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 Thyroid hormone (TH) is a potent regulator of multi-
ple metabolic pathways by interaction with TH nuclear re-
ceptors in various tissues ( 1–3 ). Lipoprotein metabolism is 
strongly infl uenced by TH, and dyslipidemia is common in 
thyroid disorders ( 4 ). Reduced plasma LDL-cholesterol is 
a hallmark of hyperthyroidism and is caused by increased 
transcription of LDL receptors (LDLRs) in the liver. In 
rodents, TH stimulates processes that contribute to elimi-
nation of cholesterol from the body, including the conver-
sion of cholesterol into bile acids ( 5 ) and biliary secretion 
of bile acids and cholesterol ( 6 ). TH also diminishes intes-
tinal absorption of dietary cholesterol ( 7 ) and stimulates 
cholesterol synthesis ( 5 ). The importance of these mecha-
nisms for lowering LDL-cholesterol in humans is some-
what unclear, as is the possible involvement of novel 
regulators of lipid metabolism such as proprotein conver-
tase subtilisin/kexin type 9 (PCSK9) ( 8 ) and fi broblast 
growth factor (FGF) 19 and 21 ( 9 ). The aim of this study 
was therefore to further characterize the effects of TH on 
cholesterol and lipoprotein metabolism in humans. For 
this purpose, two models of exposure to TH were used:  a ) 
patients with hyperthyroidism before and after clinical 
normalization, and  b ) healthy volunteers treated for 14 
days with a liver-selective TH analog, eprotirome ( 10, 11 ). 

 MATERIALS AND METHODS 

 Subjects and study design 
 The fi rst study (a) included 16 women and 4 men who had 

been referred to our outpatient unit due to hyperthyroidism. 
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 PCSK9 and FGF19/21 
 ELISA kits were used to determine serum levels of PCSK9 (CY-

8079; CycLex Co. Ltd., Nagano, Japan), FGF19, and FGF21 
(DF1900 and DF2100, respectively; R and D Systems Europe Ltd., 
Abingdon, United Kingdom). All analyses were carried out fol-
lowing the manufacturers’ instructions. 

 Bile acid synthesis 
 In patients, serum levels of 7 � -hydroxy-4-cholestene-3-one 

(C4), a marker of bile acid synthesis ( 14–17 ), were assayed in 
duplicate samples as described ( 14 ) and normalized for plasma 
total cholesterol levels ( 18 ). In healthy volunteers, serum levels 
of the marker 7 � -hydroxycholesterol ( 19 ) were assayed as de-
scribed and normalized for plasma cholesterol ( 20 ). 

 Cholesterol synthesis 
 Serum levels of the cholesterol synthesis marker lathosterol 

( 21–24 ) were assayed in the hyperthyroid patients as described 
( 21 ) and in eprotirome-treated subjects as described ( 25 ). Serum 
levels of lathosterol were normalized for plasma cholesterol. 

 Dietary cholesterol absorption 
 In patients, serum levels of campesterol and sitosterol were de-

termined using GC-MS in duplicate samples as described ( 7 ) and 
in eprotirome-treated subjects as described ( 26 ). Serum levels of 
plant sterols were normalized for plasma cholesterol. 

 Serum bile acids 
 Serum levels of chenodeoxycholic acid (CDCA), cholic acid 

(CA), deoxycholic acid (DCA), and their amino acid conjugates, 
were assayed using 250 µl of serum in duplicate samples. Acetoni-
tril was added to samples, which were then centrifuged at 13,000 
 g  for 15 min. The upper phase was collected and dried under ni-
trogen before being dissolved in methanol and analyzed by LC/
MS/MS using D 4 -bile acids as internal standards. Bile acids in 
samples from subjects treated with eprotirome were analyzed as 
described ( 27 ). 

 Statistics 
 Diagrams show individual data, and horizontal bars represent 

mean levels. Two-tailed Wilcoxon matched-pairs test was used to 
test signifi cance of differences. Correlations were tested by the 
Spearman rank correlation coeffi cient. Signifi cance threshold 
was set at  P  < 0.05. GraphPad Prism 5.0 Software was used. 

 Study approval 
 The studies were approved by the Ethics Committee at the Karo-

linska Institute, Stockholm, Sweden, and by the Capenhurst Inde-
pendent Research Ethics Committee, Capenhurst, United Kingdom, 
respectively. All participants gave their informed written consent. 

 RESULTS 

 TH levels and body composition in hyperthyroidism 
 In the hyperthyroid state (HY), the increased serum lev-

els of fT3 and fT4 showed a wide variation, averaging 21 ± 
11 pM and 52 ± 24 pM, respectively (  Fig. 1A  ).  The serum 
level of TSH was suppressed (<0.02 mU/l) in all patients 
and was increased following treatment, ranging from 0.04 
to 7.4 mU/l. In the euthyroid state (EU), fT3 and fT4 were 
normalized, with mean levels of 5.1 ± 1.6 pM and 18 ± 5.0 pM, 

They were between 18 and 73 years old (mean ± SD, 46 ± 14 
years) with serum levels of thyroid stimulating hormone (TSH) 
<0.2 mU/l and free triiodothyronine (fT3) >6.5 pM. Patients 
who were pregnant or had been diagnosed with malignancy 
were excluded. Diagnoses were based on serum levels of TSH 
and THs, presence of thyroid antibodies, and thyroid gland en-
largement. Seventeen patients were diagnosed as having Grave’s 
disease; 16 of these were treated with tiamazol (Thacapzol) and 
levothyroxine, and 1 received radioiodine treatment and levo-
thyroxine. One patient was diagnosed as having toxic uninodu-
lar goiter and was treated with radioiodine. Two patients were 
diagnosed as having thyroiditis with transient nodular thyro-
toxicosis; they became euthyroid without medical treatment. 
Blood samples were collected between 08:30 and 09:00 AM af-
ter overnight fast on two occasions: before start of treatment 
and when serum fT3 was normalized (3.0–6.5 pM). The interval 
between the samplings ranged between 4 and 25 weeks (mean ± 
SD, 14 ± 6 weeks). In the second study (b), samples were ob-
tained from 14 healthy volunteers (7 women and 7 men) be-
tween 25 and 55 years old (mean ± SD, 41 ± 11 years), and with 
BMI between 22 and 29 kg/m 2  (mean ± SD, 26 ± 3 kg/m 2 ). They 
had been included in a study evaluating a potential drug interac-
tion between eprotirome and warfarin using a double-blind 
crossover design (KBT011; Eudra CT 2011-003029-92). Eproti-
rome is a liver-selective TH receptor agonist that has been tested 
in human hypercholesterolemia ( 10–12 ). Despite promising re-
sults in early trials, the development program for eprotirome was 
discontinued in 2012 due to a toxicology study that revealed car-
tilage damage in dogs after long-term exposure. Samples taken 
after 14 days of treatment with 100 µg/day of eprotirome (Karo 
Bio AB, Sweden) were compared with samples obtained prior to 
treatment or after a washout period of 14 days after the last dose. 

 Body composition 
 Body weight and composition were measured using a bioelec-

trical impedance scale (TBF-305; Umedico AB, Sweden). 

 THs, lipids, and glucose 
 Serum levels of fT3, free thyroxine (fT4), TSH, insulin, and 

plasma levels of total cholesterol, triglycerides, and glucose were 
measured using a MODULAR ANALYTICS P170/P800 (Roche/
Hitachi). Serum levels of cholesterol and triglycerides within 
VLDL, LDL, and HDL fractions, and glycerol, were measured by 
fast protein LC ( 13 ). For all assays, kits from Roche Diagnostics 
GmbH (Mannheim, Germany) were used. In eprotirome-treated 
subjects, insulin levels were measured using ELISA kits (Merco-
dia AB, Uppsala, Sweden). Serum levels of sex hormone bind-
ing globulin (SHBG) were assayed using ELISA kits (SHBG, 
MX52011; IBL International GmbH, Hamburg, Germany) ac-
cording to the manufacturer’s instructions. Serum levels of FFAs 
were measured using kits from Kamiya Biomedical Co. (Seattle, 
WA) and a Tecan Infi nite M200. 

 Apos 
 Serum levels of apoAI (KAI-002), AII (KAI-003), B (KAI-004), 

CII (KAI-005), and CIII (KAI-006) were determined using immu-
noturbidimetric assays (Kamiya Biomedical Co.). Serum levels 
of apoAIV were measured using ELISA kits from Millipore 
(EZHAP0A4-73K; Billerica, MA). All analyses were carried out in 
duplicate following the manufacturers’ instructions. Serum 
lipoprotein(a) [Lp(a)] levels were determined in duplicate sam-
ples with an immunoturbidimetric assay using kits from DiaSys 
Diagnostic Systems GmbH [Lp(a) 21 FS; Holzheim, Germany] 
and a Response 910 analyzer. 
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 Circulating PCSK9 levels are reduced in hyperthyroidism 
 PCSK9 regulates hepatic LDLR numbers by disrupting 

their intracellular recycling, and high plasma PCSK9 levels 
are thus linked to high LDL-cholesterol and vice versa ( 8, 
28, 29 ). In hyperthyroidism, serum PCSK9 levels were 
22% reduced ( Fig. 1E ). Although there was no correlation 
between serum PCSK9 and TH levels, there were clear 
positive correlations between PCSK9 and plasma total cho-
lesterol and LDL-cholesterol in hyperthyroidism ( r s   = 0.48 
and  r s   = 0.46, respectively;  P  < 0.05). A similar correlation 
between PCSK9 and LDL-cholesterol levels was also pres-
ent in the EU ( r s   = 0.52;  P  < 0.05). 

 Hyperthyroidism does not infl uence lipoprotein 
triglycerides but increases peripheral lipolysis 

 Plasma total triglycerides were unaltered in hyperthy-
roidism, as was the triglyceride content of specifi c lipopro-
tein fractions. Serum levels of FFAs and glycerol were 19% 
and 35% higher, respectively (supplementary Table I). 
Irrespective of thyroid state, neither plasma triglycerides, 
FFAs, nor glycerol correlated with free TH levels. Serum 
levels of the intestinally derived apoAIV ( 30 ) were 19% 

respectively. The infl uence of TH on the liver was refl ected 
by a >2-fold increase in SHBG serum levels, which corre-
lated strongly with free TH levels ( Fig. 1B ). Body weight 
and BMI of patients were lower in the HY due to a lower 
fat mass, whereas lean body mass and body water were un-
altered (supplementary Table I). 

 Hyperthyroidism lowers lipoprotein cholesterol, apoB, 
and Lp(a) levels 

 Plasma total cholesterol was reduced by 28% in hyper-
thyroidism. The cholesterol content in the VLDL, LDL, 
and HDL fractions was 48%, 28%, and 15% lower, respec-
tively. Also, serum apoB and apoAI levels were lower, 27% 
and 14%, respectively ( Fig. 1C  and supplementary Table I). 
Plasma total cholesterol, VLDL-cholesterol, and LDL-
cholesterol levels correlated inversely with serum levels of 
fT3 ( Fig. 1D ) and fT4 in hyperthyroidism, while there was 
no correlation between HDL-cholesterol and free TH lev-
els. In addition, apoB, but not apoAI, correlated with fT3 
levels ( r s   =  � 0.59;  P  < 0.01). No correlations with free TH 
levels were seen in the EU. Serum Lp(a) levels were 26% 
lower in hyperthyroidism (supplementary Table I). 

  Fig.   1.  Hyperthyroidism reduces lipoprotein cholesterol, apoB, and PCSK9 levels. Serum levels of fT3 and 
fT4 (A) in 20 patients before start of treatment in the HY and after clinical normalization in the EU. Serum 
levels of SHBG refl ecting the impact of hyperthyroidism on the liver and correlation between SHBG and fT3 
levels in the HY (B). Cholesterol content of specifi c lipoprotein fractions in the HY (red line) and EU (black 
line); dotted lines represent SD. Serum levels of apoB and apoAI (C). Correlations between plasma total 
cholesterol, VLDL-cholesterol, and LDL-cholesterol and fT3 levels in the HY (D). Serum levels of circulating 
PCSK9 (E). Horizontal bars represent mean values.   
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that, unlike what is observed in rodents ( 5, 36 ), choles-
terol synthesis is not stimulated by TH in humans. 

 Hyperthyroidism decreases intestinal absorption of 
cholesterol 

 Animal data indicate that TH reduces intestinal absorp-
tion of dietary cholesterol ( 7 ), which should contribute to 
lower plasma cholesterol. Because plant sterols and cho-
lesterol share common pathways for uptake into and ex-
cretion from enterocytes, serum levels of plant sterols can 
be used to estimate absorption of dietary cholesterol ( 23 ). 
In hyperthyroidism, serum levels of plant sterols campes-
terol and sitosterol were lowered by 25% and 18%, respec-
tively, indicating that absorption of dietary cholesterol is 
reduced by TH also in humans ( Fig. 2D, E ). However, be-
cause the uptake of plant sterols from the intestine com-
petes with the uptake of cholesterol of dietary and biliary 
origin, their reduced levels may also refl ect an increased 
biliary secretion of cholesterol. 

 Hyperthyroidism infl uences serum bile acid composition 
and conjugation 

 Total level of bile acids in serum was unchanged in hy-
perthyroidism. The proportion of CA was unaltered, while 
the proportions of CDCA and DCA were 26% higher and 
42% lower, respectively (supplementary Table I). The rel-
ative amount of conjugated bile acids was 25% higher and 
correlated positively with fT3 levels ( r s   = 0.88;  P  < 0.001). 
The increased conjugation was the result of a greater 
amount of taurine conjugated bile acids (+73%); this 
change also correlated closely with fT3 ( r s   = 0.80;  P  < 
0.001). Accordingly, the ratio of glycine to taurine conju-
gated bile acids was 35% lower in hyperthyroidism; again 
this was strongly correlated with fT3 ( r s   =  � 0.70;  P  < 0.01). 

 Liver-selective stimulation of TH receptors by eprotirome 
reduces lipoprotein cholesterol, Lp(a), and PCSK9 levels 

 Serum SHBG levels were increased (+80%) by eproti-
rome treatment, indicating a marked stimulation of hepatic 
TH receptors (  Fig. 3A  ).  In similarity to hyperthyroidism, 
plasma total cholesterol was 21% lower in response to 
treatment, and VLDL-, LDL-, and HDL-cholesterol were 
reduced by 20%, 29%, and 10%, respectively ( Fig. 3B  and 
supplementary Table II). Eprotirome reduced apoB and 
apoAI levels by 21% and 13%, respectively ( Fig. 3C, D ). 
Also consistent with the fi ndings in hyperthyroidism, epro-
tirome treatment was associated with markedly reduced 
( � 25%) levels of Lp(a) (supplementary Table II) as well 
as PCSK9 ( � 17%) ( Fig. 3E ). 

 Eprotirome reduces lipoprotein triglycerides but does not 
increase peripheral lipolysis 

 In contrast to hyperthyroidism, eprotirome treatment 
lowered plasma total triglycerides. VLDL-, LDL-, and HDL-
triglyceride levels were reduced by 35%, 38%, and 46%, 
respectively. Also in contrast to hyperthyroidism, serum 
levels of FFAs, glycerol, and apoAII were unaltered in 
eprotirome-treated subjects (supplementary Table II). 
ApoAIV levels were also unaltered, in opposition to the 
decrease in hyperthyroidism and in agreement with the 

higher in hyperthyroidism. Serum levels of apoCII were 
unaltered, while those of apoCIII and apoAII were 15% 
and 9% lower, respectively (supplementary Table I). 

 Hyperthyroidism does not infl uence serum FGF21, 
insulin, or glucose levels 

 FGF21 is a metabolic regulator, with positive impact on 
glucose and lipid homeostasis when administered to ani-
mals ( 9 ). In mice, administration of TH increases FGF21 
serum levels ( 31 ). However, in humans, FGF21 serum lev-
els were unaltered in hyperthyroidism, as were insulin and 
glucose levels (supplementary Table I). 

 Hyperthyroidism increases bile acid synthesis and lowers 
circulating FGF19, while cholesterol synthesis is unaltered 

 In mice, TH promotes bile acid synthesis by stimulat-
ing the rate-limiting enzyme, cholesterol 7 � -hydroxylase 
(CYP7A1), via hepatic TH  � -receptors ( 5, 32 ). The data on 
bile acid turnover and excretion in humans are limited, 
and so far not conclusive ( 33–35 ). In the present study, 
serum levels of C4, a metabolite formed in the classical 
bile acid synthetic pathway that closely refl ects CYP7A1 ac-
tivity and bile acid synthesis ( 14–17 ), were 43% higher in 
hyperthyroidism, showing that bile acid synthesis is stimu-
lated by TH in humans (  Fig. 2A  ).  This increase in synthe-
sis appeared concomitantly with a 29% reduction of serum 
FGF19 ( Fig. 2B ). FGF19 is believed to be secreted from il-
eal enterocytes in response to farnesoid X receptor (FXR) 
activation ( 9 ) and has been hypothesized to inhibit bile 
acid synthesis in the liver by suppressing CYP7A1. In line 
with this concept, there was an inverse correlation be-
tween serum levels of FGF19 and C4 in the EU ( r s   =  � 0.46; 
 P  < 0.05). However, no such relationship was found in hy-
perthyroidism. Serum levels of lathosterol, a precursor of 
cholesterol that refl ects cholesterol synthesis ( 21–24 ), 
were unaltered in hyperthyroidism ( Fig. 2C ). This indicates 

  Fig.   2.  Hyperthyroidism stimulates bile acid synthesis and re-
duces FGF19 and intestinal absorption of dietary cholesterol. Se-
rum levels of C4 (A), FGF19 (B), lathosterol (C), and plant sterols 
sitosterol and campesterol (D, E) in 20 hyperthyroid patients be-
fore start of treatment in HY and after clinical normalization in EU. 
Horizontal bars represent mean values.   
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metabolism in humans were performed. By comparing the 
HY and EU in the same individual, the infl uence of inter-
individual genetic variation was reduced, and the wide 
range in TH levels in hyperthyroid patients provided a 
possibility to relate metabolic responses to hormone lev-
els. By comparing the responses to hyperthyroidism with 
those induced in healthy subjects by treatment with the 
liver-selective TH analog eprotirome, the importance of 
liver-specifi c effects of TH in humans was also explored. 

 First, we could confi rm that TH lowers plasma choles-
terol in all lipoprotein fractions, and that this depends 
mainly on TH actions in the liver. The degree of LDL-cho-
lesterol lowering was proportional to free TH levels, and 
related to the degree of PCSK9 reduction. From previous 
human studies on lipoprotein kinetics, it is clear that 
plasma LDL-cholesterol is lowered by TH mainly through 
stimulation of LDL clearance ( 39 ), presumably due to an 
increased number of hepatic LDLRs. The reductions in 
LDL-cholesterol and PCSK9 levels were of similar magni-
tude in both hyperthyroid and eprotirome-treated indi-
viduals, indicating that this is a liver-specifi c action of TH. 
As predicted from previous data ( 29, 40 ), the change in 
PCSK9 levels in response to TH is compatible with a sub-
stantial reduction of LDL-cholesterol. Thus, in addition to 
transcriptional stimulation of the LDLR gene, the reduced 
PCSK9 level should contribute substantially to increase the 
number of hepatic LDLRs in hyperthyroidism. The fi nd-
ing that lathosterol levels were unaltered may indicate that 
TH partly infl uences PCSK9 through non-sterol-regulatory 
element binding protein (SREBP) 2-mediated effects ( 41 ). 
Although the previously discussed results strongly suggest 
that the liver is a key organ for the changes in plasma cho-
lesterol induced by TH, the possibility of concomitant ex-
trahepatic effects cannot be entirely excluded. 

 Second, we could establish that TH markedly reduced 
levels of the atherogenic Lp(a), and that this was also de-
pendent on its hepatic action. How Lp(a) serum levels are 

concept that apoAIV is mainly produced by the intestine 
( 30, 37 ). In similarity with hyperthyroidism, serum levels 
of apoCII were unaltered, while those of apoCIII were re-
duced by 26%. Serum FGF21, insulin, and plasma glucose 
levels were also not altered by eprotirome treatment (sup-
plementary Table II). 

 Eprotirome does not substantially infl uence bile acid or 
cholesterol synthesis, nor FGF19 levels or cholesterol 
absorption 

 In eprotirome-treated subjects, bile acid synthesis was 
estimated from serum levels of the bile acid precursor 7 � -
hydroxycholesterol ( 24 ). When eprotirome was given at a 
dose of 100 µg/day, serum levels of 7 � -hydroxycholesterol 
were not signifi cantly changed, nor were those of lathos-
terol (  Fig. 4A, C  ).  This indicates that, in contrast to hyper-
thyroidism, eprotirome at the dose given did not markedly 
increase bile acid synthesis. Again, in contrast to hyper-
thyroidism, FGF19 levels were unaltered following epro-
tirome treatment ( Fig. 4B ). Total serum bile acids were 
19% higher after eprotirome treatment. While the relative 
amounts of CA and DCA were unaltered, that of CDCA 
was 17% higher, similar to what was seen in hyperthyroid-
ism (supplementary Table II). Serum levels of plant sterols 
campesterol and sitosterol were unaltered by eprotirome 
treatment ( Fig. 4D, E ) supporting the concept that treat-
ment with a liver-selective thyromimetic does not alter ab-
sorption of dietary cholesterol from the intestine. 

 DISCUSSION 

 TH is essential in regulating metabolic rate and lipid 
homeostasis ( 1–4, 38 ). In the present work, studies in how 
elevated TH levels infl uence cholesterol and lipoprotein 

  Fig.   3.  Stimulation of hepatic TH receptors by eprotirome treat-
ment lowers lipoprotein cholesterol, apoB, and PCSK9 levels. Se-
rum levels of SHBG (A) in 14 healthy subjects off (  �  E) and on 
( + E) treatment with the liver-selective thyromimetic eprotirome. 
Cholesterol content of specifi c lipoprotein fractions off treatment 
(black line) and on treatment (red line); dotted lines represent SD 
(B). Serum levels of apoB (C), apoAI (D), and circulating PCSK9 
(E). Horizontal bars represent mean values.   

  Fig.   4.  Bile acid synthesis, FGF19, cholesterol synthesis, and intes-
tinal absorption are unaltered by stimulation of hepatic TH recep-
tors by eprotirome treatment. Serum levels of 7 � -hydroxycholesterol 
(A), FGF19 (B), lathosterol (C), and plant sterols sitosterol and 
campesterol (D, E) in 14 healthy subjects off ( � E) and on (+E) 
treatment with the liver-selective thyromimetic eprotirome. Hori-
zontal bars represent mean values.   
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techniques used to assess bile acid turnover in vivo, the 
extent of human data has been rather limited, and so far 
inconclusive ( 33–35, 46 ). In rodents, TH inhibits the rate-
limiting enzyme in CA production, sterol 12 � -hydroxylase 
(CYP8B1), resulting in increased CDCA synthesis ( 47 ). 
The fact that such a change in the relative contribution of 
CDCA to the circulating bile acid pool was observed in hy-
perthyroid and in eprotirome-treated subjects indicates 
that TH also suppresses CYP8B1 in human liver. The 
increased conjugation of circulating bile acids with tau-
rine is also in agreement with previous work ( 48 ), and it 
will be of interest to analyze if any of the effects of TH can 
be related to the change in conjugation pattern. 

regulated in humans is unclear ( 42 ), but it is generally ac-
knowledged that hepatic synthesis is important. Inhibition 
of PCSK9 also lowers Lp(a) ( 43 ), indicating that the TH-
induced reduction of circulating PCSK9 may be involved 
in the lowering of Lp(a). 

 Third, bile acid synthesis, evaluated from measurements 
of the well-established marker C4 ( 14 ), was induced in hy-
perthyroidism. This occurred without increased choles-
terol synthesis, indicating that a net amount of cholesterol 
is drained from the body. In animal models, TH increases 
the expression of CYP7A1 ( 32, 44 ), and it has been sug-
gested as one of the major mechanisms for lowering plasma 
cholesterol ( 32, 45 ). Due to the complexity of many of the 

  Fig.   5.  Summary of the effects of hyperthyroidism and eprotirome on serum markers and metabolites in 
lipid metabolism. 7 � -OH-cholesterol, 7 � -hydroxycholesterol; BAs, bile acids; CE, cholesteryl ester; CETP, 
cholesteryl ester transfer protein; CM, chylomicron; CMR, chylomicron remnant; HMG-CoAR, HMG-CoA 
reductase; HSL, hormone sensitive lipase; SRBI, scavenger receptor class B type I.    
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and Lp(a). Bile acid synthesis is stimulated in hyperthy-
roidism, but this does not appear critical for lowering LDL-
cholesterol. Intestinal actions of TH for its pronounced 
effects on bile acid synthesis and cholesterol absorption seem 
more important than previously recognized. Selective acti-
vation of TH receptors in the liver lowers plasma triglycer-
ides, whereas a concomitant stimulation of peripheral 
lipolysis during hyperthyroidism counteracts this action.  

 The authors thank Anja Kerksiek, Ingela Arvidsson, Lena 
Persson, and Anita Lövgren Sandblom for expert technical 
assistance. 
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