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5Faculté de Médecine et des Sciences Biomédicales, University of Yaounde 1, Yaoundé, Cameroon
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Background and Objective. To mitigate the spread of the virus responsible for COVID-19, known as SARS-CoV-2, there is an
urgent need for massive population testing. Due to the constant shortage of PCR (polymerase chain reaction) test reagents, which
are the tests for COVID-19 by excellence, several medical centers have opted for immunological tests to look for the presence of
antibodies produced against this virus. However, these tests have a high rate of false positives (positive but actually negative test
results) and false negatives (negative but actually positive test results) and are therefore not always reliable. In this paper, we
proposed a solution based on Data Analysis and Machine Learning to detect COVID-19 infections. Methods. Our analysis and
machine learning algorithm is based on most cited two clinical datasets from the literature: one from San Raffaele Hospital Milan
Italia and the other from Hospital Israelita Albert Einstein São Paulo Brasilia. 'e datasets were processed to select the best
features that most influence the target, and it turned out that almost all of them are blood parameters. EDA (Exploratory Data
Analysis) methods were applied to the datasets, and a comparative study of supervised machine learning models was done, after
which the support vector machine (SVM) was selected as the one with the best performance. Results. SVM being the best
performant is used as our proposed supervised machine learning algorithm. An accuracy of 99.29%, sensitivity of 92.79%, and
specificity of 100% were obtained with the dataset from Kaggle (https://www.kaggle.com/einsteindata4u/covid19) after applying
optimization to SVM. 'e same procedure and work were performed with the dataset taken from San Raffaele Hospital (https://
zenodo.org/record/3886927#.YIluB5AzbMV). Once more, the SVM presented the best performance among other machine
learning algorithms, and 92.86%, 93.55%, and 90.91% for accuracy, sensitivity, and specificity, respectively, were obtained.
Conclusion. 'e obtained results, when compared with others from the literature based on these same datasets, are superior,
leading us to conclude that our proposed solution is reliable for the COVID-19 diagnosis.

1. Introduction

'enovel coronavirus known as SARS-CoV-2 (Severe Acute
Respiratory Syndrome), responsible for COVID-19 pan-
demic, belongs to the large family of coronaviruses that

cause fever, cough, dyspnea, and muscle pain, while imaging
frequently reveals bilateral pneumonia [1–3]. Although the
WHO validated an anti-COVID-19 vaccine [4], it cannot
help alone to reduce the spread of the virus. Usually, the
standard diagnostic method used is real-time reverse
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transcription-polymerase chain reaction (RT-PCR), which
can help detect viral nucleosides in samples obtained from
oropharyngeal swabs, nasopharyngeal swabs, bron-
choalveolar washes, or tracheal aspirates acid [5–7]. Due to
the constraints imposed by the latter, several health centers
are opting for immunological or antibodies tests as an al-
ternative [8]. However, these tests do not detect the presence
of the virus, but rather the presence of IgM (Immuno-
globulin M) and IgG (Immunoglobulin G) antibodies,
produced to fight the virus. It is almost impossible to detect
these antibodies before fourteen days after infection, this can
lead to false-negative results (false negatives) [9, 10]. Faced
with these limitations, health specialists have seen fit to call
on scientists to obtain faster, more efficient, accessible, and
more pleasant technological solutions.

Many researches are focusing on artificial intelligence
(AI) technologies, machine learning (ML), and deep
learning (DL) to deal with COVID-19 [11–14]. For example,
ML algorithms have been used to detect COVID-19 CT-
scans images from the lung [15]. In [16, 17], authors have
shown that chest CTs are highly sensitive to the diagnosis of
COVID-19. Due to the radiation dose, the relatively small
number of available equipment, and the associated operating
costs, CT-scan imaging can hardly be used for screening
tasks. Furthermore, this method has obvious abnormalities
when the lungs are inflamed or have tissue lesions [18]. A
similar article on chest X-rays, which is a less expensive and
low-dose test, was recently published with encouraging
statistical performance [19]. However, it has been found that
almost 60% of the chest X-rays taken by patients diagnosed
with symptomatic COVID-19 are normal, and the system
based on this examination needs to be thoroughly verified in
the actual environment [20, 21]. Despite these encouraging
results, they still attract some attention. Most of the other
works have not yet been peer-reviewed: a recent important
survey report stated that all surveyed studies may have a high
risk of bias and overfitting and almost fail to comply with
reporting and reproduction standards [22, 23]. Because of
the aforementioned limitations of CT scan, RT-PCR, and
immunological or antibodies test methods, there is an urgent
need to seek for a more efficient and faster method for the
detection of COVID-19.

In this paper, we propose an alternative method of
testing based on data analysis (DA) and ML algorithms
that are rapid, accessible, simple to use, and of low cost
and have good accuracy. Our solution is designed to
quickly and reliably predict whether or not an individual
is infected by SARS-CoV-2 based on clinical data from
individuals who have performed PCR tests. To perform
this work, the datasets are transformed into a suitable
format by using DA methods and then using ML; the best-
correlated features with the target are retained. Secondly, a
suitable model by which the data will be trained is de-
termined, and finally, the model is optimized so to achieve
the best performance.

'e rest of our work is organized as follows. Section 2
presents the state of the art of the related works carried out.
Section 3 deals with the DA and ML methods used, mainly
the different methods used to carry out our work. Section 4

presents the obtained results and discussions and compar-
isons with related works. 'is work ends in Section 5 with
the conclusion and suggested future work.

2. Related Works

Several works based on AI, along withML andDL, have been
carried out over the last two years in the context of diagnosis
and detection of COVID-19 infections. In this section, we
will present some related works, including the models and
methods that authors have used, and their results show the
difference between the respective works and our proposed
work.

Brinati et al. [23] proposed a feasibility study using ML
algorithms detection of COVID-19 infection from blood
exams with ML. 'e authors developed two ML classifiers
based on hematochemical values (usual blood exams) from
two hundred and seventy-nine (279) types of data from [24].
'ey proposed ML classifiers discriminated between pa-
tients who are either negative or positive to the SARS-CoV-
2: their accuracy spectrum between 82% and 86% and
sensitivity between 92% and 95% relative to the gold
standard. In 2020, Soares et al. [25] proposed a novel specific
artificial intelligence-based method to identify COVID-19
cases using simple blood exams. 'ey developed a machine
learning classifier that takes widely available simple blood
exams as input and classifies samples as likely to be positive
(having SARS-CoV-2) or negative (not having SARS-CoV-
2). Based on this initial classification, positive cases can be
referred for further highly sensitive testing (e.g., CT scan or
specific antibodies). 'ey used publicly available data from
the Albert Einstein Hospital in Brazil from 5,644 patients.
Focusing on simple blood exam figures as main predictors,
599 subjects that had the fewest missing values for 16
common exams were selected. From these 599 patients, 81
tested positive for SARS-CoV-2 (determined by RT-PCR).
Based on the reduced dataset, they built an artificial intel-
ligence classification framework, ER-CoV, aiming at de-
termining if suspect patients arriving in ER were likely to be
negative for SARS-CoV-2, that is, to predict if that suspect
patient is negative for COVID-19. 'e primary goal of this
investigation is to develop a classifier with high specificity
and high negative predictive values, with reasonable sen-
sitivity. Banerjee et al. [26] proposed the use of artificial
intelligence (AI) along with ML to predict COVID-19 from
blood samples. 'ey collected SARS-CoV-2 rt-PCR samples
with anonymized full blood counts results from Hospital
Israelita Albert Einstein, in São Paulo, Brazil. 'ey found
that, with full blood counts, shallow learning, random forest,
and artificial neural network model predict SARS-CoV-2
patients with high accuracy between populations on regular
wards (AUC� 94–95%) and those not admitted in the
community or to the hospital or AUC� 80–86% [26]. In
2020, Moraes Batista et al. [27] investigated ML to diagnose
and predict COVID-19 for emergency patients. 'e authors
based their investigation on the same dataset of authors from
[26] and on five ML algorithms (neural networks, gradient
boosting trees, random forests, support vector machines,
and logistic regression) and trained their model. 'eir best
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predictive model was obtained by the SVM algorithm (AUC:
0.85; sensitivity: 0.68; specificity: 0.85; Brier Score: 0.16) that
is not very reliable.

Freitas Barbosa et al. [28] based also on blood tests to
develop an intelligent system to diagnose COVID-19 tested
several ML methods to achieve high classification perfor-
mance: 95.159%± 0.693 of overall accuracy, sensitivity of
0.968± 0.007, kappa index of 0.903± 0.014, specificity of
0.936± 0.011, and precision of 0.938± 0.010. 'eir best re-
sults were achieved using Bayes Network and low compu-
tational cost classifiers. Soltan et al. [29] applied extreme
gradient boosted trees, random forests, and multivariate
logistic regression to distinguish admissions due to COVID-
19 and emergency department presentations from pre-
pandemic controls. 'ey investigated the stepwise addition
of clinical feature sets and assessed performance using
stratified 10-fold cross-validation. Models were calibrated
during training to achieve sensitivities of 70, 80, and 90% for
identifying patients with COVID-19. 'ey generated test
sets with varying prevalence rates of COVID-19 and assessed
predictive values to simulate real-world performance at
different stages of the epidemic. Kukar et al. [30] based on
ML proposed a COVID-19 diagnosis by routine blood tests.
'ey constructed an ML predictive model for COVID-19
diagnosis. 'e model was based and cross-validated on the
routine blood tests of 5,333 patients with various bacterial
and viral infections. 'ey selected an operational ROC point
at a specificity of 97.9% and sensitivity of 81.9%, and the
AUC was 0.97. According to the feature importance scoring
of the XGBoost algorithm, the authors presented the five
most useful routine blood parameters for COVID-19:
prothrombin, albumin, eosinophil count, INR, and MCHC.

In 2021, AlJame et al. [31] used routine blood tests and
proposed an ensemble learning model for COVID-19 diag-
nosis. For data preparation, they exploited a K-Nearest
Neighbors algorithm to deal with null values in the dataset
and an isolation forest method to remove outlier data. 'e
proposed model was trained and evaluated by using publicly
available data from [32]. 'e ensemble model achieved
outstanding performance with an overall accuracy of 99.88%.
Alves et al. [33] proposed also an ML model to diagnose
COVID-19 from blood tests. 'e authors tested different ML
models in a public dataset always from [32]. After performing
data wrangling, this dataset had 608 patients, of which 84
were positive for COVID-19 confirmed by RT-PCR. By using
random forest (RF) as their best ML algorithm, they achieved
a good result (accuracy 0.88, F1–score 0.76, sensitivity 0.66,
specificity 0.91, and AUROC 0.86).

Li et al. [34] also investigated COVID-19 detection by
using ML algorithms. 'ey found several novel associations
between clinical variables, including the association between
men and higher levels of serum lymphocytes and neutro-
phils. 'ey found that COVID-19 patients can be divided
into subtypes based on the serum levels of immune cells,
gender, and reported symptoms. Finally, they trained an
XGBoost model that can distinguish COVID-19 patients
from influenza patients with a sensitivity of 92.5% and a
specificity of 97.9%. Many other works have been performed
in ML and blood samples in order to detect COVID-19

[35–43]. Others [44–47] explain how we can apply ML and
DA on blood samples. Table 1 summarizes the performance
and description of related works. It can be observed in this
table that the datasets from [24, 32] are widely used in the
literature; that is why we used these datasets in our study and
why at the end we compare our results with other results
from the literature studies that have used the same datasets.

Despite these encouraging results as observed in Table 1,
there are some concerns on the reliability, efficiency, and
accuracy of their results. Also, we notice that the ML models
are different for all the authors, and a model cannot give a
good performance to each data set. Moreover, none of the
authors in the literature has used DA and ML along with
SVM to reach a very good performance in terms of rapidity,
accuracy, specificity, and sensitivity. In this paper, therefore,
we propose a method of analysis based on DA and ML
techniques to analyze and select the best features for our ML
algorithm. We optimize the SVM algorithm to finally have a
performance superior to all algorithms found in the liter-
ature using the same datasets.

3. Proposed Approach

In this section, we give a detailed presentation of the dif-
ferent steps and methods used to carry out our work. 'en,
we first present our proposed pipeline. Afterward, we
present the methods used for data analysis and exploration,
data preprocessing, and data modeling. Finally, the opti-
mization of the chosen model is presented.

Figure 1 presents our proposed pipeline that contains
steps involved in the realization of our solution.

3.1. Exploratory Data Analysis

3.1.1. Data Description. Our analysis is based on the dataset
from [32]. 'is dataset contains the data of 5644 patients
who performed a PCR test. 'ese data are the parameter
values obtained after analysis of the patients’ blood and tests
for the presence of already known viruses. In total, we have
111 features, and the target is represented by the variable
SARS-CoV-2 exam result, which contains the results of the
COVID-19 test carried out on the different patients.

3.1.2. Deep Analysis of the Data Set. We divided the features
into two different categories: blood (representing the fea-
tures that were obtained from a blood test) and viral
(representing the features that were obtained from a viro-
logical test). To visualize our data set before performing
analysis, we have plotted some graphs. Figure 2 shows the
distribution of four features in our dataset while Figure 3
represents the relationship between the target and four
features (viral) also and Figure 4 shows the relationship
between blood feature and target.

(1) Distribution of Continue Variables. Blood type variables:
blood.

'e majority of float variables follow the reduced
Gaussian distribution. It is possible they have been stan-
dardized before in order to facilitate predictions.
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Table 1: Summary of performance and description of related work.

Ref. Dataset source Dataset size Total features Model used Accuracy Sensitivity Specificity
[23] [24] 279 16 DT, ET, LR, RF, KNN, NB, SVM 82–86% 92–95% —
[25] [32] 599 (81) 108 (16) Ensemble of 10 SVM models — 70.25% 85.98%
[26] [32] 598 (81) 108 (14) RF, LR, GLMNET, ANN 81%–87% 43%–65% 81%–91%
[27] [32] 253 (102) 108 (15) NN, RF, GBT, LR, SVM — 68% 85%
[28] [32] 5644 (559) 108 (24) XMLP, SVM, RT, RF, BN, NB 95.159% 96.8% 93.6%
[29] [32] 5644 (279) 106 (97) LR, NN, RF, SVM, XGB — 80% 98%
[30] — 5333 (160) 117 (35) XGBoost, RF, DNN — 81.9% 97.9%
[31] [32] 5644 111 ET, RF, LR, XGBoost 99.88% 98.72% 99.99%
[33] [32] 608 16 DTX, RF 88% 66% 91%
[34] — 659 51 LASSO, Ridge, RF, XGBoost — 92.5% 97.9%

(1) EDA (2) PREPROCESSING (3) MODELING (4) OPTIMISATION
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Figure 1: Proposed pipeline of our solution.
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Figure 3: (a) Relation of the target and RSV variable. (b) Relation of the target and Influenza A variable. (c) Relation of the target and
Influenza B variable. (d) Relation of the target and Parainfluenza 1 variable.
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Figure 2: (a) Distribution of hematocrit variable. (b) Distribution of hemoglobin variable. (c) Distribution of platelets variable.
(d) Distribution of mean platelet volume variable.
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(2) Features-Target Relations. Viral-target relation:
Looking at these figures, there are very few cases of

double disease (people infected with both the SARS-CoV-2
virus and other viruses). On the other hand, the number of
double negative cases is high (cases where patients are
neither infected with SARS-CoV-2 nor other types of vi-
ruses). 'is suggests that if we do not have any infection of
these other viruses, then it is highly likely that we are not
infected with the SARS-CoV-2 virus.

(3) Blood-Target Relation.
From the previous figures, we can make the difference

between the distribution of the positive and negative cases
depending on each feature. 'e represented features have a
great impact on the target. 'is proves that blood features
have a great influence on the prediction of SARS-CoV-2
infection [35–37].

3.2.DataPreprocessing. 'e preprocessing starts by cleaning
the dataset to select the best features. Figure 5 shows the
pipeline of the preprocessing step.

(i) Cleaning: It consists of deleting variables that have
at least 90% of missing values. 'is new data set has
the dimension (5644.32) and contains 10% positive
cases and 90% negative cases.

(ii) Encoding: Here, the target is to associate each
qualitative value to a numerical value.

(iii) Imputation: It consists of deleting or replacing
missing values with other values in order to facilitate
future operations.

(iv) Standardization: It consists of putting all the var-
iables (features and target) under the same scale by
making them follow the same law of probability.
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Figure 4: (a) Relation of the target and platelets variable. (b) Relation of the target and leukocytes variable. (c) Relation of the target and
basophils variable. (d) Relation of the target and eosinophils variable.
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(v) Features selection: It consists of determining, using
statistical methods, the ten feature variables that
have the best impact on the target (SARS-CoV-2
exam result): we use the ANOVA (Analysis of
Variance) statistical test to give the scores of the
relationships between each feature and the target
[38–40].

S1 � 􏽘

ngroupes

1
nobs (x − µ)

2
+(y − µ)

2
􏽨 􏽩,

S2 � 􏽘

nobs−1

i�0
xi − x( 􏼁

2
+ yi − y( 􏼁

2
,

D1 � ngroupes − 1,

V2 �
S1

D1
,

D2 � nobs − ngroupes,

V2 �
S2

D2
,

F �
V1

V2
,

(1)

where ngroupes is the number of groups. In our case, it is 2,
because we calculate the ANOVA F score between each
feature and the target, therefore, between two elements. nobs

is the number of observations in each feature. In our case, it
is identical to the number of observations in the target; x, y

are the average of the observations in any feature x and in the
target y, respectively; µ is the average of the observations of
the set made up of the different observations of x and y; xi, yi

are the observation of any feature x and target y.
Figure 6 shows the importance of each feature by using

the ANOVA test.
We have selected the ten first ones to train and evaluate

models.
'e data set treatment phase has been achieved; it is now

left to submit this to the different machine learning models
to obtain the predictions.

3.3. Data Modeling. Data modeling can be seen as the
process of creating an ML model for our dataset. Here,
modeling starts with the choice of the training algorithm,
followed by the metric evaluation. Based on the metric
evaluation, we can choose the best algorithm for its opti-
mization. Figure 7 shows the pipeline of the modeling step.

3.3.1. Models. We choose five high-performance classifica-
tion models for small data sets (less than 100,000 lines), in
particular, the KNeighbors classifier, bagging classifier,
boosting classifier, SVM, and random forest classifier.

3.3.2. Training. 80% of the data set will be used as a train set
or training data.

3.3.3. Evaluation. 20% will constitute the test set or data for
evaluation or validation. 'e evaluation criteria are accu-
racy, precision, and recall.

accuracy y, ypred􏼐 􏼑 �
1

nsamples
􏽘

nsamples−1

i�0
1 ypredi

� yi􏼐 􏼑,

recall �
􏽐True positive

􏽐True positive + 􏽐 false negative
,

specificity �
􏽐True negative

􏽐True negative + 􏽐 False positive
,

(2)

where nsamples is the number of samples. ypredi
is the pre-

dicted value of the i-th sample. yi is the corresponding true
value.

At the end of these 3 stages, the best model is selected,
i.e., the one with the best performance.

3.4. Optimization of the Best Model. Optimization aims at
improving the performance of the best model using the
GridsearchCV technique. Figure 8 shows the pipeline of
optimization.

Cleaning

Encoding

Imputation

Standardization

Features
selection

Figure 5: Pipeline of the preprocessing.
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After giving a range of values to the hyperparameters of
our best model, we train it with the GridSearchCV method.
GridSearchCV is a technique that allows you to search
within a range of hyperparameter values of a model, the
optimal combination of values, allowing you to obtain better
performance. 'e optimization is done by the cross-vali-
dation technique [41, 42]. After training, the hyper-
parameters have their optimum values. We then have an

optimal best model, and we apply the evaluation criteria to
obtain its performance.

3.5. Classification with SVM (Our Best COVID-19 ML
Algorithm). From [48, 49], given a training dataset
S � (x1, y1), . . . , (xp, yp)􏽮 􏽯 of data point xj (with X⊆Rn)
with matching labels yj (with Y � −1, +1{ }), the task of

0 100

score_F_ANOVA

Feature importance (ANOVA)

200 300 400 500 600

Figure 6: Feature importance with ANOVA test.
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Figure 7: Proposed pipeline of data modeling.
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COVID-19 classification here is to learn a function
h: X⟶ Y that properly classifies new examples (x, y) (h
(x)� y).

A good classifier/model should guarantee the top pos-
sible generalization performance (minimum error on un-
seen examples) [48–50]. In SVM, the hyperplane found in
the characteristic space matches the nonlinear decision
borderline in the input space.

Let us consider in this case ϕ: I⊆Rn⟶ F⊆Rn a
mapping from the input space I to the characteristic space F.
In the learning step, the algorithm will find the hyperplane
defined by the equation 〈w, ϕ(xj)〉 � b such that the margin

y � min1≤j≤pyj 〈w, ϕ xj􏼐 􏼑 − b〉􏼐 􏼑 � min1≤j≤pyjh xi( 􏼁 (3)

is maximized, where 〈, 〉 denotes the inner product, w is a p-
dimensional vector of weights, and b is a threshold. 'e
quantity (〈w, ϕ(xj) − b〉)/‖w‖ represents the distance of the
sample xj from the hyperplane. It gives a positive or negative
value for corrected and uncorrected classification, respec-
tively, when multiplied by the label yj. A new data point x a
label will be assigned to evaluate the decision function given
by

h(x) � sign 〈w, ϕ xj􏼐 􏼑 − b〉􏼐 􏼑. (4)

In this paper, we work on the blood sample dataset and
how we can base our investigation on this dataset to build a
model able to detect if someone has COVID-19 or not. For
that, we need to maximize the margin.

For linearly separable classes, there exists a hyperplane
(w, b) given by

yj 〈w, ϕ xj􏼐 􏼑 − b〉􏼐 􏼑≥ c, j � 1, . . . , p. (5)

By taking ‖w‖2 � 1, choosing a hyperplane to maximize
the margin is equal to the following optimization problem:

yj 〈w,ϕ xj􏼐 􏼑 − b〉􏼐 􏼑≥ c, j � 1, . . . , p. (6)

Problem (6) can be rewritten by using the Lagrange
multipliers αj, j � 1, . . . , p in the dual form given by

maxα 􏽘

p

j�1
αj − 􏽘

p

j�1
􏽘

p

k�1
αjαkyjyk〈ϕ xj􏼐 􏼑,ϕ xk( 􏼁〉,

􏽘

p

j�1
αjyj � 0, αi ≥ 0.

(7)

Problem (7) shows how to reduce a quadratic optimi-
zation task. However, the Karush–Kuhn–Tucker (KKT)
conditions will be satisfied by the solutions α∗ ensuring that
only a subset of training examples is associated with nonzero
αj, j � 1, . . . , p. 'is property is crucial in our blood sample
classification for COVID-19 detection and is called
sparseness of SVM.

In the solution α∗, often only a subset of training ex-
amples is associated with nonzero αj, j � 1, . . . , p. 'ese are
called support vectors and correspond to the points that lie
closest to the separating hyperplane (Fig.). For the maximal
margin hyperplane, the weight vector w∗ is given by the
linear function of the training points given by

w
∗

� 􏽘

p

j�1
αjyjϕ xj􏼐 􏼑. (8)

Based on equation (8), equation (4) can be expressed in
equation (9) as

h(x) � sign 􏽘

p

j�1
αj
∗
yj〈ϕ xj􏼐 􏼑,ϕ(x)〉 − b⎛⎝ ⎞⎠. (9)

For a support vector xj, it is (〈w∗, ϕ(xj)〉 − b) � yj j �

1, . . . , p from which the optimum bias b∗ can be computed.
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Figure 8: Proposed pipeline of optimization.
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To choose the best kernel function in SVM to deal with
practical problems, we have the following [43]:

(i) Based on the prior knowledge of experts, we select
the kernel functions

(ii) 'e method of cross-validation is adopted; that is,
when selecting the kernel function, different kernel
functions should be tried, respectively, and the
kernel function with the smallest error is the best
kernel function

In this paper, we implement the SVMwith RBF kernel in
our algorithm.

4. Results

4.1. Modeling Results. After training our models, we get the
learning curves of the different models as done in [43, 44].

'ese include the following:

(i) A training curve which gives the score after training
(on the training sample) (Figure 9)

(ii) A validation curve which gives the score after vali-
dation (on the validation sample) (Figure 9)

'e first remark is that there is no convergence between
the learning and validation curves. Random forest, bagging,
and AdaBoost classifier are in overfitting [51]. 'e predic-
tions are perfect on training (blue curve) but poor on val-
idation (orange curve). To resolve this, we can cross-validate
them on different splits. 'e curves of SVM seem to con-
verge; this needs more training data.

In the next step, we observe the performance of each
classifier after evaluation.

4.1.1. Results after Evaluation on the Test Set

(1) Performance Criteria of the Fives Models. 'e perfor-
mance criteria of the different models are obtained by
computing the value of each metric. Table 2 presents the
values of metrics for each estimator.

After observing these values, we can say that the model
with the best performance is SVM. Let us better appreciate
this by observing the accuracy, precision, and recall curves in
Figure 10.

We can notice that whatever the performance criteria,
the SVM model has the highest score, in terms of accuracy,
sensitivity, or specificity, which makes it the best model. All
that remains now is to optimize it.

4.2. Optimization Results of the Best Model

4.2.1. Training Results. After training the best model using
the GridSearchCV method we obtained, we observe the
learning curves presented in Figure 11.

We notice that there is no difference between this new
model’s learning curves and the former one. Perhaps, the
hyperparameters of the former model are already the best.
'ere is no need to modify it. 'is will be verified after
observing the new confusion matrix.

4.2.2. Results after Evaluation of the Optimized Best Model.
In ML, the confusion matrix (also called the error matrix) is
a specific table layout that can visualize the performance of
the hypothetical algorithm we use, that is, the parameters of
the SVM algorithm (negatively predicted number, positively
predicted number). 'e confusion matrix of our optimized
model is displayed in Table 3.

'e model has very few false negatives (0.71%) and no
false positives (0%); it does not make too much confusion
between the two classes. 'is explains his high performance.
Moreover, there is no difference between nonoptimized and
optimized models: accuracy� 0.992, sensitivity� 0.927, and
specificity� 1. So, our SVM model is very reliable and
efficient.

4.3. Discussions

4.3.1. Comparison with the Performance of Related Works.
Figure 12 highlights the performance of our solution and the
work of the authors cited in the literature review who
worked on the same dataset [32] as ours.

As can be observed, the performance of our model is
almost the highest in terms of accuracy and specificity. 'is
performance may be due to the technique of choice of our
final model, which started with the evaluation of several
models, and then the choice of the best model. On the other
hand, if we take a look at the other results, we will realize that
there are solutions that perform better than ours mostly in
terms of accuracy and sensitivity, even though we did not
work on the same data set. 'is is the case of the solution
resulting from the work [31], which reached 99.88%, 98.72%,
and 99.99%, respectively, in terms of accuracy, sensitivity,
and specificity.

We can confirm that our model is very efficient but is not
perfect. In particular, this perfection is not achieved espe-
cially at the sensitivity level, which also affects the accuracy
and prevents it from reaching value 1. Indeed, the
achievement of this level of sensitivity (below 95%) can be
explained by the low number of patients testing positive
(only 10%) in our data set. 'is implies that the model was
not trained on a large sample of positive cases, which affects
the predictions of positive cases and lowers their perfor-
mance. Sensitivity, being the ability to find all positive re-
sults, is therefore deteriorated.

In order to see if our DA and SVM method is good, we
have carried out the same study using another dataset taken
from [24] that contains one more parameter CRP (C-re-
active protein).'e SVMmodel once more has been the best
model in terms of accuracy, sensitivity, and specificity. In
Figure 13, we easily appreciate the best model depending on
each metric. In this figure, we perform the representation of
accuracy, specificity, and sensitivity.

According to Figures 13(a)–13(c), the SVM model has
the best performance compared to the others. It achieved
92.86 of accuracy, 93.55 of sensitivity, and 90.91 of speci-
ficity. We then compared our result with the result from
[23], who worked on the same dataset, and Figure 14
presents the difference between our models.
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Figure 9: (a) Learning curves of random forest classifier. (b) Learning curves of bagging classifier. (c) Learning curves of AdaBoost classifier.
(d) Learning curves of SVM. (e) Learning curves of KNeighbors classifier.
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Although the sensitivity of [23] is higher than ours, the
latter achieves 82–86% accuracy, which is under the accuracy
of our model.'is means that ourmodel makes less errors in
its prediction than the author’s model from [23].

Regarding the discussions, we confirm that the results of the
SVMmodel are good, either in the first or in the second dataset.
Hence, it is important for us to findways andmeans to improve
the performance of our solution especially the sensitivity.

In a nutshell, we have presented the major results of the
proposed solution, obtained during the modeling and
evaluation stages. Based on performance (accuracy, preci-
sion, and sensitivity), we selected the best model among the

five initially considered, and then, we improved its per-
formance to be the best possible. We obtained very high
performance on the test set: 99.29%, 92.79%, and 100% for
accuracy, sensitivity, and specificity, respectively, concern-
ing the first dataset (data set from [32]) and 92.86%, 93.55%,
and 90.91% for accuracy, sensitivity, and specificity, re-
spectively, concerning the second dataset (data set from
[24]). By using our model, we can now perform a cheap
COVID-19 test within less time. Furthermore, we can try to
improve our model with some big data analysis techniques
and tools used in biomedical engineering and presented in
[52–54].

Table 2: Values of the performance criteria.

Accuracy Sensitivity Specificity
Random Forest 0.991 0.909 1
Bagging 0.988 0.909 0.997
AdaBoost 0.989 0.927 0.996
SVM 0.992 0.927 1
KNeighbors 0.990 0.909 0.999

Accuracy

RandomForest Bagging SVMAdaBoost
Models

KNeighbors
0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

1.0000

(a)

RandomForest Bagging SVM

Sensitivity

AdaBoost
Models

KNeighbors
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

(b)

Specificity

RandomForest Bagging

0.88

0.90

0.92

0.94

0.96

0.98

1.00

SVMAdaBoost
Models

KNeighbors

(c)

Figure 10: (a) Comparison between the five models in terms of accuracy. (b) Comparison between the five models in terms of sensitivity.
(c) Comparison between the five models in terms of specificity.

12 Journal of Healthcare Engineering



0.93

Sample Size
500 1000 1500 2000 2500 3000 3500

0.94

0.95

0.96Sc
or

es 0.97

0.98

0.99

1.00
SVM

Training Curve
Validation Curve

Figure 11: Learning curves of the optimized best model according to the sample size.

Table 3: Confusion matrix of the optimized best model.

SVM Predicted negative Predicted positive
True negative 1018 (90.17%) 0 (0%)
True positive 8 (0.71%) 103 (9.12%)
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Figure 12: Continued.
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Figure 12: (a) Comparison with the related works in terms of accuracy. (b) Comparison with the related works in terms of sensitivity.
(c) Comparison with the related works in terms of specificity.
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5. Conclusion

'is study focused on the implementation of a solution to
predict whether or not an individual is infected with SARS-
CoV-2 quickly and reliably, based on DA and ML model as
well as clinical data from patients who have carried out PCR
tests. With a view to achieving these ends, we, first of all,
presented some diagnostic works on COVID-19 already
carried out. 'en, we amply presented the approach used to
achieve this solution. It began with an analysis and explo-
ration of the data in order to understand our data set in
depth. After understanding our data, we processed it in

order to put it in a suitable format for machine learning.'is
processing consisted of encoding, imputation, standardi-
zation, and selection of the 10 best variables. 'e next step
was modeling, in which we presented the five models to be
trained and evaluated according to well-defined evaluation
criteria, with the aim of selecting the best model. Finally, the
last step was optimization, in which we used the “Grid-
SearchCV” method, an optimization technique to increase
the performance of the selected model. In the last part of this
work, we highlighted the results obtained after the modeling
and optimization phases, as well as extensive discussions.
After training and evaluation of the different models, we
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Figure 13: (a) Comparisons betweenmodels in terms of accuracy. (b) Comparisons betweenmodels in terms of sensitivity. (c) Comparisons
between models in terms of specificity.
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selected the “SVM” as the best model, and then, we opti-
mized it. At the end of the optimization, we observed that the
performance remained the same: an accuracy of 0.99, a recall
of 0.93, and a perfect specificity of 1. We did the same work
with another dataset taken from [24]. Once more, the SVM
presented the best performance: 92.86%, 93.55%, and 90.91%
for accuracy, sensitivity, and specificity, respectively. At this
point, we can easily say that blood parameters are a very
good option to predict SARS-CoV-2 infection at low cost
and rapidly. Our solution has several advantages, namely:

(i) Absence of costs related to the manufacture and
transport of the tests

(ii) Low dependence on qualified professionals for its
use

(iii) More pleasant for patients compared to the PCR test
(iv) Accessibility to any location
(v) Fast and high-performance testing
(vi) Low cost

In future work, we want to develop an application by
using our model to perform the COVID-19 test. We also
intend to adapt this solution to several other cases of dis-
eases, pandemics, or epidemics.
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