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Abstract: (1) Background: Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD)
are neurodegenerative disorders with an overlap in clinical presentation and neuropathology.
Common and differential mechanisms leading to protein expression changes and neurodegeneration
in ALS and FTD were studied trough a deep neuroproteome mapping of the spinal cord. (2) Methods:
A liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the spinal cord
from ALS-TAR DNA-binding protein 43 (TDP-43) subjects, ubiquitin-positive frontotemporal lobar
degeneration (FTLD-U) subjects and controls without neurodegenerative disease was performed.
(3) Results: 281 differentially expressed proteins were detected among ALS versus controls, while
52 proteins were dysregulated among FTLD-U versus controls. Thirty-three differential proteins
were shared between both syndromes. The resulting data was subjected to network-driven
proteomics analysis, revealing mitochondrial dysfunction and metabolic impairment, both for ALS
and FTLD-U that could be validated through the confirmation of expression levels changes of the
Prohibitin (PHB) complex. (4) Conclusions: ALS-TDP-43 and FTLD-U share molecular and functional
alterations, although part of the proteostatic impairment is region- and disease-specific. We have
confirmed the involvement of specific proteins previously associated with ALS (Galectin 2 (LGALS3),
Transthyretin (TTR), Protein S100-A6 (S100A6), and Protein S100-A11 (S100A11)) and have shown
the involvement of proteins not previously described in the ALS context (Methanethiol oxidase
(SELENBP1), Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN-1), Calcyclin-binding
protein (CACYBP) and Rho-associated protein kinase 2 (ROCK2)).

Keywords: amyotrophic lateral sclerosis (ALS); frontotemporal dementia (FTD); motor
neuron; proteomics
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1. Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that derives from a combined
degeneration of upper and lower motor neurons in the spinal cord and motor cortex and follows a
fatal course with a median survival time less than five years [1]. In Europe and the United States, its
prevalence is 3-5 cases per 100,000 inhabitants/year [2]. This syndrome affects individuals of both
genders with a higher prevalence in men than in women (1.7/1) and it manifests at any age with a
peak incidence between ages 45-65 years [3]. Although it is usually a sporadic disease, 8-10% are
identified as familiar [4]. Super oxide dismutase 1 (SOD1) was the first ALS gene to be identified in
1993, since then more than 120 genetic variants have been associated with a risk of ALS and at least 25
of these genes have been reproducibly implicated in familiar ALS with moderated penetrance, but
nowadays 80% of familial cases are not linked to known genetic causes [5].

ALS diagnosis is based on clinical examination in conjunction with electromyography and
laboratory testing. These tests allow ruling out other reversible disorders that may resemble ALS [6].
Patient diagnosis is based on the El Escorial criteria [7]. The clinical hallmark of ALS is the involvement
of motor neurons, and the onset and early progression of ALS are frequently insidious, so symptoms
may go unrecognized and undiagnosed for up to 12 months [6]. It was observed that up to 50%
also have cognitive impairment of the frontal profile and 15% of patients present frontotemporal
dementia (FTD), therefore the clinical spectrum of the disease goes beyond the involvement of motor
neurons [8,9]. It is widely known that a common clinical spectrum between ALS and FTD, and a genetic
and pathogenic overlap between both diseases has also been described [10,11]. However, in ALS there
is a great heterogeneity from a neuropathological point of view and recent studies show a pathological
overlapping between ALS and others neurodegenerative diseases [12]. Ubiquitin frontotemporal
lobar degeneration (FTLD-U) is the most common form of frontotemporal dementia (FID) from a
neuropathological point of view and shares with some variants of ALS the aggregation and deposition
of TDP-43 immunoreactive intracytoplasmic inclusions in neurons. This pathological hallmark defines
the so-called (T'DP-43 proteinopathies or tardopathies) [13,14]. Among the FTLD-U and ALS-TDP-43
are shared relevant genetic mutations, the most frequent mutation of both diseases is the expansion
of the GGGGCC hexanucleotide, in the non-coding region of the COIORF72 gene [15,16]. In addition
to this mutation there are other well described genetic alterations shared by the two diseases such as
FUS, UBQLN2, MATR3, TARDBP, VCP, TUBA4A and CHCHD10 [17-19].

Despite all the progress made in the last decade understanding, the molecular processes
underlying the earliest stages and progression of these tardopathies, the origin of these devastating
diseases remains unclear and the etiopathogenesis is still unknown. There are several theories
regarding the biochemical mechanisms that leads to neuronal death, such as oligodendrocytic
degeneration, excitotoxicity, oxidative stress, mitochondrial dysfunction, alterations in axonal transport,
neuroinflammation and aberrant conformational changes of proteins among others [20-22]. These
mechanisms could interrelate with eachother and consequently lead to the degeneration and death of
the motor neuron suggesting a multistep process [23].

Neuroproteomic leads to a better understanding of the protein-driven molecular mechanisms
and functions of the central nervous system (CNS) and provides the possibility of performing
large-scale studies of protein functions, interactions, dynamics and structures, complements genomic
and transcriptomic studies [24]. Here proteomics has been applied to study the protein expression
changes in spinal cord of ALS patients and FTLD patients to identify potential biomarkers of ALS
and FTD [25-27]. In the present study, a deep proteomic analysis of postmortem tissue of the anterior
horns of the spinal cord and no-motor frontal cortex from patients with clinical and pathological
diagnosis of ALS-TDP-43 and FTLD-U compared with controls without neurodegenerative diseases,
has been conducted. The resulting differences have allowed us to identify significantly dysregulated
proteins and processes common to both diseases and differences that are exclusively identified in
one of the two entities. The present study will contribute to a deeper understanding of the disease
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processes and to better understand the link and the differences encompassed in the course of these
neurodegenerative diseases.

2. Results

2.1. Commonalities and Differences in the Spinal Cord: Proteostatic Imbalance in ALS and FTLD-U

A total of 2318 proteins were identified in the anterior horn of the spine, of which 1002 were
quantifiable. 281 proteins were differentially expressed in ALS cases when confronted to healthy
control cases. However, 52 proteins showed significant differential expression between cases of
FTLD-U and healthy controls (the complete list of significantly regulated proteins is presented in
Supplementary Table S1). Thirty-three proteins were found to be significantly deregulated in both
diseases (Figure 1). Most of the significantly dysregulated proteins were exclusively dysregulated
in ALS, the 33 proteins dysregulated in both diseases represented only the 11% of the dysregulated
proteins in ALS and a more relevant proportion a 60% of the significantly dysregulated proteins in
FTLD-U (Table 1).

ALS vs Control FTLD vs Control

Palue

Log 10 Anava

Log 10 Anova Pealue

Log2 okl change

ALS DFT

Figure 1. The two volcano plots are the graphical representation of the quantitative comparison
performed in the present study. Each dot represents a protein; in blue unchanged proteins and in
yellow (—log10 p value > 1.3) and green (—log10 p value > 2) the ones significantly dysregulated in
each analysis. The first volcano plot shows the ALS vs control comparison and the second one shows
the FTLD-U vs. control comparison. The Bar plot describes the number of significantly dysregulated
proteins (up-regulated: red. Down-regulated: green). The Venn diagram illustrates the number of
significantly dysregulated proteins in each disease and the observed overlap across comparisons.

Interestingly, among the significantly dysregulated proteins in the ALS proteome, 14 have
previously been proposed as potential biomarkers or relevant proteins involved in ALS. In the
proteomic study 6 of these proteins were detected as up-regulated, while the other 8 were detected
as significantly down-regulated in ALS (Table 2). Our proteomic data are therefore in agreement
with alterations previously characterized in the ALS field. A protein panel was selected for further
validation using orthogonal techniques described later on.
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Table 1. 31 out of the 33 proteins found significantly dysregulated both in ALS and FTLD-U are described here. Protein name, gene name, Uniprot code, number of
unique peptides used for the identification and quantification as well as fold change and p value for the significantly dysregulated proteins in both diseases are shown
in the table. The remaining two proteins were uncharacterized proteins (Uniprot code: C9JCJ5, K7N7AS8) and are therefore not shown in this table.

p-Value Fold-Change Fold-Change ALS

Protein Name Gene Uniprot Code Unique Peptides  p-Value ALS FTLD-U FTLD-U (log2) (log2)
Common up-regulated proteins in spinal cord of ALS and FTLD-U patients

Protein kinase C and casein kinase substrate in neurons protein 1 PACSIN1 Q9BY11 7 0 0 —1.82 —0.59
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 PIN1 Q13526 10 0 0 —0.99 —0.39
NADH dehydrogenase [ubiquinone] iron-sulfurprotein 6, mitochondrial NDUFS6 075380 7 0 0 —1.34 —0.56
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7 NDUFA7 095182 4 0 0 —1.64 —0.95
Methylglutaconyl-CoA hydratase, mitochondrial AUH Q13825 5 0 0 -1.18 —0.77
Tubulin polymerization-promoting protein TPPP 094811 18 0 0.01 -1.17 —0.58
NADH dehydrogenase [ubiquinone] iron-sulfur protein 5 NDUFS5 043920 3 0 0 —1.01 —0.88
ATP-dependent RNA helicase A DHX9 Q08211 2 0 0.01 -0.73 —0.55
Isoform 2 of NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit5 ~ NDUFA5 Q16718-2 4 0 0 —0.77 —0.43
Cytochrome b-c1 complex subunit 6, mitochondrial UQCRH P07919 5 0 0 —1.11 —0.55
MICOS complex subunit CHCHD6 J3QTA6 4 0 0 —0.59 —0.59
MICOS complex subunit CHCHD3 CIJRZ6 2 0 0.03 —0.98 —0.62
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2 NDUFA2 043678 2 0 0 —1.45 —0.91
ATP synthase subunit d, mitochondrial ATP5H 075947 18 0 0 —0.55 —0.38
Cytochrome b-c1 complex subunit 7 UQCRB P14927 4 0 0 —1.64 —1.59

ATP synthase subunit e, mitochondrial ATP5I P56385 4 0.01 0 —-0.71 —-0.5
D-tyrosyl-tRNA (Tyr) deacylase 1 DTD1 Q8TEAS8 2 0 0 —0.62 —0.45
Mitochondrial import inner membrane translocase subunit Tim13 TIMM13 Q9Y5L4 4 0 0 —0.43 —0.39
Mitochondrial 2-oxoglutarate/malatecarrierprotein SLC25A11 Q02978 2 0 0.01 —0.68 —0.56
ADP/ATP translocase 1 SLC25A4 P12235 2 0 0.01 -1.01 —0.61
Isoform 2 of Fructose-bisphosphate aldolase A ALDOA P04075-2 56 0.01 0 —0.62 —0.43
ARF GTPase-activating protein GIT1 GIT1 AO0A0C4DGN6 2 0 0 —0.72 —0.88

Common down-regulated proteins in spinal cord of ALS and FTLD-U patients

6-phosphogluconolactonase PGLS 095336 14 0 0 0.62 04

ATP-dependent 6-phosphofructokinase, muscle type PFKM P08237 8 0 0 0.6 0.63

Moesin MSN P26038 11 0 0.01 0.47 0.4

Guanine nucleotide-binding protein G(i) subunit alpha-2 GNAI2 P04899 1 0 0 1.15 1.05

Alcohol dehydrogenase class-3 ADHb5 P11766 14 0 0.01 0.58 0.55

Annexin A5 ANXA5 P08758 9 0 0.01 1.12 0.61

Carbonic anhydrase 1 CA1 P00915 7 0 0.01 1.61 0.88

Small glutamine-rich tetratricopeptide repeat-containing protein alpha SGTA 043765 3 0 0 0.59 0.43

Heat shock protein beta-8 HSPB8 QIUJY1 7 0 0.01 0.89 0.74
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Table 2. Proteins found significantly dysregulated in the proteomic analysis and in the literature. All these 14 proteins have consistently been described as dysregulated
in previous studies. Therefore our data reinforces the existing knowledge in ALS and the in silico validation shows the robustness of our study.

Gene Uniprot Protein Name p-Value ALS FC ALS Molecular Function Biological Function ALS-Related
Up-regulated proteins
P4HB P07237 Protein disulfide-isomerase 0.00 1.07 ER foldase ER Proteostasis Mutations and enrichment [28]
vcp P55072 Trans1t.10nal endoplasmic 0.00 0.71 Multiple functions DNA Repair/ER Proteostasis Mutations and enrichment [29]
reticulum ATPase
S100A6 P06703 Protein S100-A6 0.00 142 Ca%t /Zn%* binding protein calcium sensor and modulator Enrichment [30]
S100A11 P31949 Protein S100-A11 0.00 2.08 CaZt /Zn%* binding protein calcium sensor and modulator Enrichment [31]
LGALS3  P17931 Galectin 3 0.01 0.52 Galactose-specific lectin ~ Pre"MRNA splicing factor; acute  enrichment (tissue, plasma and
inflammatory responses CSF) [32-34]
. Thyroid hormone-binding . .
TTR P02766 Prealbumin 0.00 1.37 protein thyroxine transport Down-regulated in blood [35]
Down-regulated proteins
SODI  PO0441 Sup ero}‘éie_gzmumse 0.05 —032 Multiple functions Multiple functions Mutations [36]
INA Q16352 Alpha-internexin 0.01 —0.95 neurona.I intermediate Axonal structure and transport Down-regulated in motor
filament neurons [37]
Neurofilament medium neuronal intermediate .
NEFM P07197 . 0.00 —0.71 . Axonal structure and transport Down-regulated in CSF [38]
polypeptide filament
NEFH P12036 Neurofllamenlt heavy 0.00 097 neuronall intermediate Axonal structure and transport Up-regulated in CSF and Up in
polypeptide filament plasma [39,40]
TUBA4A P68366 Tubulin alpha-4A chain 0.00 -1.20 Microtubules structure Axonal transport Mutations [41]
CST3 P01034 Cystatin-C 0.01 —0.67 cysteine protease inhibitor Protein homeostasis Down—regulgted in CSF and up
regulated in plasma [42,43]
OPTN Q96CV9 Optineurin 0.00 —1.03 Multiple functions Protein hor?g:;;ilftand vesicle Mutations and enrichment [44]
VAPB 095292 Vesicle-associated membrane 0.01 —0.60 Multiple functions ER Proteostasis; vesicle transport; Down-regulated in CSF [45]

protein-associated calcium homeostasis




Int. J. Mol. Sci. 2019, 20, 4 6 of 24

2.2. Cross-Neuroanatomical Protein Profile between ALS and FTLD-U: Region and Disease Specificities

To validate the results obtained in proteomics study and to characterize the steady-state levels of
the same proteins in the target region of FTLD-U disease, we used western-blotting technique. The
expression of eight proteins of interest was evaluated in spinal cord and Non motor cortex (NMC) for
each of the individuals included in the discovery cohort. Subsequent experiments were performed
to: (1) verify the proteomic results, re-testing the same region (spinal cord) analyzed in the discovery
experiment and (2) assess the expression of the same proteins in parallel the target region for FTLD-U
(the NMC). Four proteins previously reported in the literature as regulated in ALS were selected
for validation: Galectin-3 (LGALS3), prealbumin (TTR), Protein 5100-A11 (S100A11) and Protein
S100-A6 (S100A6). In addition, four proteins not previously linked to ALS, were selected for further
validation; Methanethiol oxidase (SELENBP1), Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1
(PIN-1), Calcyclin-binding protein (CACYBP) and Rho-associated protein kinase 2 (ROCK 2), these
proteins were found significantly dysregulated in our proteomic study. According to the regulation
patterns observed in the western blotting results, the 8 proteins were classified in three differential
expression profiles:

e Area and disease specific regulation was observed for Galectin-3 and SELENBP1. These two
proteins showed a strong up-regulation in spinal cord for the ALS patients, while this noticeable
up-regulation could only be detected in NMC for FTLD-U patients (Figure 2A). Therefore showing
specific regulation in the target area for each of the diseases.

e TTR, S100A11, S100A6 and PIN1 (Figure 2B) showed ALS specific regulation. These 4 proteins
were confirmed as significantly dysregulated exclusively in ALS. TTR was found significantly
up-regulated only for ALS when analyzing the spinal cord. S100A11 and S100A6 were exclusively
measurable in spinal cord, showing very significantly up-regulation in ALS patients and
not showing relevant changes for FTLD-U patients. PIN1 was also detected a significantly
down-regulated only in ALS in booth regions. PIN1 was observed down-regulated in ALS and
FTLD-U spinal cord in the proteomic analysis, here a discrete, but not significant decrease for
FTLD-U in spinal cord could be measured.

e Not disease or area specific protein regulation, CACYBP was found significantly down-regulated
in spinal cord for ALS, the opposite trend was observed in the NMC, with significant up-regulation
in ALS and a more drastic increase for FTLD-U patients. ROCK 2 down-regulation was validated
in both regions with a stronger down-regulation in spinal cord for both diseases, both in spinal
cord and NMC the down-regulation was moderately stronger for ALS patients (Figure 2C).
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Figure 2. Western blot validations for dysregulated proteins of interest. Western blot analysis for the
verification of expression changes for eight proteins identified as significantly dysregulated in the
discovery proteomic study. (A) Area and disease specific regulation: LGALS3 and SELENBP1 (B) ALS
specific regulation: TTR, S100A11, SI00A6 and PIN1 (C) Not disease or area specific protein regulation;
CACYBP and ROCK2. In each plot the optical density for control samples (white), ALS samples (black)
and DFT samples (grey) are represented. Differential expression was evaluated in Spinal cord (SC)
and Non motor cortex (NMC) for all the proteins under study except for AS100 A11 and AS100A6
that could only be measured in spinal cord. * p value < 0.05, ** p value < 0.01, *** p value < 0.001. a.u.
arbitrary units.
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2.3. Proteome Modules Deregulated in ALS and FTLD-U at Spinal Cord Level

To perform a proteome mapping analysis of impaired protein profiles, we used the Ingenuity
Pathway Analysis (IPA) tool (Figures 3 and 4). IPA uses information from experimental and predictive
origin to generate pathway-specific alterations involving the deregulated proteome characterized by a
proteomic analysis.

©2000-2916 QIAGEN, All S 140

Figure 3. High-scoring protein interactome maps for differentially expressed proteins in the ALS
versus control comparison. Dysregulated proteins are highlighted in red (up-regulated) and green
(down-regulated). Continuous and discontinuous lines represent direct and indirect interactions
respectively. The complete legend including main features, molecule shapes, and relationships can
be found in http://ingenuity.force.com/ipa/articles /Feature_Description/Legend. In these visual
representations of the relationships between differential expressed proteins we observe a significantly
regulated protein network representing Mitochondrial and Metabolic Impairment in the first network
of regulated proteins and Nucleic Acid Metabolism and Energy production related protein interaction
in the second one. Proteins surrounded by a blue circle are involved in cell signaling.


http://ingenuity.force.com/ipa/articles/Feature_Description/Legend
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Figure 4. High-scoring protein interactome maps for differentially expressed proteins in the FTLD-U
versus Control comparison. Dysregulated proteins are highlighted in red (up-regulated) and green
(down-regulated). Continuous and discontinuous lines represent direct and indirect interactions
respectively. The complete legend including main features, molecule shapes, and relationships
can be found in http://ingenuity.force.com/ipa/articles/Feature_Description/Legend. In these
visual representations of the relationships between differentially expressed proteins, a significantly
dysregulated protein network representing Mitochondrial and Metabolic impairment and cell death
and survival was observed. Proteins surrounded by a blue circle are involved in cell signaling.

Protein interactome maps were constructed independently for each disease phenotype using the
IPA software (Figures 3 and 4). Network-driven proteomics revealed mitochondrial dysfunction and
metabolic impairment, both for ALS (Figure 3) and FTLD-U (Figure 4). In addition dysregulated protein
interactions related to nucleic acid metabolism and to energy production were found overrepresented
in ALS, and the interactome map showed an enrichment in cell death and survival related protein
regulation in FTLD-U. Among the dysregulated features 21 Ingenuity canonical pathways were found
significantly enriched, both in ALS and FTLD-U (Supplementary Table S2) among them mitochondrial
dysfunction was the most significantly enriched pathway for both diseases.
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2.4. Network-Driven Proteomics Reveals a Common Disruption of Focal Adhesion Kinase 1/Alpha
Serine/Threonine-Protein Kinase (FAK/Akt) Axis in ALS-FTD Spectrum and a Specific Non-Motor Cortical
Activation of Mitogen-Activated Protein Kinase (MAPK) Route in FTLD-U

An additional aspect of interaction networks is the ability to show and highlight potentially
relevant players that have gone undetected in the proteomic study. In this sense, the interaction
networks reveled different cell signaling mediators including; alpha serine/threonine-protein kinase
(AKT), Mitogen-activated protein kinase 1 (ERK) or Dual specificity mitogen-activated protein kinase
1 (MAP2K) (Figures 3 and 4). The involvement of these potential candidates was considered an
interesting subject for further evaluation. AKT, Dual specificity mitogen-activated protein kinase
kinase 2 (MEK) and MAP2K were not detected in the proteomic study, while ERK was quantified and
found up-regulated in ALS.

Subsequent experiments were performed to monitor the activation state of this kinase panel
across ALS-FTLD-U spectrum in both selected brain areas spinal cord and NMC (Figure 5). AKT and
pAKT showed significant down-regulation in the spinal cord for both ALS and FTDL-U cases. This
event was very significant in ALS. When analyzing NMC only FTLD-U patients showed significant
down-regulation of AKT. FAK and p-FAK were found significantly dysregulated and very significantly
dysregulated in both diseases when measured in spinal cord, while significant down-regulation was
only measured in FTLD-U when analyzing NMC.

ERK up-regulation was measured in the proteomic experiment, here the same trend could be
appreciated by western blot, but not with statistical significance. Nevertheless p-ERK could be detected
as significantly up-regulated for FTLD-U in NMC. MEK and pMEK significant dysregulation was
detectable in NMC, in ALS for MEK and only in FTLD-U for pMEK. Suggesting differential regional
implications for each disease for the different factors regulating cell signaling events (Figure 5).
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Figure 5. Cell signaling. Differential regulation in ALS and FTLD-U in different CNS regions. The left
side of the figure shows the results for all the signaling proteins measured in spinal cord, while the
right side of the figure shows the results obtained in non-motor cortex. In each plot (y axes) the optical
density (in arbitrary units) is measured for control samples (white), ALS samples (black) and FTL-D
samples (grey) are represented. * p value < 0.05, *** p value < 0.001.

2.5. PHB Complex as a Differentially Deregulated Mitochondrial Sensor in ALS and FTLD-U

In the proteomic phase, the down-regulation of Prohibitin-2 (PHB2) suggested a mitochondrial
imbalance. This observation together with the mitochondrial imbalance revealed by the protein
interactomes lead to a further evaluation and characterization of the PHB complex. Both PHBI and
2 were down-regulated across the two diseases in spinal cord, with a stronger down-regulation of
PHB2. Interestingly, only for FTLD both PHB1 and PHB2 were found significantly dysregulated when
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analyzing NMC samples with a non-significant trend to down-regulation in ALS (Figure 6). These data
indicated the ALS-FTLD spectrum impacts on the PHB complex leading to a possible mitochondrial
dysfunction in spinal cord for ALS and FTLD-U and in NMC in the case of FTLD-U patients. These
results would reinforce the hypothesis of mitochondrial dysfunction in ALS-FTLD spectrum hinted by
the results obtained in the functional analysis.

Control ALS FTLD-U Control ALs FTLD-U

PHB1 - - — PHB1 = o v e o o e e s e

PHB2 - - — - PHB2 o o e o o s o e e e s
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Figure 6. Mitochondrial impairment, PHB1 and PHB2 down-regulation. PHB1 and PHB2 were tested
in spinal cord and Non motor cortex. Significant down-regulation for both proteins in both diseases
was measured when analyzing spinal cord tissue, while significant down-regulation could be proved
only in FTLD-U when analyzing Non motor cortex. In each plot (y axes) the optical density (in arbitrary
units) is measured for control samples (white), ALS samples (black) and FTL-D samples (grey) are
represented. * p value < 0.05, ** p value < 0.01.

3. Discussion

ALS and FTD share clinical features, anatomopathological characteristics, genetic mutations and
pathway alterations leading to neurodegeneration. Consequently they are often presented as the two
extremes of a common disease spectrum [15,16]. The present study aims to contribute to a better
understanding of the overlapping and differential mechanisms underlying the development of the
two different manifestations of these neurodegenerative processes.

The experimental design of the present study was conceived to perform a deep proteomic
analysis of the spinal cord from ALS-TDP-43 patients and FTLD-U patients (all of them in both groups
without beta-amyloid, tau or alpha-synuclein inclusions) comparing them with post mortem tissue
from the same region of non-neurodegenerative control donors, in order to deep in the tardopathies
knowledge. The data resulting from the two comparative studies where afterwards confronted to
evaluate similarities and differences among the two syndromes.

In parallel a second objective was pursued; defining new diagnosis and prognosis potential
biomarkers in ALS. To this aim the study included a technical validation in spinal cord and an
additional cross-disease analysis in a non-motor cortex region carried out for a panel of selected
proteins found significantly regulated in ALS. We hypothesize that protein expression changes detected
in the anterior horn of the spine in ALS patients that can also be measured in FTLD-U patients, with
no motor clinic may well be a reflection of preclinical neuropathogical alterations, indicating primary
mechanisms involved in early stages of tardopathies. The idea of analyzing the expression of potential
ALS biomarkers in non-motor cortex was conceived with the intention of exploring the regional
involvement of these specific proteins, to determine whether they were exclusively regulated in motor
regions or if also changes in non-motor cortex of the same proteins could derive in future development
of FTLD-U.

The resulting quantitative proteomics data evidenced a more intense damage of the spine for ALS
patients, with 281 proteins showing significant differential regulation in the anterior horn of the spine
when comparing ALS and control post mortem tissue while only 52 differentially expressed proteins
were for the FTLD-U patients (Figure 1). 33 out of these 52 proteins (more than 60%) where common
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differences to the ones described in the ALS, showing a common spectrum of regulation in this region
of the CNS (Table 1).

To perform an in silico validation of the proteomic and bioinformatics pipeline, a hypothesis
driven approach was adopted to initially evaluate the robustness of the here obtained proteomic data.
This approach confirmed that among the significantly dysregulated proteins for ALS, we could observe
fourteen proteins that had previously been described as relevant in the ALS context. Among the
significantly dysregulated proteins identified in this study, some of the best characterized biomarker
candidates for ALS such as neurofilament heavy and medium polypeptides, cystatin C or SOD1 (one
of the best known ALS causing mutations) (Table 2) were found, thus corroborating the excellent
quality of our data and supporting the reliability of the new observations here reported.

Among the candidates, proteins well characterized and widely described to be altered in ALS in
previous studies, like Galectin-3 (LGALS3) Prealbumin (TTR) Protein 5100-A6 (5100A6) and Protein
S100-A11 (A100A11) were selected in order to reinforce the existing knowledge and literature related to
them [32,34,46-48]. Four more proteins, Peptidyl-prolyl cis/trans isomerase (PIN-1), Selenium-binding
protein 1 (SELENBP1), Calcyclin-binding protein (CACYBP) and Rho-associated protein kinase 2
(ROCK 2) (Figure 2), were selected as well to be retested, due to their potential novel role in ALS.

Different regulation patterns were observed among the measured proteins LGALS3 and
SELENBPI1, showing an area and disease specific regulation. Specifically, the up-regulation of both
proteins was validated by western blot, partially confirming the quantitative LC-MS/MS approach
used in this study. We could clearly validate the up-regulation observed in spinal cord for ALS patients
for both proteins, with almost no changes in the expression of these two proteins in FTLD-U in that
region. An important increase was also detected for both proteins in NMC, but exclusively for FTLD-U
patients with no relevant changes for the ASL patients. These findings suggest that LGALS3 and
SELENBP1 play a direct role in neuronal damage, being increased in the affected areas, for each specific
disease but not in potentially pre-symptomatic areas. The up-regulation of these two proteins then
could be disease specific and could participate in different neurodegenerative syndromes depending
on the regional overexpression. LGALS3 is a beta-galactosidase binding protein expressed by almost
all cell type, involved in several physiological functions like immune activation and apoptosis [49-51].
LGALS3 has been reported to show altered patterns of expression in different neurodegenerative
diseases like Alzheimer disease (AD), Parkinson’s disease (PD) and ALS [34,52]. Elevated levels of
LGALS3 have been observed in previous proteomic approaches in CSF of ALS patients where this
protein was proposed as a good potential biomarker for ALS [32,34]. Our study shows interesting
regulation events for this protein, and there are previous data supporting this biomarker candidate
also as a good therapeutic target.

A proteomic study, complementary to the one presented here was recently published, the
study presented a deep proteome mapping of the post-mortem frontal cortex and described protein
differences along the ALS-FTD disease spectrum. Protein co-expression modules were built in
the study, in order to represent changes in expression levels for modules associated with different
processes. Among the differentially dysregulated modules they could see SELENBP1 as hub protein for
homeostatic processes, a module significantly regulated between control, ALS, ALS-FTD and FID [27].
To our knowledge it is the only study that has reported direct evidence of SELENBP1 involvement in
ALS, nevertheless Glatt, S.J., et al. reported SELENBP1 expression to be significantly up-regulated in
post-mortem brain tissue from patients with schizophrenia and cognitive impairment [53]. In addition,
the relationship between elevated selenium levels and ALS has been previously reported [54]. Finding
region and disease specific SELENBP1 elevated levels could suggest that SELENBP1 is implicated in
reducing levels of free selenium that are available for incorporation into selenoproteins, that have a
cytoprotective effect and play a role in neuroprotection [55].

Disease specific regulation was observed for TTR, S100A6, S100A11 and PIN1. These proteins
were found significantly dysregulated in ALS and not in FTLD-U. TTR is a tetramer involved in blood
transport of retinol and thyroxine. It has been suggested as a potential CSF biomarker in ALS and
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despite the role of TTR in the CNS remains understudied, it seems to be relevant in nerve regeneration
and neurite/axonal outgrowth [46]. According to previous studies, motor neurons synthetize and
secrete TTR, playing a role as a neuroprotective factor in AD and stroke [30,56,57]. The elevated TTR
found in this study could be related to an activation of regenerative mechanisms as a response against
the damage caused by ALS, supporting the role of TTR as potential biomarker in ALS.

S100A6 and SA100A11 were only detectable in spinal cord and both were significantly
up-regulated in ALS but not in FTLD-U. 5100 proteins have been related to Amyloid fibril formation,
5100-A6 up-regulation has been related to an increase in SOD-1 aggregation [57]. This protein is also
up-regulated in a SOD-1 mouse model, showing overexpression in astrocytes in the anterior horn of
the spine. S100A6 seems to be specific for ALS, a valuable characteristic for a potential diagnostic
marker [58].

PIN-1 is one of the 33 proteins that was quantified as significantly down-regulated for both
diseases in spinal cord in the proteomic analysis (Table 1). In the validation process, a significant
down-regulation for ALS patients and a trend for down-regulation in FTLD-U patients was observed.
Similar results were observed at non motor cortical level. PIN-1 is highly expressed in neurons and
it is involved in phosphorylation of neurofilaments (NFs). Aberrant phosphorylation of NFs, leads
to accumulation and has been found to be very relevant in different neurodegenerative diseases,
especially in ALS [59]. PIN-1 has been described to be depleted in AD leading to an accumulation of
phosphorylated tau protein [60]. Considering these discoveries together, PIN-1 appears to be a plausible
candidate to be a good marker of neurodegeneration with a particularly relevant involvement in protein
aggregation and accumulation. Nevertheless to further develop this idea a wider study considering
larger cohorts of patients and analyzing different regions of the CNS for different neurodegenerative
diseases would be required.

CACYBP and ROCK2, showed a regulation profile that appear to be neither disease nor area
specific. CACYBP has never been directly linked to ALS, nonetheless there are many indirect links
with other neurodegenerative diseases like Huntington disease, PD and AD [61,62]. CACYBP is
known to be involved in cytoskeletal dynamics and in the regulation of transcptional response in
neurons. Here in the proteomic analysis CACYBP was found to be decreased in the spinal cord for ALS
patients. The western blot analysis confirmed the proteomic results for ALS patients in spinal cord and
interestingly showed the opposite trend when analyzing NMC, revealing a significant up-regulation
of this protein in both diseases in that specific region. A similar scenario was found when exploring
ROCK2 expression changes, no region or disease specificity was found (down-regulated for both
syndromes in spinal cord and only for ALS in NMC). There are little evidence of Rho kinases being
linked to ASL; however Rho kinase inhibition has been described to have a neuroprotective effect in
a SOD1 (G93A) mouse model of ALS [63] and abnormal expression of ROCK2 has been associated
with high levels of myosin binding protein H expression in ALS [64], making these two candidates
new possible candidates for future study and additional exploration. Here we contribute with further
evidence of the down-regulation of ROCK2 in ALS and FTLD-U especially in spinal cord and also in
NMC for ALS patients.

Network-driven proteomics is a straightforward approach to detect unexpected connections,
considering that and with the aim to identify candidate ALS causative targets. We explored the PHB
complex as a driver of the mitochondrial imbalance detected by the mass spectrometry analysis, both in
ALS (Figure 3) and FTLD-U (Figure 4). An increasing number of studies are reporting clear functional
evidence of impairment of the respiratory chain in ALS and other neurodegenerative disorders [65].
To explore this impairment in depth, we selected two mitochondrial proteins Prohibitin 1 and 2 (PHB1
and PHB?2) (Figure 6). PHBs have an important role in the assembly of subunits of mitochondrial
respiratory chain complexes. The two PHB proteins, are located in the mitochondrial inner membrane
where they form a large complex. PHB2 was detected among the significantly down-regulated proteins
in the proteomic study for the ALS patients, thus we found interesting to study in more detail the
down-regulation of the PHB complex, a crucial mitophagy receptor and one of TDP-43 [66] interacting
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partners in the mitochondria. Additionally, PHB complex is differentially modulated across several
types of dementia [67]. In the present study PHBI and PHB2 were analyzed in the two regions of
interest, proving again the significant down-regulation of PHB1 and very significant for PHB2 in
spinal cord for both diseases. Interestingly, both proteins were only found dysregulated for FTLD-U in
NMC. This finding could suggest that mitochondrial damage happens early in this neurodegenerative
events, and early stages not presenting motor symptoms are already suffering molecular alterations at
mitochondrial level in the spinal cord as hinted by the functional analysis performed on the differential
protein expression for both diseases.

In accordance with previous transcriptomic analysis performed in spinal cord for ALS subjects
protein interactomes highlighted the involvement in cell death and survival signal regulation. There is
evidence for abnormal regulation of protein kinases in several neurodegenerative diseases including
ALS where altered activities and altered levels of specific kinases leads to abnormal phosphorylation
and aberrant events that could be contributing to the pathogenic events [18,68].

The upstream signaling interactome of differentially expressed proteomes in the spinal cord and
NMC of ALS and FTLD-U patients, revealed novel insights about the kinase dynamics present in the
neurodegenerative motor neurons in ALS (Figures 3 and 4). Significant down-regulation for AKT/pAKT
and FAK/pFAK in the spinal cord both for ALS and FTLD-U patients was observed. Down-regulation
for these signaling mediators, except for pAKT was also measured in NMC for FTLD-U while a
non-significant up-regulation was assessed for ALS samples in this region. These data suggest a
disease dependent regional depletion of these factors. PI3-K/Akt pathway is involved in the protective
effect mediated by vascular endothelial growth factor (VEGF) that reduces mutant SODI-mediated
motoneuron death and enhances motoneuron survival [69-71], suggesting that the PI3-K signaling
pathway plays a pivotal role in the survival of motoneuron [72]. Glutamate receptors act through
many intracellular signaling pathways [73], and have been proposed as good potential treatment
targets for ALS due to the key role played by Glutamate in neural development, and synaptic plasticity.
PI3-K signaling pathway can be involved in the regulation of the mechanism of glutamate-induced
excitotoxicity. This mechanism is not completely elucidated, nevertheless there is evidence of the
mediation through the activation of mitogen-activated protein kinases (MAPKSs) and inhibition of the
PI3K/AKT pathways [74].

Respect to MAPK pathway ERK/pERK and MEK/pMEK systems were also evaluated. Significant
regulation was observed for MEK in ALS and pERK and pMEK for FTLD-U. These results suggest that
MEK/ERK signaling axis activation are more active in NMC during degeneration while some degree of
depletion can be measured in spinal cord.

In conclusion, our study corroborates the overlap between ALS and FTD, sharing modifications
in protein expression even in pre-symptomatic areas. These data could reflect the existence of
several primary pathogenic mechanisms responsible for the initiation of neuronal damage in TDP-43
proteinopathies. In addition to that we have confirmed the involvement of specific proteins previously
associated with ALS as LGALS3 and TTR, S100A6, S100A11, and have observed the involvement of
other new proteins involved in ALS not previously described as SELENBP1, PIN-1, CACYBP and
ROCK2. Additional targeted experiments are needed to functionally evaluate the role of this protein
panel in tardopathies.

Moreover, mitochondrial impairment and cell signaling pathway regulation has also been
described and explored in detail to provide new insights of the involvement and relevance of PHB
complex in the mitochondrial impairment and the interest of AKT/pAKT mediated signaling events in
cell death and survival in ALS and FTLD-U. These results should be analyzed in larger samples.
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4. Materials and Methods

4.1. Patient Selection

Post-mortem fresh-frozen cervical spinal cord and frontal non-motor cortex tissue samples of 9
ALS patients, 8 FTLD-U and 8 age and gender matched controls, were obtained from the Biobank of
Navarra (Navarrabiomed-FMS) following the guidelines of Spanish legislation [75] on the research
matter with the approval of the Navarra Ethics Research Committee (2015/5, 2 February 2015).
Procedures were in accordance with the Helsinki Declaration of 1975 as revised in 2000.

Patient selection was performed by expert neurologists and different inclusion criteria were used
for each group involved in the study: For ALS patients, clinical and neuropathological diagnosis [76]
of ALS with TDP-43 deposition, absence of neuronal loss in frontal cortex and no clinical of dementia
were required [77]. For the FTLD-U group: neuropathological diagnosis of FTLD-U [76] with positive
TDP-43 inclusions, absence of neuronal loss in spinal cord, no corticospinal tract degeneration and no
clinical motor symptoms presenting individuals were included. Finally, for the control group, age and
gender matched donors without neurodegenerative disease, cancer, recent vascular cerebral disease,
infection or head injury neither family history of ALS or dementia were selected (demographic and
clinical features reported in Table 3).

4.2. Pathology and Immunohistochemistry

After brain autopsy, macroscopy examination and dissection trough middle line to separate
both hemispheres were carefully done. Brain stem was obtained including medulla oblongata
and spinal cord in all cases (Figure 7). Left hemisphere was placed in 10% formalin during 4
weeks and representative brain areas were selected as previously described [62]. Formalin-fixed,
paraffin-embedded tissue sections from each region of interest were sectioned at 5 pm and
counterstained with haematoxylin-eosin for immunohistochemistry analysis with the anti-phospho
TDP-43 monoclonal antibody (1:80,000, p5409/410, Cosmo Bio, Otaru, Hokkaido, Japan), mouse
monoclonal antibody anti-human PHE-TAU (clone AT-8, Innogenetics, Ghent, Belgium), mouse
monoclonal (S6F/3D) anti Beta-amyloid (Leica, Wetzlar, Germany) and mouse monoclonal antibody
against a-synuclein (NCL-L-ASYN; Leica Biosystems, Wetzlar, Germany) and were visualized using
an automated slide immunostainer (Leica Bond Max, Leica Bond Max) with Bond Polymer Refine
Detection (Leica Biosystems Newcastle Ltd., Newcastle, UK). Luxol fast blue staining and CD 68 were
included in brain stem sections for the study of myelin pathology. All ALS cases demonstrated upper
and lower motor neuron degeneration accompanied by p-TDP43 neuronal inclusions. FTLD-TDP
cases showed deposits in anterior cingulate cortex, limbic regions and absence in spinal cord area.
They were classified onto one of four pathological subtypes (FTDL-TDP type A-D) using the recently
updated classification system for FTLD-TDP pathology.



Int. J. Mol. Sci. 2019, 20, 4

16 of 24

Table 3. Clinical and demographic characteristics of all individuals under study. Relevant characteristics are described for the different patients and controls enrolled

in the present study. Age, gender, age of diagnosis as well as presence of TDP-43 inclusions, motor neuron involvement, cognitive impairment and family background

data for all the individuals under study were registered. Riluzole treatment and limbic or bulbar onset of the disease are also reported for ALS patients.

Pathological . . . Motorneuron  Spinal Bulbar Cognitive Famil Riluzole

Diagnfsis Diagnostic Age Exitus Age Sex TDpa3  FID ALS Involvement Form Form Impiirment Backgroznd Treatment
Control - 54 male — - — — — — — — —
Control - 26 male — - — — — — — — -
Control - 91 female — - - — — — — — —
Control - 103 male — - — — — — — — -
Control - 72 male — - - — — — — — -
Control - 91 male - - - — — - - — —
Control - 66 male — - — — — — — — -
Control - 88 female — - — — — — — — -
ALS 56 59 male + - + + + — — — +
ALS 71 73 female + - + + + - - — +
ALS 54 61 female + - + + + — — — +
ALS 66 69 female + - + + - + — — +
ALS 67 69 male + - + + — + — — +
ALS 47 49 male + - + + + — — — +
ALS 71 79 male + - + + + - - — +
ALS 61 63 male + - + + + - — — +
ALS 25 40 female + - + + + - — — +
FTLD-U 81 88 female + + — — — — + — —
FTLD-U 68 77 male + + — — — — + — -
FTLD-U 76 83 female + + — — — — + — —
FTLD-U 58 73 male + + — — — - + — —
FTLD-U unknown 60 female + + - — — — + — -
FTLD-U 79 87 male + + — — — — + — -
FTLD-U 74 84 female + + — — — — + — —
FTLD-U 77 85 male + + — — — — + — -
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Figure 7. Spinal cord: Skein-like deposits of pTDP 43 in neurons of anterior horn from ALS patients
and negative staining in neurons of anterior horn from FTLD patients (40x). Hippocampus: with
negative staining in fascia dentata of hippocampus from ALS patients and intracytoplasmic inclusions
of pTDP43 in hippocampus from FTLD patients (20x). Cingulate cortex: Negative staining in ALS
patients and intracytoplasmic inclusions and long neurites of pTDP43 in FTLD patients (semantic
dementia case) (20 ).

4.3. Sample Preparation for Proteomic Analysis

Anterior horns of the spinal cord samples were processed for protein extraction. Frozen
Neurological post-mortem tissue samples were collected and homogenized in lysis buffer containing 7
M urea, 2 M thiourea and 50 mM DTT by mechanical disruption assisted by a Potter (Sartorius, Potter S,
Goettingen, Germany). The resulting homogenates were ultracentrifuged at 100,000 x g for 1 h at 15 °C.
Prior to proteomic analysis, protein extracts were precipitated with methanol/chloroform, and pellets
dissolved in 6 M Urea, Tris 100 mM pH 7.8. Protein quantitation was performed with the Bradford
assay kit (Bio-Rad, Hercules, CA, USA) and 100 pg of each protein extract were subjected to enzymatic
digestion using trypsin (Promega; ratio 1:50, w/w) at 37 °C for 16 h. Purification and concentration of
peptides was performed using C18 Zip Tip Solid Phase Extraction (Millipore, Burlington, MA, USA).

4.4. Mass Spectrometry

Peptides mixtures were separated by reverse phase chromatography using an EksigentnanoLC
ultra 2D pump fitted with a 75 um ID column (Eksigent 0.075 x 250 mm). Samples were first loaded
for desalting and concentration into a 0.5 cm length 100 um ID precolumn packed with the same
chemistry as the separating column. Mobile phases were 100% water 0.1% formic acid (FA) (buffer
A) and 100% Acetonitrile 0.1% FA (buffer B). Column gradient was developed in a 240 min two step
gradient from 5% B to 25% B in 210 min and 25% B to 40% B in 30 min. Column was equilibrated in
95% B for 9 min and 5% B for 14 min. During all process, pre-column was in line with column and flow
maintained all along the gradient at 300 nL/min. Eluting peptides from the column were analyzed
using an Sciex 5600 Triple-TOF system. Information data acquisition was acquired upon a survey scan
performed in a mass range from 350 m/z up to 1250 m/z in a scan time of 250 ms. Top 35 peaks were
selected for fragmentation. Minimum accumulation time for MS/MS was set to 100 ms giving a total
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cycle time of 3.8 s. Product ions were scanned in a mass range from 230 m/z up to 1500 m/z and
excluded for further fragmentation during 15 s.

4.5. Data Analysis

Mass spectrometry raw data acquisition was performed using Analyst 1.7.1 (Sciex) and spectra
files were searched employing Protein Pilot Software (v.5.0-Sciex), using Paragon™ algorithm (v.4.0.0.0)
for database search, Progroup™ for data grouping, and searched against the concatenate target-decoy
UniProt proteome reference Human database (Proteome ID: UP000005640, 70902 proteins, December
2015). False discovery rate was performed using a non-lineal fitting method and displayed results were
those reporting a 1% Global false discovery rate or better at three different levels: spectral matching,
peptide identification and protein inference

The peptide quantification was performed using Progenesis LC—MS software (ver. 2.0.5556.29015,
Nonlinear Dynamics). Using the accurate mass measurements from full survey scans in the TOF
detector and the observed retention times, runs were aligned to compensate for between-run variations
in our nanoLC separation system. To this end, all runs were aligned to a reference, automatically chosen
by the software, and a master list of features considering m/z values and retention times was generated.
The quality of these alignments was manually supervised with the help of quality scores provided by
the software. The peptide identification files were exported from Protein Pilot software and imported
into Progenesis LC—MS software where they were matched to the respective features. Output data
files were managed using R scripts for subsequent statistical analyses and representation. Proteins
identified by site (identification based only on a modification), reverse proteins (identified by decoy
database) and potential contaminants were filtered out. Proteins quantified with at least two unique
peptides, a t-test p-value lower than 0.05, and an absolute fold change of <0.77 (down-regulation) or
>1.3 (up-regulation) in linear scale were considered to be significantly differentially expressed.

4.6. Bioinformatics

All the resulting significant differences found on the proteomic study were further analyzed using
QIAGEN's Ingenuity® Pathway Analysis (IPA) (QIAGEN Redwood City, www.qiagen.com/ingenuity)
software, to identify and study differentially activated /deactivated pathways. This software comprises
curated information from databases of experimental and predictive origin, enabling discovery of
highly represented functions, pathways, and interaction networks. The IPA comparison analysis
considers the signaling pathway rank according to the calculated p-value and reports it hierarchically.
The software generates significance values (p-values) between each biological or molecular event and
the imported molecules based on the Fisher’s exact test (p < 0.05).

4.7. Western-Blotting

Equal amounts of protein (10 ug) were resolved in 4-15% or 10-20% Criterion™ TGX Stain-Free™
Protein Gels (Bio-Rad, Hercules, CA, USA) (depending on the molecular weight of the target).
Electrophoresis separated proteins were transferred into nitrocellulose membranes using Trans-Blot
Turbo (Bio-Rad, Hercules, CA, USA) for 7 min at 2.5 A constant, up to 25 V. Equal loading of the
gels was assessed by stain free digitalization for the experiments to validate changes detected in the
proteomic study. Membranes were probed with primary antibodies at 1:1000 or 1:100 dilution in 5%
non-fat milk or bovine serum albumin (BSA) (Supplementary Table S3). After incubation with the
appropriate horseradish peroxidase-conjugated secondary antibody, antibody binding was detected by
a Chemidoc™ MP Imaging System (Bio-Rad, Hercules, CA, USA) after incubation with an enhanced
chemiluminescence substrate (Perkin Elmer, Waltham, MA, USA). All Band intensities were measured
with Image Lab Software Version 5.2 (Bio-Rad, Hercules, CA, USA). Optical density values were
expressed as arbitrary units and were normalized to total stain in each lane.
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Abbreviations

ALS Amyotrophic lateral sclerosis

FTD Frontotemporal dementia

SOD1 Super oxide dismutase 1

LC Liquid chromatography

MS/MS Tandem mass spectrometry

FTLD-U Frontotemporal Lobar Degeneration

CNS central nervous system

NMC Non motor cortex

LGALS3 Galectin-3

TR Prealbumin

S100A11 Protein 5100-A11

S100A6 Protein S100-A6

SELENBP1  Methanethiol oxidase

PIN-1 Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1
CACYBP Calcyclin-binding protein

ROCK 2 Rho-associated protein kinase 2

SC Spinal cord

IPA Ingenuity Pathway Analysis

FAK/ Akt Focal adhesion kinase 1/alpha serine/threonine-protein kinase
MAPK mitogen-activated protein kinase

AKT alpha serine/threonine-protein kinase

ERK Mitogen-activated protein kinase 1

MAP2K Dual specificity mitogen-activated protein kinase 1
MEK AKT, Dual specificity mitogen-activated protein kinase 2
P phosphorylated

PHB Prohibitin

AD Alzheimer disease

PD Parkinson’s disease

NF neurofilament

VEGF Vascular endothelial growth factor

FA Formic acid

BSA Bovine serum albumin
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