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Abstract: 
In this paper, an unsupervised artificial neural network was implemented to identify the patters of specific signatures. The network 
was based on the differential expression of miRNAs (under or over expression) found in healthy or cancerous gastric tissues. 
Among the tissues analyzes, the neural network evaluated 514 miRNAs of gastric tissue that exhibited significant differential 
expression. The result suggested a specific expression signature nine miRNAs (hsa-mir-21, hsa-mir-29a, hsa-mir-29c, hsa-mir-148a, 
hsa-mir-141, hsa-let-7b, hsa-mir-31, hsa-mir-451, and hsa-mir-192), all with significant values (p-value < 0.01 and fold change > 5) that 
clustered the samples into two groups: healthy tissue and gastric cancer tissue. The results obtained “in silico” must be validated in 
a molecular biology laboratory; if confirmed, this method may be used in the future as a risk marker for gastric cancer 
development. 
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Background: 
Gastric cancer (GC) is a complex and heterogeneous disease that 
results from multiple epigenetic and genetic steps. This type of 
cancer involves a gain of function of oncogenes and a loss of 
function of tumor suppressor genes [1]. In some genetic 
disorders, several alterations are selected to provide 
proliferative advantages to the carcinogenic cells. 
 
Gastric cancer occurs when malignant cells are found in the 
stomach tissue, although they can spread to adjacent tissue. 
Each year, approximately one million people worldwide die 
due to this disease, and the survival rate five years after 
diagnosis is 9–10%. It is believed that preventive measures 
(identification of risk markers) along with early diagnosis can be 
crucial to reduce the death rate of this neoplasia. 

The microRNAs (miRNAs) are small non-coding RNAs with a 
length ranging from 17 to 25 nucleotides. They were conserved 
throughout evolution and are capable of regulating gene 
expression at the post-transcriptional level by either degrading 
or repressing the translation of messenger RNA (mRNA) 
markers [2]. miRNAs have been implicated in most major 
cellular functions, such as proliferation, differentiation, 
apoptosis, stress response, and transcriptional regulation [3]. 

 
The recognition of miRNAs that are differentially expressed 
between tumor tissues and healthy tissues may help to identify 
miRNAs that are involved in human cancers and to further 
establish the pathogenic role of miRNAs in cancers [3]. miRNAs 
modify gene expression by epigenetic mechanisms and affect 
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the mRNAs responsible for maintaining balance, such as those 
corresponding to oncogenes and tumor suppressor genes [4]. 
 
Since the first studies on the involvement of miRNAs in 
carcinomas, changes in their expression have been described in 
several types of tumors, including gastric cancer. Furthermore, 
the differential expression of these molecules suggests that they 
can be used to observe genetic profiles of gastric cancer [5]. 
Therefore, the anomalous miRNA expression in tumors is 
important in the mechanism of carcinogenesis. Consequently, 
the tumor development, the type of tissues affected, and their 
staging directly influence the risk markers, diagnosis, and 
therapeutics.   
 
An artificial neural network (ANN) is a computational 
technique inspired by the neuronal structure of intelligent 
organisms. ANNs are able to acquire knowledge through 
experience, usually by comparing the input data stimuli with 
the corresponding output pattern; that is, applying an iterative 
training over the available data until the patterns are learned. 
The self-organizing maps (SOM) is a specific class of ANN, that 
is able to identify the existing similarity patterns in the data 
without the need of an output variable to be used as reference 
for comparison. In the SOM, the neurons are connected in a grid 
topology (map), in which, during the training, clusters are 
formed by grouping samples with common characteristics. 
 
In this paper, an ANN was created by unsupervised learning 
with self-organizing maps algorithm (SOM) to identify the 
expression profile of miRNAs, given the type of differential 
expression (under or over expression) observed in healthy 
subjects regarding GC. 
 

 
Figure 1: Results clustering of miRNAs. Iindicated a clustering 
(grouping) of samples 1, 2, 3, 5, 8, and 10, representing the 
healthy group, and samples 4, 6, 7, and 9, representing GC. 
 
Methodology: 
The methodology was divided in three parts: pre-processing of 
the data, processing of the data and the analysis of the 
generated clusters. 
 

In the pre-processing, the archives were obtained from the next 
generation sequencing (NGS) SOLiD platform (Life 
Technologies, CA, US) as described by Ribeiro-dos-Santos [6]. A 
total of ten tissue samples, or barcodes, were sequenced: 
Healthy Tissue Cardia [6], Healthy Tissue Antrum [7], and eight 
GC samples (Tumor Tissue and Adjacent Tissue) extracted from 
four patients at the Hospital Universitário João de Barros 
Barreto, Belém, Pará - Brazil. The classification of each sample 
follows the Tumor-Node-Metastasis (TNM) pattern for GC, as 
shown in Table 1 (see supplementary material). After 
sequencing, the generated archives were processed on quality 
filter software so that the low quality reads (reads that were 
randomly sequenced) could be removed from the data. A 
second filter was then applied to remove the last 10 nucleotides 
of the read sequence, which had 35 nucleotides. Finally, all 514 
miRNAs had a length of 25 nucleotides (mature miRNA).  
 
In data processing, the relative quantification of miRNA 
profiling was performed, and the ANN was developed. The 
data from pre-processing were normalized to a value of 3,000 
reads. After normalizing the data, the miRNAs that had an 
initial expression level greater than 10 miRNA per tissue were 
selected. During the differential expression analysis, only the 
tissues that exhibited significant differences (p-value < 0.01 and 
fold change > 5) were considered. From the total of 514 
miRNAs, only 76 miRNAs were of interest for the ANN 
processing. Table 2 (see supplementary material) shows the 76 
miRNAs used in the ANN. 
 
The network was arranged as follows: a 76 x 10 input matrix, 
representing the 76 miRNAs (from pre-processing) over 10 
samples, represented on a rectangular topology. The matrix’s 
values consist of the number of reads observed for each of the 
76 miRNAs found in each sample, as shown in Table 2. The 
initial weights were randomly determined so that no bias 
occurred at the time of allocation of the weights for each input. 
During the training process, the Euclidean distance function 
Equation 1 (see supplementary material for equation and 

explanation) was used to differentiate the cluster (neuron grid) 
for assigning each data sample. The weight update for 
iteratively improve the cluster distinction is given by Equation 2 
(see supplementary material for equation and explanation). 
 
The third and last part consists of the analysis of the generated 
clusters. These clusters formed at the end of running the 
network represent Healthy Gastric Tissue and Gastric Cancer. 
Several simulations were performed with the SOM type of 
ANN, and training took 2,000 iterations. In the following 
simulations, the number of iterations was changed to 10,000. 
 
Results: 
The result reduced the input data that had two dimensions 
(quantity of miRNA and input weights) to a single dimension 
corresponding to the type of tissue (Healthy Gastric Tissue or 
Gastric Cancer) with no loss of information. 
 
Of the ANNs generated, two of them (network 1 and 2) showed 
more significant results according to the study's goal, and the 
second network had the best result. The first network, Network 
1, grouped the samples in two clusters: Healthy Gastric Tissue 
and Gastric Cancer, where samples 1, 2, 3, 5, 7, 8, and 10 where 
clustered as Healthy and samples 4, 6, and 9 were clustered as 
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GC. By comparing the results with the samples organization as 
shown in (Table 1) was observed in sample 7 (extracted from a 
Diffused Tumor Tiseu at stage T4) was classified incorrectly by 
the network. 
 
The second network, identified as Network 2, was generated by 
increasing the filter on the miRNAs used as input. For this 
network, only the miRNAs that showed specificity or 
differential expression in the different types of tissues (Healthy 
Gastric Tissue and GC Tissue) were selected [6, 7]. The findings 
showed the molecular signature of nine miRNAs, as follows: 
hsa-miR-21, hsa-miR-29a, hsa-miR-29c, hsa-miR-148a, hsa-miR-141, 
hsa-let-7b, hsa-miR-31, hsa-miR-451, and hsa-miR-192. The 
findings from this network indicated a clustering (grouping) of 
samples 1, 2, 3, 5, 8, and 10, representing the healthy group, and 
samples 4, 6, 7, and 9, representing GC. Figure 1 corroborates 
the data listed in (Table 1). 
 
Discussion: 

The differential expression of the candidate miRNAs has been 
shown to be an excellent tool for understanding the role of 
miRNAs in cancer pathogenesis. Many papers report expression 
patterns of these molecules in both tumor tissues and healthy 
tissues in prostate, lung, ovarian, colon, brain, and liver cancers 
[8, 9, 10, 11, 12], which clearly indicates the aberrant expression 
of miRNAs in cancer. These results support the hypothesis that 
miRNAs play important roles in all cancers [5]. The present 
work demonstrated that with a SOM ANN, it was possible to 
reproduce the expression patterns (or signatures) in different 
types of tissue samples – Healthy and GC. Similar results were 
reported in several papers that used artificial neural networks to 
classify different types of cancer using different input data, 
namely pathology imaging, computed tomography (CT), 
magnetic resonance, gene selection, and gene expression, for 
segmenting sputum color images and analyzing miRNA 
expression [6, 7, 8, 13]. 

 
A recent study demonstrated that more than 50% of miRNA 
were located in cancer-associated genomic regions or in fragile 
sites [10], suggesting that miRNAs may play a more important 
role in the pathogenesis of a limited range of human cancers 
than previously thought [5]. 

 
The hsa-miR-29 family of microRNAs (miRNAs) was recently 
reported to be aberrantly expressed in multiple cancers. 
Increasing evidence shows that the abnormal expression of the 
miR-29 family is associated with tumorigenesis and cancer 
progression [13]. In the present study, hsa-miR-29c was found 
to be over-expressed in Healthy Tissues and under expressed in 
samples with GC, which corroborates the results obtained by [6 
and 7]. 
 
Another important miRNA described in the literature was hsa-
miR-21. This miRNA was over-expressed in most tumor types, 
and it acts as an oncogene by targeting many tumor suppressor 
genes related to proliferation, apoptosis, and invasion. 
Therefore, hsa-miR-21 was associated with a wide variety of 
cancers including those of breast, ovaries, cervix, colon, lung, 
liver, brain, prostate, pancreas, and thyroid [2, 9, 10, 14, 15]. The 
over expression of hsa-miR-21 has been reported in many 
malignancies, all of which contain constitutively activated 
STAT3, or even rely on STAT3 for cell survival or growth. 

Therefore, aberrantly expressed may result in many 
malignancies by blocking the expression of critical apoptosis-
related genes [15]. In vivo and in vitro studies suggest that hsa-
miR-21 may serve as a diagnostic and prognostic marker for 
human malignancies [15]. The findings described above 
strengthen the results obtained in the study that showed that 
hsa-miR-21 was over-expressed in the GC samples. 
 
Members of the microRNA-148 (hsa-miR-148) family, which 
include microRNA-148a (hsa-miR-148a) and microRNA-148b 
(hsa-miR-148b), were expressed differently in Tumor and 
Healthy Tissues and have been involved in the genesis and 
development of disease [6]. Studies have reported the down-
regulation of the expression of hsa-miR-148a in various types of 
cancer such as colorectal [5], pancreatic, and hepatocellular 
carcinoma as well as during cancer metastasis. hsa-miR-148a was 
identified as a tumor metastasis suppressor in GC [5]. hsa-miR-
148a was suppressed by more than 4-fold in GC Tissues 
compared with the corresponding Adjacent Tissues, and the 
down-regulation of hsa-miR-148a was significantly associated 
with the TNM stage and lymph node metastasis [5]. The over-
expression of hsa-miR-148a suppressed GC cell migration in 
vitro, suppressed lung metastasis formation in vivo, and 
reduced the mRNA and protein levels. Thus hsa-miR-148a 
functions as a tumor metastasis suppressor in gastric cancer, 
and the down-regulation contributes to gastric cancer lymph 
node metastasis and progression. It may have therapeutic 
potential to suppress gastric cancer metastasis [5], and also 
found to be under-expressed in the heathy samples of gastric 
tissue. The other miRNAs that participated in the molecular 
signature (hsa-mir-141, hsa-let-7b, hsa-mir-31, hsa-mir-451, and 
hsa-mir-192) in the present study were also associated with 
different types of cancer [16, 17]. 

 
Several papers reinforce the importance of applying computer 
intelligence techniques, such as ANNs, for medical diagnosis, 
breast cancer diagnosis, diagnosing cancer, classifying cancer 
cells classifying and analyzing brain cancer and predicting 
distant metastasis [6, 7, 8, 13]. In addition, ANNs were already 
used to analise miRNA data for signature analysis in colorectal 
cancer [15], breast cancer analysis, and gastric cancer [13]. There 
are also papers reporting the use of ANNs to identify miRNA 
expression patterns in different stages of GC [15]. The main 
innovation of this study consisted of the methodology used to 
develop a SOM ANN that processes the differential expression 
of miRNAs to classify (cluster) Tissues with or without GC. 
 
Conclusion: 
In the present study, a SOM neural network was created to 
identify a differential expression profile of nine specific 
miRNAs (molecular signature): hsa-mir-21, hsa-mir-29a, hsa-
mir-29c, hsa-mir-148a, hsa-mir-141, hsa-let-7b, hsa-mir-31, hsa-
mir-451 and hsa-mir-192. The ANN clustered the samples of 
different gastric tissues into two distinct groups: Healthy 
Gastric Tissue and Gastric Cancer Tissue. Therefore, this ANN 
can be used as an important tool for gastric cancer risk factor or 
risk marked analysis. 
 
Acknowledgement: 

This work was part of the Rede de Pesquisa em Genômica 

Populacional Humana (supported by CAPES/Biologia 
Computacional) and Rede Paraense de Genômica e Proteômica 



BIOINFORMATION open access 

 

ISSN 0973-2063 (online) 0973-8894 (print)   

Bioinformation 10(5): 246-250 (2014) 249  © 2014 Biomedical Informatics 

 

(supported by FAPESPA). Financial support; Conselho Nacional 
de Desenvolvimento Científico e Tecnológico – CNPq; 
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior 
– CAPES; Governo do Pará /SEDECT /FAPESPA, PROPESP 
/UFPA-FADESP. LARISSA LUZ GOMES supported by IESAM; 
FABIANO CORDEIRO MOREIRA supported by CESUPA; 
IGOR G. HAMOY is supported by Pós-Doc Junior (PDJ) 
fellowship from CNPq/Brazil (162605/2011- 0); SIDNEY 
SANTOS supported by CNPq/Produtividade; ÂNDREA 
RIBEIRO-DOS-SANTOS supported by CNPq/Produtividade. 
The funders had no role in study design, data collection and 
analysis, decision to publish, or preparation of the manuscript. 
 
References: 

[1] Wu WK et al. Oncogene 2010 29: 5761 [PMID: 20802530] 
[2] Lee YS & Dutta A, Annu Rev Pathol. 2009 4: 199 [PMID: 

18817506] 
[3] Iorio MV et al. Cancer Res. 2005 65: 7065 [PMID: 16103053] 

[4] George G P & Mittal RD, Indian Journal of Clinical 
Biochemistry 2010 25: 4 [PMID: 23105877] 

[5] Zhang B et al. Dev Biol. 2007 302: 1 [PMID: 16989803] 
[6] Ribeiro-dos-Santos Â et al. PLoS One 2010 5: e13205 [PMID: 

20949028] 
[7] Moreira FC et al. PLoS One 2014 [accept] 
[8] Gao Z et al. J Biol Chem. 2005 280: 38271 [PMID: 16172118] 
[9] Iorio MV et al. Cancer Res. 2007 67: 8699 [PMID: 17875710] 
[10] Lu J et al. Nature 2005 435: 834 [PMID: 15944708] 
[11] Schickel R et al. Oncogene 2008 27: 5959 [PMID: 18836476] 
[12] Murakami Y et al. Oncogene 2006 25: 2537 [PMID: 16331254] 
[13] Wang Q et al. Genome Med. 2013 5: 91 [PMID: 24112718] 
[14] Volinia S et al. Proc Natl Acad Sci. 2006 103: 2257 [PMID: 

16461460] 
[15] Chan JA et al. Cancer Res. 2005 65: 6029 [PMID: 16024602] 
[16] Ming G et al. World J Gastroenterol. 2013 19: 2019 [PMID: 

23599620] 
[17] Nishizawa T & Suzuki H, Int J Mol Sci. 2013 14: 9487 

[PMID: 23629677] 
 

Edited by P Kangueane 
Citation:  Gomes et al. Bioinformation 10(5): 246-250 (2014) 

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, 
for non-commercial purposes, provided the original author and source are credited 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



BIOINFORMATION open access 

 

ISSN 0973-2063 (online) 0973-8894 (print)   

Bioinformation 10(5): 246-250 (2014) 250  © 2014 Biomedical Informatics 

 

Supplementary material: 
 
Methodology: 
Equations:  

(1) 

𝑑𝑖 𝑡 =  (𝑥𝑗  𝑡 − 𝑤𝑖𝑗

𝑁

𝑗=1

(𝑡))2  

Where di(t) is the Euclidean distance, i is the neuron index, j is the input 
node index, N is the number of input signals (dimension of the input vector 
x), xj(t) is the input signal in node j at iteration t, and wij(t) is the weight 
between input node j and neuron i at iteration t. 

(2) ∆𝑤𝑖𝑗 = n t . hik t . (xj − wij ) Where ∆w is the adjusted weight value, and n(t) and hik are the learning 
and neighborhood values for neuron grid update. 

 
Table 1: Organization of the sequenced samples according to the type of tissue, staging, and presence of GC 

Sample (Barcode) Type of Tissue TNM* Type of Gastric Cancer 

1 Healthy Gastric Tissue - - 
2 Healthy Gastric Tissue - - 
3 Adjacent Tissue T1 Intestinal 
4 Gastric Cancer Tissue T1 Intestinal 
5 Adjacent Tissue T1 Intestinal 
6 Gastric Cancer Tissue T1 Intestinal 
7 Gastric Cancer Tissue T1 Difuse 
8 Adjacent Tissue T1 Difuse 
9 Gastric Cancer Tissue T4 Intestinal 
10 Adjacent Tissue T4 Intestinal 

* Tumor Node Metastasis 

 
Table 2: Group of 76 miRNAs used as input for the artificial neural network. 

miRNA 

hsa-mir-22 hsa-mir-150 hsa-mir-130a hsa-let-7i 
hsa-mir-26b hsa-mir-215 hsa-mir-182 hsa-let-7b 
hsa-mir-590 hsa-mir-1303 hsa-mir-29c hsa-mir-558 
hsa-mir-455 hsa-mir-16-1 hsa-mir-30d hsa-mir-15a 
hsa-mir-660 hsa-mir-223 hsa-mir-126 hsa-mir-143 
hsa-mir-2276 hsa-mir-17 hsa-mir-140 hsa-mir-34a 
hsa-mir-574 hsa-mir-28 hsa-mir-3159 hsa-mir-125a 
hsa-mir-19a hsa-mir-195 hsa-mir-31 hsa-mir-192 
hsa-mir-145 hsa-mir-107 hsa-mir-425 hsa-mir-148a 
hsa-mir-93 hsa-mir-378 hsa-mir-30b hsa-mir-100 
hsa-mir-3929 hsa-mir-1285-1 hsa-mir-141 hsa-mir-361 
hsa-mir-151 hsa-mir-135b hsa-mir-342 hsa-mir-15b 
hsa-mir-429 hsa-mir-200c hsa-mir-200b hsa-mir-619 
hsa-mir-10a hsa-mir-375 hsa-mir-29a hsa-mir-378c 
hsa-mir-222 hsa-mir-30e hsa-let-7g hsa-mir-210 
hsa-mir-21 hsa-mir-424 hsa-mir-221 hsa-mir-4284 
hsa-mir-23a hsa-mir-200ª hsa-mir-25 hsa-mir-3607 
hsa-mir-23b hsa-mir-484 hsa-mir-451 hsa-mir-199b 
hsa-mir-1273 hsa-mir-99ª hsa-mir-142 hsa-mir-191 

 
 
 
 
 
 
 
 
 
 


