enabled Vehicular Networks: A Non-Cooperative Game Theoretic Approach. In Proceedings of the
2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN), Jeju Island, Korea,
17–20 August 2021.

Abstract: Vehicular edge computing (VEC) is one of the prominent ideas to enhance the computation
and storage capabilities of vehicular networks (VNs) through task offloading. In VEC, the resource-
constrained vehicles offload their computing tasks to the local road-side units (RSUs) for rapid
computation. However, due to the high mobility of vehicles and the overloaded problem, VEC
experiences a great deal of challenges when determining a location for processing the offloaded
task in real time. As a result, this degrades the quality of vehicular performance. Therefore, to deal
with these above-mentioned challenges, an efficient dynamic task offloading approach based on
a non-cooperative game (NGTO) is proposed in this study. In the NGTO approach, each vehicle
can make its own strategy on whether a task is offloaded to a multi-access edge computing (MEC)
server or a cloud server to maximize its benefits. Our proposed strategy can dynamically adjust
the task-offloading probability to acquire the maximum utility for each vehicle. However, we
used a best response offloading strategy algorithm for the task-offloading game in order to achieve
a unique and stable equilibrium. Numerous simulation experiments affirm that our proposed
scheme fulfills the performance guarantees and can reduce the response time and task-failure rate by
almost 47.6% and 54.6%, respectively, when compared with the local RSU computing (LRC) scheme.
Moreover, the reduced rates are approximately 32.6% and 39.7%, respectively, when compared with a
random offloading scheme, and approximately 26.5% and 28.4%, respectively, when compared with
a collaborative offloading scheme.

Keywords: vehicular edge computing; task offloading; multi-access edge computing; game theory

1. Introduction

With the evolution of intelligent vehicles, the emergence of delay-sensitive and
computation-intensive vehicular applications for things such as driving safety, intelligent
navigation, autonomous driving, augmented vehicular reality, information entertainment,
and accident warnings has increased rapidly [1–4]. The above applications are used to assist
both drivers as well as passengers in vehicular networks. These applications usually have
a large amount of processing data and require extensive resources during computation.
However, the computational capabilities in vehicles are limited.

Therefore, it is difficult to ensure the requirements of the above-mentioned applications
during computation, and still provide low latency and the required quality-of-service

Sensors 2022, 22, 3678. https://doi.org/10.3390/s22103678 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22103678
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6080-9720
https://orcid.org/0000-0002-3896-5591
https://orcid.org/0000-0002-6865-6650
https://orcid.org/0000-0002-0253-4597
https://orcid.org/0000-0003-1085-2461
https://orcid.org/0000-0003-4402-7216
https://orcid.org/0000-0002-6411-4467
https://orcid.org/0000-0003-0184-6975
https://doi.org/10.3390/s22103678
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22103678?type=check_update&version=1

Sensors 2022, 22, 3678 2 of 18

(QoS). To overcome the conflicts between resource-constrained vehicles and resource-
intensive applications, cloud-based VNs were previously proposed as an effective approach,
where a vehicle offloads its computation tasks to the resource-rich cloud infrastructure [5].
Offloading tasks to a remote cloud server greatly improves the computing performance
and extends the computing capacity of the vehicle.

However, due to the long propagation delay between a vehicular user and cloud
servers, unstable connections and unacceptable latency occurs, which reduces the of-
floading performance significantly. To tackle these challenges, a prominent approach has
emerged, which is known as multi-access edge computing (MEC) [6]. MEC provides a
new paradigm for fetching services in close proximity to the VNs. Thus, the vehicular
user can obtain a faster response by offloading computing tasks to MEC-enabled networks.
However, if the number of offloaded tasks from the vehicles to MEC server’s increases, it
degrades the vehicular performance due to the overloading problem. Therefore, an efficient
vehicular network is a crucial need to overcome the above challenges [7].

VEC has emerged as a promising technology where the vehicle can offload their com-
puted tasks to local RSUs for swift computation and efficient storage [8]. At the edge of
the VNs, it offers cloud-computing capabilities that handle real-time and computation-
intensive tasks with low latency. VEC is basically the integration of traditional VNs with the
emerging MEC. By using lightweight but ubiquitous MEC servers to extend the computa-
tion capacity of VNs poses significant challenges, particularly in dense traffic environments
with a huge amount of demand from vehicles. This is due to vehicular mobility, the limited
storage and resource capabilities in MEC servers. As the vehicular network environment is
extremely dynamic, vehicles do not have enough information in advance about network
conditions and edge resources, which therefore degrades performance. To deal with these
challenges, most of the previous studies consider vehicle movement at a constant speed,
or static vehicle positions when designing their VN models. Without considering vehicle
movements at various speeds in VN models, it is challenging to apply in real life.

Moreover, VEC has suffered three major problems, which are the limited coverage
ranges of RSUs, the overloaded problem, and the high mobility of vehicles. Furthermore,
existing research ignored cloud–server resources during task offloading. On the other hand,
it is not possible to predict the demand of the computing task generated by the vehicles in
advance. Therefore, dynamic task offloading is an online problem that requires a solution
with low-complexity.

To fill this gap and overcome the above-mentioned challenges, we designed an efficient
dynamic task offloading approach for VNs based on a non-cooperative game. Game theory
(GT) is a powerful tool for making decisions to offload tasks from among multiple offloading
decisions, despite having limited resources. In a non-cooperative game, each vehicle can
make its own strategy on whether a task is offloaded to a MEC server or a cloud server to
maximize its benefits. Moreover, the advantages of using non-cooperative game-theory-
based NGTO scheme uses a lightweight and distributed algorithm, which is an important
criterion in online algorithms.

In addition, we consider a real-life scenario when designing the VN model by consid-
ering movement at various speeds. In our proposed scheme, each vehicle can select the
optimal offloading decision, which reduces the task’s completion delay in each decision
slot. This paper is an extension of our previous work [9]. We summarize the contribution
of this paper as follows:

• We investigate the task-offloading problem in VNs to ensure the QoS and to accom-
modate a greater vehicular workload in MEC-enabled VNs.

• We propose an NGTO approach where vehicles can dynamically adjust the task-
offloading probability to acquire the maximal utility. Moreover, we used a best
response offloading strategy for deciding where the task will be offloaded.

• For local RSU computing, we use vehicle-to-RSU (V2R) communication mode and
consider the movement of vehicles at various speeds when designing the VN model.
Moreover, in our proposed model, vehicles are capable of offloading their computing

Sensors 2022, 22, 3678 3 of 18

tasks to a remote server in alternative ways—one via a base station (BS) and the other
via RSUs.

• Finally, an extensive simulation analysis is conducted to demonstrate the efficiency of
our proposed NGTO scheme, compared to its competitors, by reducing the task-failure
rates and response times of infotainment, danger assessment, and navigation applica-
tions.

The rest of this paper is organized as follows. Section 2 describes related works,
and summarizes the work on task offloading in VNs. In Section 3, we present a problem
scenario for vehicular networks and our proposed system model. The basic game model
and our proposed NGTO algorithm, including the offloading strategy for vehicles, a price
function, and a utility function, are demonstrated in Section 4. Afterward, we discuss the
performance evaluation of our proposal in Section 5. Lastly, in Section 6, we conclude
this paper.

2. Related Work

Recently, task offloading in VNs has gained widespread attention in both industry
and academia. A set of researchers are focused on optimizing the task-offloading problem
from various perspectives [10–18]. To utilize the resources that are available in the nearby
vehicles and to minimize the total latency, Wang et al. [10] introduced federated offloading
of different vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication in
VNs. Based on the computation and communication environment, the computation task is
processed in three ways: computed locally in the vehicle itself, offloading the computed
task to neighboring vehicles through V2V communications, and offloading to a local MEC
server through V2I communications. Moreover, systems adopt a distributed algorithm
to use nearby vehicle resources for offloading tasks in V2V communications. In [11], the
authors investigated the task-offloading problem for multi-user VNs, and proposed a
load-balancing task-offloading solution. They developed an optimization algorithm to
choose the target VEC server to maximize the system utility.

Xiao et al. [12] introduced a multi-agent reinforcement-learning-based task offload-
ing strategy for the Internet of Vehicles (IoV). To balance between the task offloading
delay and cost, they developed a three-stage Stackelberg game model. Moreover, Bo-
zorgchenani et al. [13] proposed an online network selection scheme based on traffic
patterns and congestion in vehicular edge networks using multi-armed bandit (MAB)
theory to reduce the task offloading latency. By exploiting the historical offloading data set,
they also developed an off-policy network selection approach to select the least congested
network. To provide a computing service with low-latency, Cui et al. [14] proposed a
double-deep Q-network (DDQN)-based cooperative vehicles-assisted task offloading strat-
egy through V2V cooperation. They considered the computing resources that are available
in the adjacent vehicles and used DDQN to determine the optimal task-offloading ratio.

In [15], a context-aware task offloading scheme was introduced based on software-
defined network (SDN) technology for a collaborative VEC system. To solve the joint
optimization problem of task offloading decision and resource allocation, they developed a
differential evolution (DE) algorithm. Furthermore, to predict idle computing resources, an
autoregressive integrated moving average (ARIMA) model was employed to cooperate
vehicular task offloading. Karimi et al. [16] introduced an efficient task offloading scheme
among MEC and central cloud in VNs based on deep-reinforcement learning (DRL). They
utilized DRL to guarantee the required response time and automatically learn the dynamics
of the network state. Moreover, a collaborative framework was analyzed to overcome the
resource limitations of MEC-enabled networks [17,18].

Generally, the vehicular network environment is highly dynamic and uncertain. In
static or slowly varying environments, traditional task offload methods may be useful;
however, it is difficult to make the decision when the VNs are changing frequently. Cur-
rently, different studies are focused on the game theoretic approach, which is a strong tool
for making task offloading decisions in VNs.

Sensors 2022, 22, 3678 4 of 18

Zhang et al. [19] developed a hierarchical VEC offloading approach to meet vehicle
demands on resource-constrained VEC servers by using a backup computing server in
nearby places. They used a Stackelberg game to optimize the utility of each vehicle. How-
ever, they considered the movement of vehicles at a constant speed, which is challenging
to apply in real life. Moreover, Zhang et al. [20] introduced predictive relay transmissions
and a direct uploading scheme in a MEC-enabled VNs to reduce the transmission latency.
However, their assumption is impractical due to their consideration of MEC servers as
unlimited resources.

Zhou et al. [21] developed a novel big data–enabled energy-efficient VEC (BEGIN)
framework for resource allocation based on a Stackelberg game. To make the decision
on selecting the task offload server and for choosing a pricing strategy, Liwang et al. [22]
introduced a Stackelberg-game-based V2V task offloading scheme. However, it is difficult
to process latency-intensive tasks by considering only nearby vehicles (V2V) for task-
offloading decisions.

A multi-user, non-cooperative game-based approach was proposed by Wang et al. [23]
to determine each vehicle’s offloading probability by considering the communication over-
head and QoS constraints. However, they considered only a single RSU for computation
offloading and to avoid the handover problem. A sequential Stackelberg game approach
was proposed by Ye et al. [24] for improving the performance in VEC servers, which op-
timized the strategy of workload allocation among resource-demand terminals, the VEC
server, and resource-provision terminals.

To use the resources that are ideal in volunteer vehicles, Zeng et al. [25] proposed a
volunteer-assisted VEC model. To analyze the interactions between VEC servers and the
requesting vehicles, they used a Stackelberg game based on utility and cost functions. On
the other hand, a context-aware, distributed task-offloading strategy was developed by
using matching game theory in VEC [26]. This scheme reduces the average task-offloading
delay as well as the energy consumption in edge nodes. However, the matching request
between the RSUs and vehicle can create an additional overhead and slow down the
offloading decision. Liu et al. [27] introduced a game-theory-based distributed algorithm
for minimizing costs and reducing the offloading delay to compute tasks of vehicles in multi-
user VNs. The different task offloading approaches in MEC-enabled VEC networks [19–27]
based on game theory are summarized in Table 1.

Table 1. Summary of the different game theory approaches for task offloading in MEC-enabled
VEC networks.

Ref. Proposed Algorithm # of Server Objectives W.H. Scenario V2V V2R V2I
Vehicles (Edge) (Cloud)

Ref. [19] Stackelberg game 120 Edge RT Single Highway × X ×
Ref. [20] Non-cooperative game ND Edge RT Multi Highway X X ×
Ref. [21] Stackelberg game 10 Edge E Single Urban × X ×
Ref. [22] Stackelberg game ND VC RT Single Highway X × ×
Ref. [23] Non-cooperative game 70 Edge RT Single Highway × X ×
Ref. [24] Sequential game ND Edge RT Single No Data × X ×
Ref. [25] Stackelberg game 90 VC, Edge OC Single Highway X X ×
Ref. [26] Matching game 100 VC, Edge RT, E Single Highway X X ×
Ref. [27] Potential game 30 Edge RT Single No Data × X ×

Our Study Non-cooperative game 1000 Edge, TC RT Sing., Mul. Highway × X X

VC = Vehicular cloud, TC = Traditional cloud, ND = No data, RT = Response time, E = Energy, OC = Offloading
cost, W.H. = Wireless hops.

3. Problem Scenario and System Model

In this section, we demonstrate the problem scenario in vehicular networks. Moreover,
the architecture of our proposed system is illustrated in detail.

Sensors 2022, 22, 3678 5 of 18

3.1. Problem Scenario

The overloaded problem and high mobility in the vehicles are still challenging issues
in dynamic multi-user VNs. When a huge number of vehicles offload their computing tasks
to the same edge servers simultaneously, the processing delay is longer due to congestion.
Thus, this degrades vehicular performance. Therefore, offloading the computing task to the
closest edge server is not always the best decision. Figure 1 shows such scenarios. From
this figure, we observe that, due to the high offloading requests, RSU1 is overloaded.

Remote Cloud

RSU1

MEC

RSU2

MEC MEC

Overloaded

 MEC

. . RSUM

V1 V1

T
T

T

V2

V3

V3

V4

High Mobility

T

V2

T

Figure 1. The problem of overloading and high mobility issues in vehicular networks.

For example, fmec
i represents the maximum computational resource capacity of a

MEC server, and vω1, vω2, . . ., vωn depicts the vehicle workload received by RSUi from
N vehicles, where {RSUi|i = 1, 2, 3, . . . , M} and {vωi|i = 1, 2, 3, . . . , N}. Then, the entire
workload received at RSUi from N vehicles is:

Wmec
i =

n

∑
i=1

vωi (1)

Therefore, the rest of the computing capacity of MEC server, αi can be calculated by
using Equation (2).

αi = fmec
i −Wmec

i (2)

When αi < 0, the MEC will require additional resources for computing the task due
to the overloaded problem. In this circumstance, it is difficult to decide whether the MEC
server or the remote server be used to offload the computing task. Therefore, to handle the
overloaded problem of RSU1 and to reduce the response time, we propose a game-theory-
based efficient task offloading scheme. Based on our proposed game model, each vehicle
decides where to offload computation tasks for processing, either in a MEC server or a
cloud server.

On the other hand, high mobility in the vehicles is a major problem in VNs. Figure 1
shows some scenarios that are explained below.

• Scenario 1: Vehicles V1 and V2 enter the coverage area of RSU1 and offload their task
to the associated MEC server. The vehicle V1 task is processed successfully by that
MEC server; however, vehicle V2 faces the overloaded problem for task execution.

• Scenario 2: Vehicle V3 is placed in the RSU2 coverage area and offloads a task to
the associated MEC server. Before finishing that task, the vehicle has already passed
multiple RSU coverage areas. The vehicle enters the coverage area of RSUM when
the task is finished.

Sensors 2022, 22, 3678 6 of 18

From the above scenario, we can see that vehicle V1 does not face any problems
during the task offloading and execution processes. On the other hand, vehicles V2 and
V3 face certain problems during task execution and the reception of the results due to the
overloaded and high-mobility problems. Therefore, in our proposed architecture, we use
mobility-based task migration among the different MEC servers through a metropolitan
area network (MAN).

When a vehicle moves to the coverage area of another RSU before executing the
offloaded task in the original MEC server, our system forwards the obtained result from
the original MEC server to the vehicle through the MAN and other RSUs in a multi-hop
manner. However, our proposed system uses the approach in [28] to handle the handover
problem by using the MAN.

3.2. Proposed System Model

The proposed MEC-enabled vehicular network architecture is represented in Figure 2,
which includes three layers: the vehicle layer, the edge-computing-network layer, and the
remote cloud layer. The vehicles are located in the first layer of the architecture and use
RSUs or a BS to establish a connection with the internet. The edge-computing-network
layer contains RSUs and BS. For transmitting data between a MEC server and vehicles,
vehicles use wireless communication techniques to communicate with the RSUs. Moreover,
in our proposed architecture, we use a MAN to connect all the RSUs, sharing the computing
resources via task migration.

V2R V2R

MAN

V2R
MEC

RSU1 RSU2 RSUM

MEC MEC

. . . .

Remote Cloud

Data

Generation

Vehicle Layer

Edge Computing

Layer

BS
V2I

 RSU1 Coverage, L: 500 m RSU2 Coverage, L: 500 m RSUM Coverage, L: 500 m

BS: Base Station

RSU: Road-side Unit

V2I: Vehicle-to-Infrastructure

V2R: Vehicle-to-RSU

MEC: Multi-access Edge Computing

MAN: Metropolitan Area Network

Total Road Length: 10 km

1

2

3

1

2

3

RSU via WLAN

Cloud via RSU

Cloud via BS

Figure 2. The proposed MEC-enabled vehicular network.

Therefore, the edge computing layer can be considered as a shared resource pool. In
our model, RSUs can also access remote cloud resources by using a fiber communications
link. However, on the road, the BS is located such that it has a large coverage area so that
vehicles can access it easily. Finally, in the third layer, the traditional remote cloud server is
placed to provide powerful cloud computing services to vehicles. There are two ways to
offload a vehicular computing task to the remote cloud under our proposed model: via the
BS and via RSUs.

The proposed model consist of a set of N vehicles as N = {1, 2, 3, . . . , N}. We as-
sume each vehicle has generated T independent tasks when it arrives on the road, where
T = {Ti|i = 1, 2, 3, . . . , T}, and each computation task is characterized by, Ti = {din

i , ci, tmax
i }.

For task Ti, din
i represents the size of input task; ci denotes the desired computing resource

for task processing; and tmax
i is the highest tolerable latency for Ti. Each task can be pro-

Sensors 2022, 22, 3678 7 of 18

cessed on the MEC server, offloaded to a cloud server by using an RSU, or accomplished
on the cloud server through the BS.

Therefore, each vehicle has three offloading choices for accomplishing tasks. Moreover,
a unidirectional road is considered in our proposed architecture. There are M RSUs with
the same coverage area along the road, and they are deployed equidistantly. We represent
the set of RSUs as RSU = {RSU1, RSU2, . . . , RSUM}, where {RSUi|i = 1, 2, . . . , M}. We
divide the road into M segments of length L, where {Li|i = 1, 2, . . . , M}, and all vehicles
are randomly distributed in the segments of the road. RSUm can only be accessed for
offloading tasks when the vehicles are located within the mth segment. Each RSU has a 500
m communication range. A single MEC server is equipped at each RSU (which has limited
computing resources and storage capacity) to provide task offloading services for vehicles.
For each MEC server, MECi = {fmec

i , smec
i }, where fmec

i and smec
i represent the computing

and storage capacity of MECi.

3.3. Communication and Computation Model

According to our proposed model, the offloaded task can be processed by using an
edge server or remote cloud. The total task-completion time for both cases consists of the
task transmission and processing time.

3.3.1. Edge Offloading

When vehicle i chooses a MEC server that is connected to RSUm for offloading com-
putation task Ti, the total processing time can be computed as follows:

tmec
i,m = vup

i,m + vexe
i,m + vd

i,m (3)

where vup
i,m represents the uplink delay during transmission, while the vehicle i offloads its

computing task to the RSUm connected to the MEC server, and vd
i,m depicts the downlink

delay during transmission, while the ith vehicle receives the results. Moreover, vexe
i,m denotes

the execution time for processing vehicle i’s task on the MEC server, which is derived
as follows:

vexe
i,m =

din
i

f mec
m

(1−Umec
m) (4)

Here, din
i is the task size, while f mec

m and Umec
m are the computing capability and the

utilization of the RSUm connected to the MEC server, respectively.

3.3.2. Cloud Offloading

In our proposed model, vehicles have two ways to offload and compute their tasks at
a remote server. When vehicles use an RSU for offloading their task to a remote server, the
total processing time of vehicle i’s task can be obtained by:

tcloud
i,rsu = vup

i,crsu + vexe
i,c + vd

i,crsu (5)

where vup
i,crsu and vd

i,crsu are the uplink and downlink delay, respectively, via the RSU.
Moreover, vexe

i,c represents the processing time to execute the task in the cloud. However,
when the task is offloaded to a remote server from vehicle i through the BS, the total
processing time of vehicle i’s task can be obtained by:

tcloud
i,bs = vup

i,cbs + vexe
i,c + vd

i,cbs (6)

where vup
i,cbs and vd

i,cbs are the uplink and downlink delay, respectively, via the BS. Moreover,
vexe

i,c represents the task-execution time in the cloud. In both cases (task offloading via RSU
or BS), execution time vexe

i,c is the same and can be calculated as follows:

vexe
i,c =

din
i

f cloud (1−Ucloud) (7)

Sensors 2022, 22, 3678 8 of 18

Here, Ucloud and f cloud represent the average utilization and computation capability
of the cloud server, respectively.

4. The Non-Cooperative Game Theory-Based Task Offloading Algorithm

In this section, we first present the task-offloading-game model. Afterward, we discuss
our proposed NGTO algorithm.

4.1. The Basic Game Model

Game theory is a powerful tool with low complexity in developing distributed algo-
rithms. It can make a task offloading decision where the vehicle can achieve maximum
utility. The basic task offloading strategy of the game can be represented by using a
triplet [29], G = {N, (pi)i∈N , (ui)i∈N}, where

• N = {1, 2, 3, . . . , n}, i ∈ N is a set of N finite players (vehicles)
• (pi)i∈N is a set of offloading strategies for vehicle i, and the possible strategy of

vehicle i is any of pi, where pi = {pi ∈ {pmrsu
i , pcrsu

i , pcbs
i }, ps

i ∈ {0, 1}, i ∈ N, s ∈
{mrsu, crsu, cbs}}. Here, {mrsu, crsu, cbs} denotes the offloading decision set, where
mrsu represents a task that offloads to a MEC server that is connected to RSU, crsu
denotes task offloads to a cloud server via RSUs, and cbs indicates task offloads to a
cloud server via the BS. Moreover, pi = ps

i = 1 indicates that vehicle i has completed
its task by choosing decision s; otherwise pi = ps

i = 0.
• (ui)i∈N is the payoff (utility) function of vehicle i, which can be represented as ui(p).

Each vehicle is attempting to find out the strategy that is more profitable when
offloading the task in order to maximize its utility, i.e.,

pi = max
pi

ui(p) (8)

4.2. Payoff Function

Each player in the game tries to maximize the global payoff. The payoff function can
be defined as follows:

ui(p) = Ai(p)−Ri(p) (9)

where Ai(p) and Ri(p) depict the utility and price functions, respectively. We employ the
task execution time to evaluate the utility for the vehicle. The vehicle will achieve a higher
utility when the task is accomplished before the tolerable latency; on the other hand, the
vehicle will not receive that benefit if the task execution time goes past the tolerable latency.
Therefore, according to the above-mentioned principle, the utility function for offloading
the task of vehicle i is derived as follows:

Ai(p) =
tmax
i − tmec

i,m

tmax
i

(1− pi) +
tmax
i − tcloud

i
tmax
i

pi (10)

where
tmax
i −tmec

i,m
tmax
i

and tmax
i −tcloud

i
tmax
i

represent the utility from vehicle i’s task being accomplished
by the MEC server or the cloud server, respectively. The vehicle will obtain a negative
utility, according to Equation (10), if the task execution time exceeds tmax

i .
The MEC server consists of limited computing and storage resources. Moreover, the

remote cloud has sufficient computing resources. Therefore, in our proposed system, we
used a dynamic-pricing strategy to control the task-offloading behavior of the vehicle.
Based on the strategy of the dynamic-pricing mechanism used in [30], the price function
can be derived as follows:

Ri(p) = p2
i ρ

[
(1−∏

j 6=i
(1− ιj pj))

]
(11)

Sensors 2022, 22, 3678 9 of 18

where ρ ∈ [0, 1] represents the pricing factor that determine where the task will be offloaded,
and ι depicts the task arrival rate. If the MEC server has sufficient storage and computing
resources, then we use a low pricing factor to ensure efficient use of the MEC resources.
Therefore, by substituting the values of Ai(p) and Ri(p) from Equations (10) and (11) into
Equation (9), the payoff function can be expressed as follows:

ui(p) =
tmax
i − tmec

i,m

tmax
i

(1− pi) +
tmax
i − tcloud

i
tmax
i

pi

−p2
i ρ

[
(1−∏

j 6=i
(1− ιj pj))

] (12)

4.3. Proposed Algorithm

We use the NGTO-based dynamic task offloading scheme for VNs in this study where
each vehicle can make its own strategy on whether a task is offloaded to a MEC server or a
cloud server to maximize its benefits. Moreover, in our proposed model, there are two ways
for offloading a vehicular computing task to the remote cloud: via the RSUs and via BS. We
use Algorithm 1 for our proposed NGTO approach, where each vehicle can dynamically
adjust the task-offloading probability to acquire the maximal utility. For all tasks, vehicles
can make a pre-selection in the cloud-computing processing model from the RSUs or BS.

Algorithm 1 NGTO algorithm.

1: Definitions: crsu (cloud offloading via RSU), cbs (cloud offloading via BS).
2: Initialization: vehicle index i, task arrival rate ι, pricing factor ρ, offloading probability

p.
3: for all task t ∈ T do
4: Estimate uplink transmission delay vup

i,crsu and downlink transmission delay vd
i,crsu

of tth task for WAN // Cloud offloading via RSU
5: Estimate uplink transmission delay vup

i,cbs and downlink transmission delay vd
i,cbs

of tth task for WAN over LTE // Cloud offloading via BS

6: vexe
i,c =

din
i

f cloud (1−Ucloud) // Task processing time in the cloud

7: tcloud
i,rsu = vup

i,crsu + vexe
i,c + vd

i,crsu // Calculate total completion time of task in cloud
via RSU

8: tcloud
i,bs = vup

i,cbs + vexe
i,c + vd

i,cbs // Calculate total completion time of task in cloud via BS
9: Compare tcloud

i,rsu and tcloud
i,bs , and select the minimum between them

10: if tcloud
i,rsu >tcloud

i,bs then
11: tcloud

i = tcloud
i,bs // Cloud offloading via BS

12: else
13: tcloud

i = tcloud
i,rsu // Cloud offloading via RSU

14: end if
15: Estimate uplink transmission delay vup

i,m and downlink transmission delay vd
i,m

of tth task for MEC offload
16: vexe

i,m =
din

i
f mec
m

(1−Umec
m) // Task processing time in the MEC server

17: tmec
i,m = vup

i,m + vexe
i,m + vd

i,m // Calculate total task-completion time on MEC server
18: Update best-response offload strategy:

pi =

[
tmec
i,m −tcloud

i
2ρtmax

i (1−∏j 6=i(1−ιj pj))

]1

0
19: end for
20: Vehicle i decides whether to offload task with probability pi.

Sensors 2022, 22, 3678 10 of 18

From lines 3 to 8, the total completion time of task in cloud via the RSU and the BS are
calculated. To select the best one, we compared between the cloud offloading via RSU and
cloud offloading via BS, shown in lines 9 to 14. From lines 15 to 16, the task-transmission
delay and processing time are estimated in the MEC server. In line 17, we calculate the
total task-completion time on the MEC server. However, we use a best response offloading
strategy for the task-offloading game in order to achieve a unique and stable equilibrium.
The updated best response offloading strategy of vehicle i can be expressed as follows:

pi = max
pi

ui(p) =
[tmec

i,m − tcloud
i

2ρtmax
i (1−∏j 6=i(1− ιj pj))

]1

0
(13)

Then, each vehicle updates the offloading strategy based on Equation (13) and selects
the most optimal offloading strategy to complete the vehicle offloaded task. According
to [29,31], it is proven that Equation (13) is a contraction mapping, which than implies
the game has a unique and stable NE. Therefore, the task-offloading game uses the best
response strategy in Algorithm 1 that converges to a unique NE. Moreover, the operator[
x
]1

0 can cause the probability pi ∈ [0, 1] [30].

Lemma 1. In the game, there is a unique Nash equilibrium, if the best response mapping on the
entire strategy space is a contraction [29].

Theorem 1. The best response offloading strategy used in Algorithm 1 for the task-offloading game
can converge to the unique NE, if

∑
j 6=i

|tmec
i,m − tcloud

i |∏k 6=i,j(1− ιk pk)

2ρtmax
i (1−∏j 6=i(1− ιj pj))2 < 1 ∀ i ∈ {1, . . ., n}. (14)

Proof. See Appendix A.

5. Performance Evaluation

In order to assess the performance of our proposed NGTO scheme based on differ-
ent scenarios via EdgeCoudSim simulator [32], we compared our proposal with three
benchmark offloading schemes that are explained as follows.

• Local RSU Computing (LRC): In this scheme, the vehicle’s computation tasks are
offloaded for processing in a MEC server that is located nearby.

• Random Offloading: In the random scheme, vehicles randomly choose as the target
server a MEC server or a remote server to process the offloaded task. Moreover, the
probability of choosing any of the target servers is the same.

• Collaborative Offloading: In this scheme, some offloaded tasks from vehicles will be
processed by a local RSU, while the rest will be offloaded and processed by a remote
cloud through RSU. In collaborative offloading scheme, it is preferred to use local
RSU to offload delay-sensitive smaller tasks whereas remote cloud server is used for
processing delay-tolerant larger tasks.

5.1. Simulation Setup

During the simulation, we envisage a 10 km unidirectional highway that is shown in
Figure 3. For a more realistic simulation, the road is divided into segments. Moreover, we
deployed 20 equidistant RSUs along the road, where RSU1 and RSU20 are located at the far
left and far right of the road segments, respectively. We assume that from the far left side
(the coverage area of RSU1) of the road, all the vehicles will enter. Moreover, we considered
four different vehicular speeds (low, medium, high, and very high) at 30, 60, 100, and
200 km/h, respectively, during simulation. Generally, the computed task of vehicles are
offloaded into a nearby RSU.

Sensors 2022, 22, 3678 11 of 18

RSU1 RSU2 RSU20Number of RSUs:20

Total Road Length: 10 km

RSU Coverage: 500 m
500 m500 m 500 m

Speed of the vehicles for different

segments

30 km/h

60 km/h

200 km/h

100 km/h

Low Speed

High Speed

Medium Speed

Very High Speed

Figure 3. Vehicle movement mode for the simulation.

However, we assume that each RSU has an IEEE 802.11p–capable access point and
a 500 m coverage area. A single MEC server with one host is equipped in each RSU,
which operates four virtual machines (VMs). In this work, we use the Markov modulated
process (MMPP/M/1 queue model) for the network delay model. In addition to that, for
transmitting the computed task in case of V2R communication, we used IEEE 802.11p
protocol interface with 10 Mbps data rate [33]. On the other hand, our system can offload a
vehicle’s task through an RSU or an LTE base station to a cloud server. For the LTE BS, we
used according to Xu et al.’s measurements [34] during the simulation analysis.

Additionally, each vehicle runs a danger assessment (DA), an infotainment (I), and
a navigation application (NA) to produce various tasks during the experiments. Among
them, the infotainment application is latency-tolerant, while the danger assessment and
navigation applications are latency-sensitive.

The simulation parameters and the respective values are represented in Tables 2 and 3
lists the key characteristics of three different applications used during the simulation [32,35].
In Table 3, usage represents the percentage of vehicles that request the related services for
NA, DAA, and I applications. The inter-arrival time for the tasks depicts the frequency
of generating tasks, which follows an exponential distribution. We considered three,
five, and fifteen seconds as representing the inter-arrival times of the NA, DAA, and I
applications, respectively.

Table 2. Simulation parameters.

Parameters Value

Number of RSUs 20
Number of vehicles 100∼1000
Network delay model MMPP/M/1 queue model
Number of VMs per MEC server 4
Number of VMs per Cloud 20
VM processing speed per MEC server 10 GIPS
VM processing speed in the Cloud 75 GIPS
RSU coverage radious 500 m
WLAN/MAN bandwidth 10/1000 Mbps
WAN/WAN over LTE bandwidth 50/20 Mbps
WAN/WAN over LTE propagation delay 150/160 ms

Sensors 2022, 22, 3678 12 of 18

Table 3. Simulation parameters for the three types of applications.

Parameters
Application Types

Navigation Danger Assessment Infotainment
Application (NA) Application (DAA) Application (IA)

Usage (%) 30 35 35
Inter-arrival time of tasks (s) 3 5 15
Delay sensitivity 0.5 0.8 0.25
Maximum delay requirement (s) 0.5 1 1.5
Upload data volume (KB) 20 40 20
Download data volume (KB) 20 20 80
Average length of task (GI) 3 10 20

For example, the navigation application generates smaller tasks every three seconds,
and the infotainment application generates a bigger task every fifteen seconds. To differen-
tiate the sensitivity of the various applications (latency-sensitive or latency-tolerant), we
employed a latency-sensitivity value in our simulation. We used lower and higher values
to represent the delay sensitivity in latency-tolerant and latency-sensitive applications,
respectively. Hence, we set 0.25 for the delay sensitivity of the infotainment applications,
and 0.8 for the danger assessment applications. Moreover, the other characteristics, such as
the task length, maximum delay requirement and the upload and download data sizes of
different applications, are given in Table 3.

5.2. Simulation Results

To analyze the performance of the NGTO approach, Figure 4 represents the average
response times (the y-axis) versus the numbers of vehicles (the x-axis, varying from 100 to
1000). From the figure, we can see that, with increasing number of vehicles, the average
response time of all schemes also increases, and the LRC scheme has a higher response
time than the others due to the congestion. When it comes to the other three approaches,
the tasks will be distributed between the edge and the remote cloud.

200 400 600 800 1000
Number of vehicles

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(s

ec
)

LRC
Random
Collaborative
NGTO

Figure 4. The average response time based on the number of vehicles.

Therefore, compared with LRC scheme, the response time does not increase for han-
dling the large number of vehicles. However, due to the different distances between vehicle
and RSU access point, the competitor schemes cannot keep the required latency at a stable
level. The simulation results confirmed that the proposed NGTO approach has lower
response time compared to others due to adjusting the task-offloading probability dynam-
ically to maximize the utility of vehicles. Hence, the average response time will reduce
by using our proposed approach at approximately 47.6%, 32.6%, and 26.5% from the LRC,
random, and collaborative offloading approaches, respectively.

Sensors 2022, 22, 3678 13 of 18

One of the most crucial performance criteria of VNs is the average unsuccessful task
ratio. If the utilization of virtual machine is too high, the tasks are hard to handle and will
fail more often. Figure 5 shows the task-failure rate due to the RSU VM capacity based on
the number of vehicles. In each MEC server, we considered that there are four VMs during
this experiment. From the figure, one can easily observe that in all offloading schemes, the
task-failure rate is low until 500 vehicles. After that, the task-failure rate is increased due
to congestion.

200 400 600 800 1000
Number of vehicles

0

1

2

3

4

5

6

Fa
ile

d
ta

sk
s

du
e

to
 R

SU
 V

M
 c

ap
ac

ity
 (%

)

LRC
Random
Collaborative
NGTO

Figure 5. The average failed task rates due to the RSU VM capacity.

From Figure 5, we see that the LRC scheme starts to experience congestion after
400 vehicles, while the random and collaborative offloading schemes become congested after
600 vehicles; however without any congestion, the NGTO scheme can handle 1000 vehicles.
After 400 vehicles, the LRC approach has to deal with the overloaded problem due to the
restricted computing capacity of MEC server, and it starts to congest. However, by distribut-
ing the tasks between the edge and the cloud, the random and collaborative offloading
schemes can easily handle 600 vehicles without congestion. After that, due to the WAN
delay, they face congestion. Moreover, in the random offloading scheme, some larger tasks
are sent to the MEC servers.

Therefore, the maximum response time allowed to process for these tasks is exceeded.
On the other hand, our proposed NGTO approach is more capable for utilizing the resources
of the MEC server than its competitors and can make dynamic decisions to offload tasks
between a MEC server and the cloud. In addition to that, NGTO scheme attempts to
converge to a unique and stable equilibrium. Therefore, it can easily handle 1000 vehicles
without experiencing any congestion.

Moreover, to measure the importance of our proposed scheme, Figure 6 demonstrates
the successfully executed task rates for various numbers of vehicles. The successfully
completed task rate indicates the percentage of tasks successfully executed out of the
total number of tasks. From the figure, we observe that most of the offloaded tasks are
executed successfully in all the schemes when the system is lightly loaded. On the other
hand, if the number of vehicles increases, the situation will change. For instance, due
to the limited capacity and overload problem at the MEC server in the LRC scheme, the
number of successfully executed tasks will rapidly dropped from 99.5% at 500 devices
to less than 91.4% at 1000 devices. However, in the random offloading approach, the
probability of choosing all the target servers is the same, and it selects the offloading target
server randomly. Therefore, the number of successfully executed tasks saw a huge drop in
the random offloading scheme, from 99.6% at 500 devices to 85.4% at 1000 devices.

Sensors 2022, 22, 3678 14 of 18

200 400 600 800 1000
Number of vehicles

80

84

88

92

96

100

Su
cc

es
sf

ul
ly

 e
xe

cu
te

d
ta

sk
s

(%
)

LRC
Random
Collaborative
NGTO

Figure 6. Successfully executed tasks for various numbers of vehicles.

However, due to the WAN delay, the collaborative offloading scheme dropped from
99.7% at 500 devices to 95.2% at 1000 devices, whereas the NGTO approach showed a
lower drop to only 99.5% at 1000 devices from 99.8% at 500 devices. Therefore, after
analyzing Figure 6, we can summarize that our proposed NGTO approach is capable of
executing successfully more offloaded tasks compared to the others. As our proposed
scheme efficiently utilize the MEC resources and make better decisions for maximizing the
utility when a vehicle forwards the task to the MEC server or to the cloud server.

By varying the ratio between the latency-sensitive danger assessment applications
and the latency-tolerant infotainment applications, we performed another experiment to
analyze the average response time with results shown in Figure 7. We used ratios from 0:10
up to 10:0 to investigate the effect of the ratios between these applications. For example,
the ratio 7:3 indicates seven DA applications to three IA applications. At first, we assumed
that all offloaded tasks are latency-tolerant (the 0:10 ratio). Then, from Figure 7, we see that
the average response times of the LRC, random, collaborative, and NGTO schemes were
2.11, 1.43, 1.13, and 0.69 s, respectively.

0:10 1:9 2:8 3:7 4:6 5:5 6:4 7:3 8:2 9:1 10:0
Ratio of tasks (Latency-sensitive: Latency-tolerant)

0

0.5

1

1.5

2

2.5

Av
er

ag
e

re
sp

on
se

 ti
m

e
(s

ec
)

When the number of vehicles is 500

LRC
Random
Collaborative
NGTO

Figure 7. The average response time in terms of various ratios of latency-sensitive to latency-
tolerant tasks.

The main reason for the higher response times in all offloading schemes is the larger
task size for infotainment applications. However, when we decreased the number of
latency-tolerant tasks compared to latency-sensitive tasks, the average response time also
decreased. The task-completion time was almost stable in all offloading schemes when the
ratio was between 6:4 and 10:0. However, in all scenarios, our proposed NGTO scheme
outperformed in terms of reducing the response time, as the response time of our proposed
scheme did not exceed the deadline of the task and was able to be sustained at a low value
under different ratios of tasks.

Sensors 2022, 22, 3678 15 of 18

Moreover, we conducted other experiments to investigate the impacts of differ-
ent task sizes of infotainment and danger assessment applications, which are shown
in Figures 8 and 9, respectively. From analyzing Figures 8 and 9, we observed that, when
the average task size is small, the average response time is almost similar in all offloading
scheme. However, when the task size becomes larger, the response time is also increased.

4 8 12 16 20 24
Average task size (GI)

0

0.5

1

1.5

2

2.5

3
Av

er
ag

e
re

sp
on

se
 ti

m
e

(s
ec

)
Infotaiment Application

LRC
Random
Collaborative
NGTO

Figure 8. The average response times for different task sizes of infotainment applications.

2 4 6 8 10 12 14
Average task size (GI)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Av
er

ag
e

re
sp

on
se

 ti
m

e
(s

ec
)

Danger Assessment Application
LRC
Random
Collaborative
NGTO

Figure 9. The average response times for different task sizes of danger assessment applications.

However, the average response time is higher in the infotainment application com-
pared to the navigation application. As the navigation application generates smaller tasks
compared to the infotainment application. Through the above analysis, we conclude that
our proposal outperformed the others in all scenarios. Because of our proposed NGTO
scheme can converge to a unique equilibrium and make a dynamic decision for processing
the offloaded task.

Finally, the last simulation result in Figure 10 investigates the effect of various speed
of vehicle in order to analyze the rate of the failed tasks. During the experiment, we used
500 vehicles and considered average speeds from 30 to 180 km/h. From analyzing Figure 10,
we observe that, when the average speed was up to 60 km/h, the average task-failure
rate was low and almost the same in all offloading schemes except for the LRC scheme.
However, when the average speed increased, the situation became worse due to the high
task-failure rate.

Sensors 2022, 22, 3678 16 of 18

30 60 90 120 150 180
Average vehicular speed (km/h)

0

0.2

0.4

0.6

0.8

1

Av
er

ag
e

ta
sk

 fa
ilu

re
s

(%
)

When the number of vehicles is 500
LRC
Random
Collaborative
NGTO

Figure 10. The average task-failure rates for different vehicular speeds.

For instance, if the average vehicle speed was 120 km/h, the rates of failed tasks of
the LRC, random, collaborative, and NGTO approaches were approximately 0.67%, 0.51%,
0.43%, and 0.3%, respectively. Through the above evaluation, we summarize that our
introduced NGTO approach outperformed the others in all scenarios. It reduced task-
failure rates by approximately 54.6%, 39.7%, and 28.4% corresponding to the LRC, random,
and collaborative approaches, respectively.

6. Conclusions

Vehicular edge computing is a promising technology for meeting the demands of
resource-constraint vehicles through task offloading. In this paper, we investigate the task-
offloading problem in VNs, and propose an efficient dynamic task offloading approach
based on a non-cooperative game. Our proposed strategy can dynamically adjust the
task-offloading probability between the MEC server and the cloud to acquire the maximal
utility for each vehicle. To compare our proposed strategy with other approaches in this
study, we conducted experiments on different scenarios in the EdgeCloudSim simulator.
To assess our proposed NGTO approach, we analyzed our proposed scheme in terms of
three different applications, including infotainment, danger assessment, and navigation
applications, to produce various tasks in the network.

Furthermore, we compare the performance of our proposal with three benchmark task-
offloading schemes. In this study, we showed that our proposed best response offloading
strategy that was used in the task offloading game could converge to a unique NE. Therefore,
our proposal can largely enhance system performance and outperformed in all scenarios
compared with the LRC, random, and collaborative offloading schemes in terms of reducing
the task-failure rate and response time. Our proposed NGTO approach was capable of
executing more offloaded tasks successfully compared to the others.

With the rapid development of VEC technology and the evolution of intelligent
vehicles, a huge amount of data will be generated due to deploying computation-intensive
applications in vehicles. Therefore, in the future, we will consider a machine-learning-based
approach for an efficient task offloading strategy in MEC-enabled VEC networks. Moreover,
we will expand our study where vehicles can choose to offload their tasks to nearby MECs
or V2V offloading to maximize their utility.

Author Contributions: Conceptualization, M.D.H.; Project administration, E.-N.H.; Software, M.D.H.;
Supervision, E.-N.H.; Writing—original draft, M.D.H.; Writing—review and editing, M.D.H., T.S.,
M.A.H., M.A.L., M.I.H., P.P.S., G.-W.L. and E.-N.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the
Grand Information Technology Research Center support program (IITP-2015-0-00742) and Machine
Learning Based Low Bandwidth Image Communication Edge Computing System for Proactive

Sensors 2022, 22, 3678 17 of 18

Anomaly Detection on Smart Plant Environment project (No. 2021-0-00818) supervised by the IITP
(Institute for Information & Communications Technology Planning & Evaluation).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Theorem 1

We must prove that Equation (13) is a contraction mapping based on the contraction
mapping theorem proposed by Abraham et al. [36] and Lemma 1 [29] by validating the
Jacobian Matrix ||J||∞ < 1. The contraction mapping is the most frequently and widely
used method that can easily verify that the best response mapping is a contraction with a
unique fixed point. According to the best response strategy of Equation (13), the Jacobian
matrix is constructed as follows:

Jij =
∂pi
∂pj

=

0, i = j
−(tmec

i,m −tcloud
i)∏k 6=i,j(1−ιk pk)

2ρtmax
i (1−∏j 6=i(1−ιj pj))2 , otherwise.

(A1)

It then follows that

||J||∞ = ∑
i∈{1,....,n},j 6=i

|tmec
i,m − tcloud

i |∏k 6=i,j(1− ιk pk)

2ρtmax
i (1−∏j 6=i(1− ιj pj))2 . (A2)

In the off-diagonal elements in J, the maximum value is identified after
measuring the sum of absolute values, which is represented as ||J||∞ in (A2). Hence,

∑j 6=i
|tmec

i,m −tcloud
i |∏k 6=i,j(1−ιk pk)

2ρtmax
i (1−∏j 6=i(1−ιj pj))2 < 1. Therefore, we conclude that ||J||∞ < 1 according to the

assumption in the theorem. Thus, Equation (13) is a contraction mapping that guarantees
that the best response strategy that is used in Algorithm 1 is the unique NE.

References
1. Ahmed, E.; Gharavi, H. Cooperative vehicular networking: A survey. IEEE Trans. Intell. Transp. Syst. 2018, 19, 996–1014.

[CrossRef] [PubMed]
2. Sun, W.; Liu, J.; Zhang, H. When Smart Wearables Meet Intelligent Vehicles: Challenges and Future Directions. IEEE Wirel.

Commun. 2017, 24, 58–65. [CrossRef]
3. Yuan, Q.; Zhou, H.; Li, J.; Liu, Z.; Yang, F.; Shen, X. Toward efficient content delivery for automated driving services: An edge

computing solution. IEEE Netw. 2018, 32, 80–86. [CrossRef]
4. Cheng, H.T.; Shan, H.; Zhuang, W. Infotainment and road safety service support in vehicular networking: From a communication

perspective. Mech. Syst. Signal Process. 2011, 25, 2020–2038. [CrossRef]
5. Boukerchea, A.; De Grande, R.E. Vehicular cloud computing: Architectures, applications, and mobility. Comput. Netw. 2017,

135, 171–189. [CrossRef]
6. Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H.; Dutta, S.; Sabella, D. On Multi-Access Edge Computing: A Survey of the Emerging

5G Network Edge Cloud Architecture and Orchestration. IEEE Commun. Surv. Tutor. 2017, 19, 1657–1681. [CrossRef]
7. Cheng, X.; Chen, C.; Zhang, W.; Yang, Y. 5G-enabled cooperative intelligent vehicular (5GenCiv) framework: When Benz meets

Marconi. IEEE Intell. Syst. 2017, 32, 53–59. [CrossRef]
8. Liu, L.; Chen, C.; Pei, Q.; Maharjan, S.; Zhang, Y. Vehicular Edge Computing and Networking: A Survey. Mob. Netw. Appl. 2021,

26, 1145–1168. [CrossRef]
9. Hossain, M.D.; Khanal, S.; Huh, E.-N. Efficient Task Offloading for MEC-Enabled Vehicular Networks: A Non-Cooperative Game

Theoretic Approach. In Proceedings of the 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN),
Jeju Island, Korea, 17–20 August 2021; pp. 11–16.

10. Wang, H.; Li, X.; Ji, H.; Zhang, H. Federated Offloading Scheme to Minimize Latency in MEC-Enabled Vehicular Networks.
In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018;
pp. 1–6.

http://doi.org/10.1109/TITS.2018.2795381
http://www.ncbi.nlm.nih.gov/pubmed/29881331
http://dx.doi.org/10.1109/MWC.2017.1600423
http://dx.doi.org/10.1109/MNET.2018.1700105
http://dx.doi.org/10.1016/j.ymssp.2010.11.009
http://dx.doi.org/10.1016/j.comnet.2018.01.004
http://dx.doi.org/10.1109/COMST.2017.2705720
http://dx.doi.org/10.1109/MIS.2017.53
http://dx.doi.org/10.1007/s11036-020-01624-1

Sensors 2022, 22, 3678 18 of 18

11. Dai, Y.; Xu, D.; Maharjan, S.; Zhang, Y. Joint Load Balancing and Offloading in Vehicular Edge Computing and Networks. IEEE
Internet Things J. 2019, 6, 4377–4387. [CrossRef]

12. Xiao, S.; Wang, S.; Zhuang, J.; Wang, T.; Liu, J. Research on a Task Offloading Strategy for the Internet of Vehicles Based on
Reinforcement Learning. Sensors 2021, 21, 6058. [CrossRef]

13. Bozorgchenani, A.; Maghsudi, S.; Tarchi, D.; Hossain, E. Computation offloading in heterogeneous vehicular edge networks:
On-line and off-policy bandit solutions. IEEE Trans. Mob. Comput. 2021. [CrossRef]

14. Cui, Y.; Du, L.; He, P.; Wu, D.; Wang, R. Cooperative vehicles-assisted task offloading in vehicular networks. Trans. Emerg.
Telecommun. Technol. 2022, e4472. [CrossRef]

15. Jin, Z.; Zhang, C.; Zhao, G.; Jin, Y.; Zhang, L. A context-aware task offloading scheme in collaborative vehicular edge computing
systems. KSII Trans. Internet Inf. Syst. (TIIS) 2021, 15, 383–403. [CrossRef]

16. Karimi, E.; Chen, Y.; Akbari, B. Task offloading in vehicular edge computing networks via deep reinforcement learning. Comput.
Commun. 2022, 189, 193–204. [CrossRef]

17. Hossain, M.D.; Huynh, L.N.T.; Sultana, T.; Nguyen, T.D.T.; Park, J.H.; Hong, C.S.; Huh, E.-N. Collaborative Task Offloading for
Overloaded Mobile Edge Computing in Small-Cell Networks. In Proceedings of the 2020 International Conference on Information
Networking (ICOIN), Barcelona, Spain, 7–10 January 2020; pp. 717–722. [CrossRef]

18. Qiao, G.; Leng, S.; Zhang, K.; He, Y. Collaborative Task Offloading in Vehicular Edge Multi-Access Networks. IEEE Commun.
Mag. 2018, 56, 48–54. [CrossRef]

19. Zhang, K.; Mao, Y.; Leng, S.; Maharjan, S.; Zhang, Y. Optimal delay constrained offloading for vehicular edge computing
networks. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 9–13 December
2017; pp. 1–6. [CrossRef]

20. Zhang, K.; Mao, Y.; Leng, S.; He, Y.; Zhang, Y. Mobile-Edge Computing for Vehicular Networks: A Promising Network Paradigm
with Predictive Off-Loading. IEEE Veh. Technol. Mag. 2017, 12, 36–44.

21. Zhou, Z.; Yu, H.; Xu, C.; Chang, Z.; Mumtaz, S.; Rodriguez, J. BEGIN: Big Data Enabled Energy-Efficient Vehicular Edge
Computing. IEEE Commun. Mag. 2018, 56, 82–89. [CrossRef]

22. Liwang, M.; Wang, J.; Gao, Z.; Du, X.; Guizani, M. Game Theory Based Opportunistic Computation Offloading in Cloud-Enabled
IoV. IEEE Access 2019, 7, 32551–32561.

23. Wang, Y.; Lang, P.; Tian, D.; Zhou, J.; Duan, X.; Cao, Y.; Zhao, D. A Game-Based Computation Offloading Method in Vehicular
Multiaccess Edge Computing Networks. IEEE Internet Things J. 2020, 6, 4987–4996. [CrossRef]

24. Ye, D.; Wu, M.; Kang, J.; Yu, R. Optimized workload allocation in vehicular edge computing: A sequential game approach. In
International Conference on Communicatins and Networking in China; Springer: Cham, Switzerland, 2017; pp. 542–551.

25. Zeng, F.; Chen, Q.; Meng, L.; Wu, J. Volunteer Assisted Collaborative Offloading and Resource Allocation in Vehicular Edge
Computing. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3247–3257. [CrossRef]

26. Gu, B.; Zhou, Z. Task Offloading in Vehicular Mobile Edge Computing: A Matching-Theoretic Framework. IEEE Veh. Technol.
Mag. 2019, 14, 100–106. [CrossRef]

27. Liu, Y.; Wang, S.; Huang, J.; Yang, F. A Computation Offloading Algorithm Based on Game Theory for Vehicular Edge Networks.
In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 9–13 December
2018; pp. 1–6. [CrossRef]

28. Liu, P.; Li, J.; Sun, Z. Matching-Based Task Offloading for Vehicular Edge Computing. IEEE Access 2019, 7, 27628–27640.
[CrossRef]

29. Cachon, G.P.; Netessine, S. Game theory in supply chain analysis. In Models, Methods, and Applications for Innovative Decision
Making; INFORMS: Catonsville, MD, USA, 2006; pp. 200–233.

30. Lang, P.; Wang, J.; Mei, F.; Deng, W. A vehicle’s weight-based prioritized reciprocity MAC. Trans. Emerg. Telecommun. Technol.
2019, 30, e3654. [CrossRef]

31. Lee, J.-W.; Tang, A.; Huang, J.; Chiang, M.; Calderbank, A.R. Reverse-engineering MAC: A non-cooperative game model. IEEE J.
Sel. Areas Commun. 2007, 25, 1135–1147. [CrossRef]

32. Sonmez, C.; Ozgovde, A.; Ersoy, C. EdgeCloudSim: An environment for performance evaluation of Edge Computing systems.
Trans. Emerg. Telecommun. 2018, 29, e3493.

33. Lin, W.-Y.; Li, M.-W.; Lan, K.-C.; Hsu, C.-H. A comparison of802.11 a and 802.11 p for V-to-I communication: A measurement
study. In Proceedings of the Quality, Reliability, Security and Robustness in Heterogeneous Networks, Berlin, Germany, 9–13
December 2012; pp. 559–570. [CrossRef]

34. Xu, Z.; Li, X.; Zhao, X.; Zhang, M.H.; Wang, Z. DSRC versus 4G-LTE for Connected Vehicle Applications: A Study on Field
Experiments of Vehicular Communication Performance. J. Adv. Transp. 2017, 2017, 2750452.

35. Zeng, F.; Tang, J.; Liu, C.; Deng, X.; Li, W. Task-Offloading Strategy Based on Performance Prediction in Vehicular Edge
Computing. Mathematics 2022, 10, 1010. [CrossRef]

36. Abraham, R.; Marsden, J.E.; Ratiu, T.S. Manifolds, Tensor Analysis, and Applications; Springer: New York, NY, USA, 1988. [CrossRef]

http://dx.doi.org/10.1109/JIOT.2018.2876298
http://dx.doi.org/10.1109/JIOT.2018.2876298
http://dx.doi.org/10.1109/JIOT.2018.2876298
http://dx.doi.org/10.1109/JIOT.2018.2876298
http://dx.doi.org/10.1109/JIOT.2018.2876298
http://dx.doi.org/10.1109/JIOT.2018.2876298
http://dx.doi.org/10.3390/s21186058
http://dx.doi.org/10.1109/TMC.2021.3082927
http://dx.doi.org/10.1002/ett.4472
http://dx.doi.org/10.1016/j.comcom.2022.04.006
http://dx.doi.org/10.1109/MCOM.2018.1701130
http://dx.doi.org/10.1109/MVT.2017.2668838
http://dx.doi.org/10.1109/MCOM.2018.1700910
http://dx.doi.org/10.1109/ACCESS.2019.2897617
http://dx.doi.org/10.1109/JIOT.2020.2972061
http://dx.doi.org/10.1109/TITS.2020.2980422
http://dx.doi.org/10.1109/MVT.2019.2902637
http://dx.doi.org/10.1109/ACCESS.2019.2896000
http://dx.doi.org/10.1002/ett.3654
http://dx.doi.org/10.1109/JSAC.2007.070808

	Introduction
	Related Work
	Problem Scenario and System Model
	Problem Scenario
	Proposed System Model
	Communication and Computation Model
	Edge Offloading
	Cloud Offloading

	The Non-Cooperative Game Theory-Based Task Offloading Algorithm
	The Basic Game Model
	Payoff Function
	Proposed Algorithm

	Performance Evaluation
	Simulation Setup
	Simulation Results

	Conclusions
	Proof of Theorem 1
	References

