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Abstract: Over the last two decades, there has been an increasing awareness of the role of eicosanoids
in the development and progression of several types of cancer, including breast, prostate, lung, and
colorectal cancers. Several processes involved in cancer development, such as cell growth, migration,
and angiogenesis, are regulated by the arachidonic acid derivative thromboxane A2 (TXA2). Higher
levels of circulating TXA2 are observed in patients with multiple cancers, and this is accompanied by
overexpression of TXA2 synthase (TBXAS1, TXA2S) and/or TXA2 receptors (TBXA2R, TP). Overex-
pression of TXA2S or TP in tumor cells is generally associated with poor prognosis, reduced survival,
and metastatic disease. However, the role of TXA2 signaling in the stroma during oncogenesis
has been underappreciated. TXA2 signaling regulates the tumor microenvironment by modulating
angiogenic potential, tumor ECM stiffness, and host immune response. Moreover, the by-products of
TXA2S are highly mutagenic and oncogenic, adding to the overall phenotype where TXA2 synthesis
promotes tumor formation at various levels. The stability of synthetic enzymes and receptors in this
pathway in most cancers (with few mutations reported) suggests that TXA2 signaling is a viable
target for adjunct therapy in various tumors to reduce immune evasion, primary tumor growth,
and metastasis.

Keywords: thromboxane A2 synthase; thromboxane A2 receptor; isoforms; cancer; stroma

1. Introduction

Eicosanoids are a group of oxygenated 20-carbon essential fatty acids, produced by
phospholipid metabolism, that regulate various physiological pathways via autocrine and
paracrine signaling [1,2]. Eicosanoids are primarily produced in response to stimulation
and exhibit high potencies at low concentrations through the activation of cell surface or
nuclear membrane receptors [1,2]. The primary source of pro-inflammatory eicosanoids is
conversion of the omega-6 fatty acid (arachidonic acid) by the cyclo-oxygenase (COX) path-
way. In contrast, most anti-inflammatory eicosanoids (including resolvins and protectins)
are derived from omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA) [2,3]. In the COX pathway arachidonic acid is converted to the intermediate
metabolite prostaglandin G2 (PGG2), which reduces to PGH2. PGH2 is the central substrate
for all prostaglandin synthesis with the formation of different molecular species through
the action of terminal syntheses [2]. These prostanoids then mediate autocrine or paracrine
responses by binding to their respective GPCRs [4]. Of the three COX isoforms COX-1 is
constitutively expressed, whilst COX-2 is absent, in normal tissue [5]. Conversely, COX-2 is
upregulated at sites of inflammation and by oncogenes, such as Ras and epidermal growth
factor (EGF), in many cancers [4,5]. COX-3, a splice variant of COX-1, is most concentrated
in the heart and cerebral cortex, and has a slower enzymatic activity than the other COX
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isoenzymes [5]. The first clues to the regulation of oncogenesis by eicosanoids came from
the tumor suppressive effects of COX inhibitors (recently reviewed here [6,7]). COX-2
inhibitors (Celebrex and sulindac sulfide) inhibit the growth of prostate cancer xenografts
and growth and metastasis of lung tumors in mouse models [8,9]. Moreover, long-term
use of aspirin is associated with a 50% reduction in risk of endometrial cancer [10,11]. In
preclinical models’ aspirin use markedly decreased the metastatic potential of colorectal
cancer cells (HT29) [12]. These data suggest that a downstream metabolite of the COX
pathway is vital for cancer progression.

2. Thromboxane A2 Biosynthesis

Thromboxane A2 (TXA2) was first identified in 1975 as being produced by platelets
upon activation [13]. After liberation from membrane phospholipids by PLA2, arachidonic
acid is metabolized by COX-1 and/or COX-2 enzymes to generate the prostaglandin
endoperoxide, PGH2. PGH2 is metabolized to TXA2 by the terminal enzyme TXA2 synthase
(TXA2S) (Figure 1(1)), an ER membrane protein that belongs to the P450 epoxygenase
family [14]. TXA2 is unstable in aqueous solutions (half-life of 30 s) and spontaneously
hydrolyses to the inactive TXB2 [13]. TXA2 acts primarily as a paracrine factor as activity
requires constant synthesis. Indeed, TXB2 the degraded inactive product of TXA2, is often
used as a marker when measuring TXA2 [13]. TXA2S was first found as a microsomal
enzyme in platelets (60 kDa) but is highly expressed in lung, kidney, stomach, duodenum,
colon and spleen [14]. TXA2 has biologically relevant roles in hemostasis (including platelet
aggregation), vascular tone (contraction of vascular smooth muscle cells (VSMC), cell
proliferation, and migration [15]. All these biological effects require TXA2 stimulation
through a G-protein coupled receptor (thromboxane receptor (TP)), which is ubiquitously
expressed on a variety of cell types [16].

However, additional potent bioactive by-products derived from TXA2 synthesis
(Figure 1(3)), malondialdehyde and 12-HHT are made in equimolar amounts along with
TXA2 [17]. The current model for how this occurs suggests interaction of the heme group
of TXA2S with the C-9 oxygen of PGH2. Homolytic scission of the endoperoxide bond,
immediate formation of the alkoxy radical and “β-scission” of the C11-C12 bond yields
an allylic radical which, alternatively, decomposes into HHT and malondialdehyde, or
undergoes Fe(IV)-oxidation and ionic rearrangement to TXA2 [18]. However, TXA2S me-
tabolizes other endoperoxide substrates (PGH1, 8-iso-PGH2, or 15-keto-PGH2) producing
MDA and the corresponding C17 metabolite (i.e., HHD, 8-cis-HHT and KHT) without
substrate preference [17]. Free radical fragmentation into HHT and MDA requires only the
Fe(II) or Fe(III) for catalysis. Thus, the heme ferric iron of thromboxane synthase (and other
cytochrome P-450 members) is sufficient [17]. Metabolism of these alternate substrates
does not result in TXA2 synthesis [17,18] but suggests catalysis of MDA and bioactive C17
lipid moieties by TXA2S is a more significant modulator of cell behavior than expected.
12-HHT exerts its biological effects through the BLT2 receptor [19], which potently affects
carcinogenesis (see below).
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Figure 1. Schematic for TXA2 biosynthesis and signaling. Eicosanoid Synthesis (1) begins with the
release of arachidonic acid from membrane phospholipids by phospholipase A2. Arachidonic acid is
either metabolized to PGH2 by the cyclo-oxygenase enzymes or is attacked by oxygen free radicals to
produce F-series isoprostanes (2). TXA2S then metabolizes PGH2 into either TXA2 (1) or 12-HHT and
MDA (3). MDA forms DNA and Protein adducts to cause cellular damage and cell death (4) while
BLT2 activation by 12-HHT enhances tumor formation (5). TP isoforms are derived from alternative
splicing with TPα expression driven by promoter 1 and 2 (P1, P2) (6). TXA2 and F-series isoprostanes
activate TP (7) to produce propagate carcinogenesis.

Yet, another TP ligand is produced from arachidonic acid, F-series isoprostanes
(Figure 1(2)). Isoprostanes are produced from unsaturated fatty acids in a predominantly
COX-independent manner [20]. In contrast to COX generated prostaglandins derived from
free arachidonic acid, isoprostanes are initially formed from arachidonic acid esterified in
membrane phospholipids. F2-isoprostanes are released from the phospholipid backbone as
free fatty acids by phospholipases. Isoprostanes are formed when an oxygen free radical
mediates a nucleophilic attack on a carbon flanked by double bonds [20]. The free radical
intermediate reacts with oxygen to form a peroxyl radical (LOO-), which reacts on either
face of the sidechain with a further oxygen molecule to produce a racemic hydroperoxy
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bicyclic endoperoxy radical [20]. Finally, the radical chain reaction is terminated by abstrac-
tion of hydrogen from an appropriate donor molecule (such as another polyunsaturated
fatty acid). The product is an isoprostane-prostaglandin, an analogue of PGG2, which is re-
duced to the stable F2-isoprostanes. The central structural distinction between isoprostanes
and cyclooxygenase-derived prostaglandins is that the former contain sidechains that are
predominantly oriented cis to the prostane ring, while the latter possess exclusively trans
sidechains [20]. The formation of F-series isoprostanes are independent of enzymatic prop-
erties and reliant only on s source of free radicals and phospholipids. As such, isoprostanes
are frequently found in hypoxic environments and conditions promoting mitochondrial
dysfunction. As such, isoprostane and TXA2 generation can occur completely indepen-
dently in the same tissues without interference. F2-isoprostanes are thought to exert their
biological activity, at least in part, through TP isoforms, as TP antagonists block the platelet
activation and vasoconstriction of vascular smooth muscle cells/carotid arteries in response
to 8-iso-PGF2α [21].

3. Thromboxane A2 Receptor Isoforms and Signaling

The activation of cells by TXA2 is mediated by T-prostanoid receptors (TP; Figure 1(7)),
which are G-protein coupled receptors on the cytoplasmic membranes of all responsive
cells. In humans there are two TP isoforms, TPα [22] and TPβ [23,24], coded by alter-
native splicing of a single gene on chromosome 19.13.3 [25] (Figure 1(6)), Table 1). The
two isoforms are identical in their N-terminal 328 amino acids. At this point, the two
isoforms diverge to produce proteins with cytoplasmic tails of 15 and 79 amino acids for
TPα and TPβ, respectively [23,24] (Figure 1(7)). The TP gene (TBXA2R) contains 4 exons
and 3 introns with alternative splicing in exon 3 producing TPα and TPβ [26,27]
(Figure 1(6)). A significant determinant of splicing is the promoter region used to generate
the mRNA transcript. Three promoters regulate TP gene transcription, with transcripts
derived from promoter 1 and 2 remaining unspliced to produce TPα [26,27]. Conversely,
promoter 3 derived transcripts are spliced to produce TPβ [26,27]. The transcripts are
otherwise identical suggesting that the 5’untranslated region from promoter 3 may contain
nucleolar targeting sequences or sequences that attract components of the splicosome
apparatus that remove the retained intron and promote TPβ expression (Figure 1(6)). TP
in most reported species thus far is an orthologue of TPα. While TP expression has been
identified in a wide range of cell types and organs, the distribution of the two TP isoforms
has not been as well documented, most likely due to complacency over the similar function
of the two receptor isoforms.

TPα is the dominant TP isoform [16] in all tissues examined thus far, including vas-
cular and uterine smooth muscle, endothelial cells, trophoblasts, platelets, brain, thymus,
intestine and liver [16] and cancer cells from many organs (see below). Conversely, TPβ
expression is documented in a few of these tissues to a significant degree. Our studies have
shown robust TPβ expression in endothelial cells, which profoundly affects angiogenic
potential (see below). Variations in TPβ expression between fetal and adult tissues may
exist with TPβ expression lost after birth [16]. In addition, the reported expression of TPβ
in platelets by mRNA was not replicated with IHC/immunoblotting [28], suggesting that
low levels of mRNA transcripts may not be adequate for robust protein expression in all
tissues.

The divergent cytoplasmic tails of the TP isoforms are not significant discriminators of
ligand binding, as TXA2 has similar affinity for both isoforms. However, maximal biological
activity of F2-series isoprostanes requires TPβ expression, suggesting some selectivity [21]
(Figure 1(7)). The relative ligand preference of TP is not determined; however, TP can
be re-challenged by U46619 after isoprostane stimulation, but the reverse is not true. [29]
In addition, TPα (PTB3 [30],16f [31]) and TPβ (BM573 [29], 9h, 9af, and 9ag [31,32])-
specific antagonists have been rationally designed, indicating that the intramolecular
interactions of the TPβ cytoplasmic tail produce structural rearrangements of the ligand
binding site that allow for ligand discrimination. The C-terminal cytoplasmic domains also
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do little to discriminate G-protein coupling of the two isoforms (Figure 1(7), Table 1), with
both isoforms coupled to Gαq, Gα11, Gα12, Gα13, Gα15, and Gα16 [15,33]. Vezza and
colleagues [34] found that only TPα signals through Gαh, which is associated with cellular
survival mechanisms and the activation of phospholipase C (PLC)-dependent inositol
phosphate (IP) formation. Similarly, TPα activates adenylate cyclase to synthesize cyclic
adenosine monophosphate (cAMP), while TPβ inhibits adenylate cyclase activity [35]. This
suggests that TPα couples with Gαs and TPβwith Gαi [24,35]. Both isoforms depend on Src-
kinase to phosphorylate ERK, while the transactivation of EGFR through TP activates the
PI3K-Akt phospholipase Cγ1 (PLC-γ1) pathways, which increase survival and migratory
potential, respectively [36].

Table 1. Divergent biological properties of the two human TP isoforms.

Receptor Property TPα TPβ

Length of cytoplasmic tail 15 amino acids [22] 79 amino acids [37]
Specific 2nd messengers Gαh [34], Gαs, stimulates cAMP [35]. Gαi, Inhibits cAMP [35]

Response to Stimulation

Acute Phosphorylated, not internalized [38,39] Internalized in a GRK, and arrestin
dependent manner [39]

Chronic Decreased expression [38] Enhanced expression [38]

Desensitization

Phosphorylation Sites Ser329 [40,41] and Ser331 [42,43] Thr399 [44]

Kinases or agonists involved
Ser329: PGD2 [40], PGI2 [41,42], PGE2
[43], and cAMP/PKA [45]
Ser331: NO/PKG [42,43]

PKC-α [38] and G-protein receptor
kinases 2, 5 and 6 [39]

Resensitization to ligand Dephosphorylation phosphatases PP1
and PP2A [46]

Recycling of the receptor to the surface
after lysosomal-mediated ligand
degradation [39]

Conversely, the divergent residues of the two TP isoforms produce very different post-
translational modifications, protein binding and inactivation mechanisms after ligand bind-
ing. TPβ, but not TPα, undergoes agonist- and tonic-induced cellular internalization that
recycles the receptor to the cell surface and re-sensitizes the response to the ligand [39,47].
Agonist-induced desensitization of TPα is achieved through phosphorylation of residues
Ser329 [40,41,45] and Ser331 [42,43] whilst re-sensitization involves de-phosphorylation of
these same residues by PP2A [46]. Conversely, agonist-induced desensitization of TPβ
involves phosphorylation by GRK 2, 5 and 6 and subsequent internalization through
interaction with dynamin and arrestin [39], Rab11 [48] and Nm23-H2 [49]. In addition,
palmitoylation of TPβ at Cys347 is required for Gq coupling and activation of PLCβ whilst
palmitoylation of TPβ at Cys373/Cys377 is needed for TPβ internalisation [47]

4. TXA2 Signaling in Cancer

The prominence of TXA2 signaling in processes such as atherosclerosis, infarction,
hypertension, stroke and renal dysfunction has resulted in effective antagonists central to
the therapy of these diseases. Recently, multiple studies have indicated functional roles
for both TBXAS1 and TP in the essential processes of neoplastic transformation including
enhanced tumor cell motility and invasion, proliferation, and therapeutic resistance that
are critical steps in cancer progression [50]. These effects are observed in multiple cancers
indicating the profound effects on tumorigenesis and the widespread clinical applicability
of targeting TXA2 signaling as adjunct therapy for cancer.
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4.1. TP Isoforms in Cancer

Thromboxane receptors are upregulated in multiple tumors, including multiple
myeloma, skin, prostate, breast, lung, colon, bladder, and brain cancer [50]. Consistent with
this, The Cancer Cell Line Encyclopedia shows significant upregulation in these cancers
(Figure 2A). Moreover, the data suggest TBXA2R expression is elevated to a greater extent
in some cancers (such as CML, meningioma, AML, mesothelioma and renal cancer) where
the significance is yet to be determined. Transcription control is the primary mechanism of
regulation over TBXA2R expression in most cancers. Sp1 activates the transcription of TPα
at promoter 1, whilst Egr1 impedes its transcription by competing with Sp1 at overlapping
Sp1/Egr1 sites in HEL cells [51]. NF-E2, GATA-1 and Ets-1 were also implicated in the
transcriptional regulation of TPα in megakaryocyte differentiation and human platelets [51].
A recent study found that a BRCA1-c-Myc complex transcriptionally represses TP gene ex-
pression and that a BRCA1 knockdown in an ER+PR+ cell line, T-47D, upregulates TBXA2R
expression [52]. Other tumor suppressor genes, Wilms’ tumor (WT1) and hypermethy-
lated in cancer (HIC1) also repress TPα expression by binding to promoter 1 in breast and
prostate cancer cell lines [53] to regulate basal expression of TPα.

Using the non-redundant pan-cancer studies database (TCGA, 32 cancer types, 59,
132 patients), we determined that TP mRNA expression is inversely correlated with
TBXA2R promoter methylation across 23 different cancers. Unfortunately, showing de-
creases in a global analysis (Figure 1B) is difficult, as the ubiquitous expression of TPα
results in low promoter methylation in most tissues. However, these data agree with
previous findings that promoter 1 is hypomethylated in benign and precursor lesions, but
undergoes increasing methylation with prostate cancer staging [54]. Thus, TP isoforms
may be transcriptionally regulated; however, epigenetic modifications during carcino-
genesis (such as promoter methylation) play an equally important role in determining
expression [54,55].

The main cellular activities induced by TP over-expression to promote cancer are
increased proliferation, migration, and invasion. Moreover, antagonizing TP re-sensitizes
cancer cells to more conventional chemotherapy [56] and promotes responsiveness to
drugs where resistance has developed. TPα and TPβ both activate extracellular signal
regulated protein kinase (ERK) and phosphatidylinositol 3’kinase (PI3’K) signaling. TP
activation in human astrocytoma [57], bladder [56] and prostate cancer [58,59] cells induces
morphological change, enhanced motility, invasion and metastasis via the Gα12/RhoA
pathway. TP activation induces DNA synthesis by activating ERK via Gαq/11 signal-
ing [57]. In bladder and prostate cancers, TP-mediated ERK activation phosphorylates
the tumor suppressor protein forkhead box O3 (FOXO3), which is deacetylated by SIRT1,
resulting in Skp2-mediated degradation. The loss of FOXO3 was linked to the enhanced
migration and invasion in both cancer cells [60–62]. Coupling to Gαh/15/16 is associated
with cellular survival mechanisms, and activation of phospholipase C (PLC)-dependent
inositol phosphate (IP) formation and PI3K activity, both of which influence tumor cell pro-
liferation/mitogenesis [15]. Coupling of TPα to Gαs in 4-methylnitrosamino-1–3-pyridyl-
1-butanone induced lung cancer stimulates PKA/CREB activation [63], resulting in ex-
pression/activation of the orphan nuclear receptor Nurr1, which stimulated proliferation
of human lung cancer cells but could also be implicated in differentiation and apopto-
sis [63,64]. Moreover, the interaction of the receptors with non-traditional downstream
regulators has significant consequences for cancer progression. The interaction of both
isoforms with the protein kinase C-related kinase (PRK)-1 and PRK-2 [65,66] was essential
for TP-induced prostate cancer cell migration, but also enabled TP activation to manipulate
histone H3 phosphorylation at Thr11 (H3Thr11), an epigenetic marker both necessary for
and previously exclusively associated with androgen-induced chromatin remodeling and
transcriptional activation. The significance of TP-PRK interactions have not been described
outside of prostate cancer; however, TP-PRK1/2 signaling in other cancers could explain
the aggressive phenotypes associated with high TP expression [50].
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Figure 2. TBXA2R Expression is Increased in The Majority of Tumors. (A) Expression of TBXA2R
mRNA in 36 different cancer cell types. Data are mean ± SD showing 95% CI. Numbers above
descriptors on the X-axis denote the number of individual cell lines from which the data were derived.
(B) TCGA data from 59,132 patients’ samples showing the correlation between TBXA2R mRNA
expression and methylation of the promoter (within 1 kb of transcriptional start site (TSS)). Red
dotted line denotes linear correlation (R2 = 0.442).

TP expression is correlated significantly with poorer outcomes in lung [67], breast [68,69],
bladder [56], colorectal [70] and prostate [71] cancers. TP expression is often higher in
advanced tumor stages (such as higher Gleason score in prostate cancer) and metastatic
disease and is associated with important clinical endpoints, such as reduced disease-free
survival [68,69]. Using the non-redundant pan-cancer studies database, we established
that patients with high TBXA2R expressing tumors have substantially poorer outcomes
concerning progress free (29.49 vs. 58.72 months; p = 2.218× 10−3) and disease free (55.04 vs.
140.90 months; p = 0.0442) survival (Figure 3B,C) but not overall survival (Figure 3A)
compared to patients with low expression. Significantly, 5-year progression free survival
for the TBXA2R high group was lower (38%) compared to the TBXA2R low group (49%)
and total lifespan was no more than 140 months (360 months for the TBXA2R low group)
(Figure 3B). Similarly, 5-year disease free survival for the TBXA2R high group was 48%



Molecules 2022, 27, 6234 8 of 25

(compared to 67% for the TBXA2R low group) with overall longevity reduced from 280 to
120 months (Figure 3C). Even overall survival (although not significantly different between
the two groups) was reduced (420 months down to 230 months) in the TBXA2R high
group (Figure 3A). These data indicates the profound impact of TP expression on cancer
progression and highlights the value TP antagonists might bring to cancer therapy.
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Figure 3. Elevated TBXA2R and TBXAS1 Expression Is Associated with Poor Prognosis. Data
from the TCGA pan-cancer database for TBXA2R (A–C) and TBXAS1 (D–F) was correlated with
overall (A,D), progression free (B,E) and disease free (C,F) survival in patient populations with
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The significance of individual TP isoforms in cancer has been poorly investigated. TPα
is expressed by most non-transformed epithelial cells and is almost exclusively the only TP
isoform expressed in most solid tumors (including lung, NSCLC and small cell, prostate
cancer) [50], while TPβ drives the progression of bladder cancer [56]. In bladder cancer,
increased expression of TPβ, but not TPα, was observed in epithelial and stromal cancer
tissue [56]. TPβ overexpression was correlated to increased proliferation and increased
metastatic potential through Gα12/13 signaling and induced malignant transformation in
xenografts of normal bladder epithelial cells in vivo [56]. Moreover, elevated TPβ expression
was associated with shorter disease-free survival time in patients [56].

Bladder cancer is rare, as roles for both TP isoforms have been identified and provides
evidence for the distinct roles for TPα and TPβ in cancer pathogenesis. TPβ is derived from
the activation of promoter 3, which, unlike promoter 1, is hypermethylated in benign and
precursor lesions and becomes increasingly hypomethylated with the increase in tumor
grade, leading to increased TPβ expression [54]. TPβ expression is negatively regulated
through promoter 3 by peroxisome proliferator-activated receptor (PPAR)γ activation with
15-deoxy-D12,14-prostaglandin J2 [72,73]. Furthermore, promoter 3 is activated through
activator protein-1 (AP-1) and OCT-1/-2 binding elements [26]. In addition, oxidative stress
promotes the translocation of TPβ from the endoplasmic reticulum to the Golgi complex
and ultimately into the plasma membrane [74,75]. Oxidative stress induces maturation and
stabilization of the TPβ protein, prolonging protein half-life. Given the elevated oxidative
stress observed in some tumors [76], protein stabilization likely plays a role in tumors where
TPβ expression is enhanced. Finally, a recent phenome-wide association study examined
the association of the rs200445019 polymorphism in TBXA2R (T399A substitution in TPβ
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that impairs ligand induced desensitization) with phenomic outcomes [77]. Surprisingly
this study significantly associated The TPβ (T339A) mutation with metastatic disease
at multiple tissue sites (including lymph nodes, respiratory organs, digestive systems,
brain/spine) derived from various solid tumor types, including breast, colon, lung, head
and neck, renal, gastric and ovarian cancers [77]. Based on this analysis Kaplan–Meier
analysis associated high TBXA2R with poor prognosis and reductions in median disease-
free survival in patients with breast, head and neck, lung, ovarian, esophageal, renal,
pancreatic and gastric cancers (all of which would have been predicted by Figure 2A) [77].
What is exciting about these data is that the complement of TP isoforms expressed in many
of these cancers have not been documented; however, based on the phenomic analysis,
it is likely that TPβ expression might be upregulated in at least breast, colon, lung, head
and neck, renal, gastric and ovarian cancers [77]. This result indicates isoform switching
could be a widely used molecular event in cancer pathogenesis and may represent a key
targetable pathway during tumorigenesis. The data seem to highlight that TPα and TPβ
may each play a role in tumor growth/development, depending on the cell and tissue
involved.

4.2. TBXAS1 in Cancer

Increased circulating TXB2 is found in the serum of patients with lung cancer and
peritumoral tissue surrounding laryngeal cancers, compared to healthy mucosa. Tissue
samples of non-small cell lung carcinoma had higher levels of TXB2, compared to non-
cancerous tissue, which positively correlated with the disease stage (i.e., more advanced
cancer samples had higher levels of TXB2). High levels of TXB2 in lung cancer tissue was
associated with a high level of lipid peroxidation and Bcl-2 expression [78]. However,
a direct link between these signaling molecules is yet to be established. Karmali et al.
found high TXB2 levels associated with large tumors and lymph-node metastases in breast
cancer [79] In addition, elevated urinary protein levels of TXB2 may prove a valuable
prognostic and diagnostic tool in bladder cancer [80].

Overexpression of TXA2S and increased levels of TXA2 have been demonstrated in thy-
roid [81], colorectal [82], bladder [83], lung [63,67,84], prostate cancer [71], and NSCLC [85]
and renal cancer (Figure 4A). Cells overexpressing TXA2S grow at an accelerated rate
and exhibit greater resistance to apoptosis [67,85–90], and TXA2S was needed for the de-
velopment of metastasis [91–94], suggesting that enhanced TXA2 levels due to TXA2S
overexpression activate the TP-dependent pathways of carcinogenesis. High levels of
TXA2S expression were reported in glioma cell lines and in biopsies from glial tumors
when compared to normal brain tissue, with expression levels positively correlated to
cellular migration rates [95]. Schauf and colleagues determined that TXA2S, activity was
essential to radiation insensitivity in glioma cells, which was subsequently proven in an
orthotopic glioblastoma mouse model where TXA2S antagonism with furegrelate signif-
icantly reduce tumor size, slowed tumor cell proliferation, decreasing angiogenesis and
increased apoptotic cell death [96]. In prostate cancer, TBXAS1 expression is correlated with
the severity of prostate carcinoma lesions, with advanced stages and poorly differentiated
forms having the highest expression levels [71]. The enzyme was involved in motility, but
not proliferation or survival, of prostate cancer cells [71]. In breast cancer, there is dissent
over the correlation of TBXAS1 expression and tumor grade, with one study [68] suggest-
ing loss of expression with increasing grade but the reverse has also been reported [69].
However, TBXAS1 polymorphisms have shown a modest association with breast cancer
risk and poor outcomes [97].
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Like TP expression, The Cancer Cell Line Encyclopedia suggests the addition of
cancers with significant TBXAS1 expression that are currently uncharacterized, including
ALL, AML, CML, and renal cancer. Of these cancers, at least AML and CML also had
significant TBXA2R expression (Figure 2A). Indeed, this phenomenon has been previously
reported in a few cancers (bladder, breast, prostate) but has not been universal. What was
not previously apparent is the high degree of correlation between TBXA2R and TBXAS1
expression across all tumors in the TCGA pan-cancer dataset (Pearson co-efficient 0.58;
p < 0.0001)(Figure 4C). These data suggest co-regulation of TBXA2R and TBXAS1 is common
in multiple types of cancer.

Like TP expression, increased TXA2S expression in cancer is transcriptionally driven.
The TBXAS1 promoter has two motifs in common with other cytochrome p450 enzymes:
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TATA independent transcription and multiple transcriptional start sites [95]. Maximal pro-
moter activity resides within the first 285 bp. Two clusters of positive regulatory elements
(PRE1 (−90 to −50 bp) and PRE2 (−50 to −25 bp)), accounting for ~75% of promoter activity,
are counter-balanced by repressive elements between −365 and −665 bp [98]. While sim-
ilar nuclear factor(s) from different cell types interact with PRE2, those interacting with
PRE1 exhibit cell specificity. The three original cell lines containing PRE1 binding pro-
teins were all leukemic, whilst cells not utilizing PRE1 were “normal” (CHO and murine
macrophages) [98]. Utilization of PRE1 by cancer cells might explain the induction of
TXA2S in multiple tumor types. The other essential regulatory site was between (−60 to
−50 bp), the deletion of which compromised TBXAS1 promoter activity [98]. Originally
thought to be an AP-1 site, this site turned out to be trans-activated by NF-E2. Interest-
ingly, many of the cancers with most significant TXA2S expression also highly express
NF-E2, including bladder, invasive breast, lung, colon and prostate cancers (TCGA data).
However, in NSCLC and small-cell lung cancer cells, TXA2S expression is regulated by
NF-κB [67], suggesting unrecognized transcription factors may play a role in regulating
TBXAS1 transcription in cancer.

There is reported epigenetic regulation of TBXAS1 expression. Our analysis of human
methylation in the TBXA2R promoter (first 1 kb) revealed little evidence of epigenetic
regulation in cancer, as the correlation of mRNA and promoter methylation is relatively
poor (R2= 0.029) (Figure 4B). Other evidence from the 5.5 kb promoter suggests that
distant repressive elements of the promoter (−3400, −3000, and −1430 bp) are methylated
(including the long inter interspersed element). No promoter methylation was observed
in cells without TXA2S expression; however, complete methylation at −1430 (and partial
methylation at sites−3400 and−3000) was associated with TXA2S expression [98]. Whether
these cell-type specific epigenetic mechanisms play a role in the induction of TXA2S in
cancer have yet to be determined but given the perturbations in epigenetic regulation that
exist in cancer, and the previous use of such mechanisms in leukemic cells, it is a high
probability that they do.

While the trend for increased TXA2S expression in multiple cancers is well-established,
the prognostic value of the findings are less clear. In bladder and prostate cancer patients,
overexpression of TXA2S was associated with reduced overall survival [71,83]. However,
data in breast cancer patients are less clear, with TXA2S expressed at significantly lower
levels in patients with high grade tumors with poor prognostic outcome [68] in one study
but high TBXAS1 expression correlated with invasive disease and higher tumor grades
in another [69]. Furthermore, Cathcart and colleagues observed no prognostic role for
TBXAS1 in NSCLC, despite significant elevations in TBXAS1 (and TXB2) levels in tumor
tissues than the matched “normal” tissues [85]. This confusion becomes more apparent
when assessing the TCGA pan-cancer dataset for correlations between TBXAS1 expression
and clinical outcomes (Figure 3D–F). Like the data for TBXA2R, the overall survival of
patients with high expression of TBXAS1 in their tumors is not significantly affected, nor is
the progression free survival (although at p = 0.063 it is close to a significant correlation).
However, there is a substantial reduction in disease free survival in the TBXAS1 high
group, although the effect size is not as large as that for TBXA2R. Five-year disease-free
survival is reduced from 67% in the low group to 60% in the TBXAS1 high group. However,
overall longevity of the disease-free cohort is still decreased (from 280 to 150 months) by
high TBXAS1 expression. While the jury might still be deliberating the utility of TXA2S
expression as a prognostic marker, there is no questioning it is elevated in cancer and
antagonists of TXA2S potently manipulate cancer progression.

5. Trojan Horses: The By-Products of Txa2 Biosynthesis in Cancer

As stated earlier, TXA2 biosynthesis also generates malondialdehyde and 12-HHT
in a 1:1:1 molar ratio [17]. Whilst the focus of TXA2S inhibitors has focused on the lack
of TXA2 synthesis, to date, no studies have assessed the reduction in either malondi-
aldehyde or 12-HHT as part of the resulting anti-tumor phenotype. Malondialdehyde
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(MDA) can react with DNA and protein to form stable adducts. Under physiological condi-
tions MDA forms adducts with deoxyguanosine and deoxyadenosine, with the principle
product being 3-(2-deoxy-β-d-erythro-pentafuranosyl)pyrimido [1,2-α]purin-10(3H)-one
deoxyguanosine (M1dG) [99]. If not repaired, M1dG is a mutagenic lesion that produces
both base pair substitutions (G → T and G → A) and frameshift mutations in DNA as-
sociated with carcinogenesis and contributes to the etiology of human cancer. Moreover,
MDA reacts with the ε-amino groups of lysine residues in proteins, resulting in adducts
with several structures, including the formation of intra- and inter-molecular cross-links
and covalent post-translational modifications that manipulate protein function [100,101].
Indeed, Dilysyl-MDA crosslinks are formed in activated platelets in a COX-TXA2S manner
and are enhanced in diseases associated with enhanced platelet aggregation [102]. Such
MDA-protein-like adducts modify proteins to change their activity, with significant im-
pacts on chemo-resistance (AKR1B10, GST), cell growth (Pin1, EGFR, PPAR), survival
(GCL, proteasome, PPAR) and metastatic capacity(α-elonase) in cancers such as glioma,
leukemia, breast, renal and colon cancer. Moreover, MDA-protein adducts modulate the
tumor microenvironment to promote cancer progression (as reviewed in [103]).

The metabolite 12-HHT also plays a role in carcinogenesis by activating its cognate
receptor BLT2 [19]. Levels of 12-HHT in activated platelets from TBXAS1 null mice are
reduced by greater than 80% compared to wild-type mice, suggesting that most HHT
produced in cells is TXA2S-derived [104]. Under physiological conditions, BLT2 activation
maintains epithelial barrier function in organs such as skin, colon and kidney, with BLT2
overexpression increasing barrier function and BLT2-null mice prone to trans-epidermal
water loss and delayed cutaneous wound healing [105]. Enhanced BLT2 expression is
observed in TNBC, thyroid follicular, renal, bladder, esophageal, colon and ovarian serous
carcinoma versus normal epithelium [106]. BLT2 activation is associated with enhanced
proliferation, survival and invasion in TNBC and bladder cancer cells [107,108], is required
for Ras-induced transformation [109] and increased distant metastasis in a patient xenograft
and orthotopic metastasis models in mice [110]. Indeed, breast cancer patients with high
BLT2 expression had a lower disease-free-survival rate [107]. Pharmacological inhibition
of BLT2 in these models prevented metastasis, and siRNA targeting of BLT2 prevented
invasion of breast cancer cells in vitro [110,111]. Thus, in addition to TXA2, both MDA and
12-HHT contribute to tumorigenesis and collectively suggest TXA2S as a prime target for
anti-cancer therapies.

6. TXA2/TP Antagonists as Adjuvant Therapies

Cancer is a problematic condition from a therapeutic viewpoint. Therapy resistance
to treatments such as chemotherapy, radiotherapy and targeted therapies is a significant
problem, with the mechanisms producing insensitivity resulting in more aggressive clones
that contribute to poor prognosis [112]. In part, resistance mechanisms are driven by
genomic instability, high mutation rates, and epigenetic changes in the cancer cell and/or
the tumor microenvironment, with differences observed between early and advanced stages
of cancer [112]. Mutation rates of TP and TXA2S in the TCGA pan-cancer dataset suggests
that both targets are poorly mutated in cancer (1.1% for TBXA2R and 1.7% for TXAS1)
(Figure 5A). When examining the specifics of the mutations, the changes in the TXA2R gene
are almost evenly split between (36%, �), deletion (30.6%, �) and missense/truncating
mutations (29.9%, �/�). Truncation mutations in TP producing tail-less truncation mutants
would still be functional and contribute to carcinogenesis. Conversely, all other truncation
mutations would produce non-functional (potentially unstable) receptors, as would the
point mutations at R60 and E129. All other mutations are of unknown consequence but
are not predicted to be driver mutations. Mutation of TBXAS1 in this pan-cancer panel
is, philosophically, quite different (Figure 5A). For TBXAS1, 61.7% of all mutations are
amplifications, which may contribute directly to the overexpression of this gene in many
tumors, while only 3.5% of changes are deletions and 32.3% are missense/truncating
mutations. Similar to TBXA2R mutations, most missense mutations in TBXAS1 are of
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unknown consequence and not predicted to be driver mutations. Given that these genetic
alterations are in a minority of tumors, it is perhaps not surprising that the correlation
between mRNA expression and allele number suggests that the enhanced expression of TP
and TXA2S is derived primarily from diploid tumor cells (Figure 5C,D). These data indicate
that TXA2 signaling provides a stable target in a landscape of perpetual phenotypic and
genomic instability.

The susceptibility of tumors to approaches that diminish TXA2 generation and sig-
naling has been documented in vitro and in preclinical models where they yield sig-
nificant therapeutic advantage. TXA2 antagonism with shRNA/CRISPR knockdown
approaches [63,77,83,90,95,113,114] in multiple tumor types (colorectal, bladder, brain,
lung cancer, prostate, myeloma) decreases proliferation, motility, invasion, anchorage-
independent growth, and promotes apoptosis (either as solo therapy or to sensitize cells to
chemotherapeutics (such as carboplatin and cisplatin)). Inhibition of TXA2S with selective
inhibitors induced apoptosis (via overproduction of ROS and reduction of NF-κB activity),
confirming that it is indeed a potential therapy target in NSCLC [85,113]. Conversely, the
overexpression of TP or TXA2S [69] or use of TP agonists [63,83] has the opposite effects
and exacerbates the transformed phenotype.

In vivo, TP antagonists/dual acting agents (target TXA2S and TP) have shown great
promise in reducing metastasis, slowing primary tumor growth and increasing host sur-
vival. Tumor growth was similar between mice treated with a higher dose of cisplatin
(5mg/kg) and GR32191 [56]. Furthermore, mice injected with amelanotic melanoma
cells (B16a) or lung cancer (3LL) cells had a significant reduction in metastatic lesions
when 4 mg/kg of TXA2S antagonist, carboxyheptal imidazole (CI), was administered for
18 days, compared with the control [115]. In mouse breast cancer models (4T1), pan-TP
antagonists (such as CPI211) prevent hematogenous metastasis in xenograft models of
human breast, pancreatic and lung cancer [77]. TXA2S over expression and knockdown
promoted and attenuated metastatic disease [69]. In addition, furegrelate increased the
chemo-/radiosensitivity of glioma cells in mice to 1,3-bis(2-chloroethyl)-1-nitrosourea
(BCNU) and γ-radiotherapy compared to chemo-/radiotherapy alone [96,116]. Similar
increases in chemo-sensitivity were observed in bladder cancer xenografts when TXA2S
inhibitors were used as adjuvant/neoadjuvant therapies in vivo.

Collectively, these data provide proof of principle for the robust anti-tumor effects of
TXA2 antagonism. It is curious, therefore, that clinical trials have been so slow to embrace
these agents as adjuvant/neoadjuvant therapies. Many clinical trials have looked to inhibit
platelet function to prevent TXA2 signaling in cancer patients; however, (as outlined above)
this thinking is flawed, as strategies to prevent platelet activation do not necessarily de-
crease TXA2 synthesis by the tumor. Indeed, TXA2 synthesis in tumors may be downstream
of COX-2, not COX-1 as it is in platelets, so the strategies for cancer therapy need to be
different. Whilst many trials have assessed the anti-tumor efficacy of COX-1 (aspirin) and
COX-2 (Celecoxib) inhibitors on primary endpoints such as median survival, response rate,
time to progression and distant metastasis (recently reviewed [6,7]) only one trial has under-
taken a directed approach to specifically examine the effects of TXA2 antagonism on tumor
progression. Clinically, TP antagonists are perhaps the best strategy for such a trial as TXA2,
PGG2, and PGH2 (precursors that would accumulate with TXA2S inhibitors) also bind and
activate TP [117]. The current trial (Clinicaltrials.gov #NCT03694249) will recruit patients
(based at Vanderbilt-Ingram Cancer Center) to examine the effects of the orally-active TP
antagonist Ifetroban (250 mg daily) in patients with malignant solid tumors at a high risk
of recurrence after treatment and undergoing metastatic spreading. The trial is designed to
examine the role of platelets in mediating distant metastasis; however, Ifetroban will also
block TP activation on cancer cells. Thus, the trial will also assess ablation of tumor TP
activation on metastatic potential and impact on event-free survival. With the trial not due
to release results until 2025, we will wait for the outcome of this first in-human validation
of the principles so potently demonstrated in preclinical and in vitro models.
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7. Sleight of Hand: Looking beyond the Tumor Epithelium to Determine the Role of
TXA2 in Cancer

The concepts of tumorigenesis are constantly evolving from original ideas about
oncogenes and loss of tumor suppressors to now include the interplay between cancer
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cells and the surrounding microenvironment. TXA2 signaling also shapes the tumor
microenvironment by manipulating inflammation and immunity [92], angiogenesis [118],
clotting and fibrosis/fibroblast infiltration. This is important, as cancer cells are not the only
source of TXA2S in tumors with both tumor-associated leukocytes and stromal fibroblasts
expressing significant TXA2S (Figure 6).
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8. Immune Modulation by TXA2 Signaling in Cancer

While it has long been acknowledged that the immune system recognizes tumors
as “foreign”, the concepts of immune invasion in cancer are more recent. Tumors have
developed various strategies to avoid T cell-mediated killing of cancer cells. The role of
TP activation in regulating T-cell subsets has been explored previously. TXA2 synthesis is
associated with biased Th2 polarization of T-cells [118], providing a growth advantage to
many tumor types [119]. Furthermore, TP activation induces thymocyte apoptosis in vitro
and TP null mice are resistant to LPS-induced thymocyte apoptosis [120,121]. Physical
interaction of T cells and dendritic cells (DCs) is essential for T cell proliferation and
differentiation. DCs were found to produce TXA2, while naïve T-cells express TP [122].
The product of this heterotypic cell signaling is the increase in the random motion of naïve
T-cells, which prevents DC-T cell adhesion, T-cell proliferation and lineage specification.
In support of this, T-cell responses to foreign antigens are enhanced in the presence of TP
antagonists and in TP null mice [122,123]. The high TXA2 release from tumor cells likely
co-opts this regulatory mechanism to modulate anti-tumor immunity directly. Moreover,
TP stimulation of Ca2+ transients by TP activation suppresses CD8+ T cells and cDC1 in
BrafV600E melanoma and 4T1 Breast cancer allografts [124]. This modulation of acquired
immunity promotes immune evasion in the early stages of tumorigenesis and identifies TP
signaling as an essential immunomodulator of the tumor microenvironment.

The microenvironment within solid tumors is often immunosuppressive; however,
once tumor cells enter the bloodstream to facilitate metastasis, they are exposed to a
normally operating immune system, able to attack and destroy tumor cells efficiently.
Indeed, less than 0.1% of tumor cells injected into mice eventuate in metastases [125] and
most cells die within 1–2 days [126]. Natural killer (NK) and cytotoxic (CD8+) T-cells play a
central role in this type of tumor immune-surveillance and anti-tumor activity. In this case,
TP stimulation has augmented cytotoxic activity in mixed lymphocyte populations and
TP/TXA2S inhibitors diminish the response [127,128]. Moreover, CD8 expression was often
increased, and proliferation increased, by TP stimulation of mixed lymphocyte populations.



Molecules 2022, 27, 6234 16 of 25

Macrophages play critical roles in innate and adaptive immunity and are known for
their remarkable phenotypic heterogeneity and functional diversity. Tumor-associated
macrophages (TAMs) are recruited from circulating monocytes to tumors, where the tu-
mor microenvironment influences them to either promote tumor resolution (M1/M(LPS))
or tumor growth, invasion, metastasis, and drug resistance (M2/M(IL-4))(recently re-
viewed [129]). TXA2 and 12-HHT are direct chemoattractants for monocytes [130] and TP
stimulation of lung cancer promotes monocyte recruitment through the upregulation of
MCP-1 and CCL2 expression, suggesting a role for TXA2 signaling in intra-tumoral recruit-
ment of TAMs [92]. While TP directly stimulates monocyte/macrophage activation [131],
the effect of TP stimulation on macrophage polarization has not been determined. How-
ever, platelet-derived TXA2 is thought to play a role in the M1 polarization of LPS-treated
monocytes by activated platelets [132], which is inconsistent with differentiation along the
M1 lineage being associated with loss of endogenous TXA2S and COX-1 expression [133].
These data suggest that TP signaling plays a prominent role in manipulating the tumor
microenvironment, skewing it toward immune tolerance and tumor growth.

9. Role of TXA2 Signaling in Priming Sites of Metastatic Spread

Factors influencing the site at which tumor cells lodge is especially pertinent to control-
ling metastasis. The association between TXA2S expression and metastatic burden has been
recognized (Figure 7); however, the mechanism underlying this relationship is far from
established. The first implication may be that high local TXA2 levels in a tissue act as an
“exit ramp” for circulating tumor cells to extravasate from the vasculature. TXA2 is chemo-
tactic for many cancer cells in vitro and locally elevated TXA2 production may be enough to
promote adhesion to endothelial cells and movement out of the vasculature. TP stimulation
on endothelial cells (especially TPβ) enhances expression of cell–cell adhesive molecules
and promotes vascular permeability (opening of inter-endothelial junctions) that would
facilitate this process [134,135]. In support of this concept, TXA2S inhibitors abrogate lung
colonization by Lewis lung carcinoma or B16a cells after being intravenously injected in a
C57Bl6 lung seeding model [116] and prevents endothelial activation, tumor cell adhesion to
the endothelium, and recruitment of metastasis-promoting monocyte/macrophages [136].
Inhibition of TXA2 signaling diminishes the formation of pre-metastatic and intravascular
metastatic niches through abrogation of platelet-tumor cell-endothelial cell interactions
mediated through P-selectin-mediated aggregate formation [93]. However, if tumor cells
are released and the “soil” they find themselves in is not hospitable, they will not develop
into metastases. Thus, does TXA2 signaling condition the metastatic niche to create a more
nurturing environment?
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The effects of TP on cancer-associated fibroblasts have not been investigated; however,
they are likely to be significant given the emerging role of these cells and TXA2 signaling
in tumor progression. TP expression is upregulated in lung fibroblasts of mice and pa-
tients in response to damage and inflammation, as are isoprostanes [138]. TXA2 is also
released by lung fibroblasts in response to bradykinin, phospholipase activation, IL-1β
and thrombin in vitro, prompting the suggestion that lung fibroblast are likely the most
prominent pulmonary producers of TXA2 in vivo [139,140]. Expression of TXA2S in lung
cells is primarily driven by p300 and Nrf2 [141] which have been implicated in lung metas-
tasis [142]. TP signaling in fibroblasts promotes proliferation, fibrosis and transformation to
the myofibroblast phenotype, via potentiation of TGF-β signaling [138,143,144]. Increased
fibrosis induces a switch in cancer cell growth via integrin/Src-mediated signaling, lead-
ing to cancer progression through the modulation of the pro-inflammatory niche [145].
Moreover, aged/senescent lung fibroblasts disproportionately increase TXA2 synthesis
compared to “young” cells [146]. Senescent cancer-associated fibroblasts also induce cancer
cell motility by suppressing PTEN [147], which is reversed by inhibiting COX-2. Thus, the
pro-tumorigenic effects of the senescence-associated secretory phenotype may be mediated,
in part, by TXA2. The TXA2 signaling may not only direct circulating tumor cells to accom-
modating sites for metastasis, but also prepare those sites before implantation and foster
metastatic lesions’ development by creating protected environments designed to facilitate
growth.

10. Role and Regulation of Endothelial Cell Migration and Angiogenesis by TXA2

The formation of new blood vessels (neovascularization) is essential to the develop-
ment of all solid tumors, including tumor stage/grade, metastasis and recurrence rate.
Multiple mechanisms (angiogenesis, vasculogenesis and intussusception) contribute to
neovascularization in tumors (reviewed in [148]); however, the outcome of the neovas-
cularization response is based on the balance of pro- and anti-angiogenic factors in the
tissue. TP stimulation has both pro- and anti-angiogenic effects in multiple experimental
systems. In endothelial cells, TP activation attenuates migration (58%) and angiogenesis
(85%) [149] and ablates the response to both VEGF-A [150] and FGF-2 [151] in vitro and
in vivo. Moreover, TXA2 signaling induces apoptosis in endothelial cells [152]. The down-
stream regulation is unique to each stimulus with attenuation of nitric oxide signaling,
FGFR2 internalization and gap junction function responsible for the attenuation of VEGF,
FGF-2 and spontaneous angiogenesis, respectively [149–151]. TP stimulation has also been
reported to induce endothelial cell death associated with retinal vascular degeneration [153]
and diabetes [154,155]. TP stimulation synergizes with platelet releasate [156] and neukinin
B [157] to prevent angiogenesis. In addition, isoprostanes (8-iso-PGF2α, 8-iso-PGE2 and
8-iso-PGA2) inhibit coronary endothelial cell migration and differentiation from cardiac ex-
plants ex vivo by influencing actin remodeling without influencing apoptosis [158]. These
data support the anti-angiogenic nature of TP stimulation in endothelial cells and that
blocking TP activation would be beneficial in conditions where angiogenesis is lacking,
such as myocardial infarction.

Conversely, TXA2S expression in tumor cells correlates with enhanced angiogenesis,
shortened survival time and increased tumor growth rate [159]. However, the authors did
not distinguish between direct effects on endothelial cells versus changes in tumor biology
to produce new anti-regulatory molecules. In fact, TXA2 stimulation of lung cancer cells
increases VEGF release, through TPα activation with subsequent downstream activation
of ERK, PKA, EGFR and Src kinases, which would be integral to the neovascularization
response [85,118]. However, evidence of increased neovascularization was only macro-
scopic and could have easily resulted from hemorrhage into the growing tumors. Direct
pro-angiogenic effects of TP stimulation on the endothelium increase FGF-2 and VEGF ex-
pression up to 5-fold [115,160], stimulating the differentiation and migration of endothelial
cells in vitro. TP signaling promotes spontaneous and growth-factor-induced neovascular-
ization in the corneal and aortic ring explant assays, the rodent ovary and [115,159,161,162].
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If these data hold, then the inhibition of TXA2 synthesis or TP signaling during diseases
such as cancer would prevent vessel formation, slowing tumor growth and prolonging
survival.

TPα and β have almost identical coupling to heterotrimeric G-proteins, resulting in
misplaced complacency regarding their distinct roles in disease. Our data [135,149,151]
and that of others [115,158,160] suggest isoform specific regulation as a basis for these
dichotomous effects on angiogenesis. In fact, most of the anti-angiogenic effects of TXA2
have been demonstrated in human model systems that have the possibility of expressing
TPβ. Our data also show that expressing TPβ in the endothelium from TP null mice inhibits
migration and differentiation in vitro, and transgenic mice overexpressing TPβ in endothe-
lial cells display reduced angiogenesis in Matrigel plug models [150,151]. The small animal
models upon which the pro-angiogenic properties of TXA2 are largely based are flawed,
as they do not express TPβ, a normal part of endothelial biology [16], due to the absence
of the splice acceptor site in the TBXA2R gene [163]. Moreover, our data suggest that the
anti-angiogenic properties of TPβ dominate in EC expressing both isoforms [150,151]. The
primary deficit in the original report of the TPβ transgenic mouse was intrauterine growth
restriction associated with reduced placental size [164]. One explanation for such a pheno-
type would be reduced neovascularization during development, resulting in attenuated
placental and fetal growth. The isoform-specific regulation of angiogenesis by TPα and
TPβ suggests that the divergent residues in the C-terminus are the basis of the selective
mechanism. The tail of TPβ contains multiple sites that could regulate receptor signaling
but few are well characterized. Certainly, the tail residues of TPβ have very different
protein–protein interactions and signaling properties than those of TPα [39,47–49]. TPβ
binding partners, such as angio-associated migratory cell protein (AAMP)(binds TPβ at
residues 366–392), are implicated in RhoA activation and actin-based motility, which is
important for angiogenesis [165]. Such isoform-specific binding partners, whilst currently
untested for angiogenic potential, highlight the role of non-G-protein mediated mechanisms
in regulating angiogenesis by TP isoforms and further strengthen the notion of divergent
pathological roles for TPα and TPβ in diseases such as cancer, which are heavily reliant
upon vascular remodeling.

11. Summary and Future Directions

Collectively, the above data represent a strong case for the importance of TXA2S
and TP in cancer progression and metastasis. The evolution of TXA2 biology in cancer
has progressed from an unknown COX-2 metabolite to a nuanced analysis of the role of
individual isoforms, signaling unrelated to heterotrimeric G-proteins and beyond cancer
cells to the immune and stromal response of the tumor. Thus, the roles of TP signaling
encompasses all aspects of tumor biology that produce a tumor microenvironment which
promotes carcinogenesis. These realizations are essential to progress the clinical utility
of antagonists to this pathway as adjunct therapies for cancer prevention and treatment,
as they have been adopted for the treatment of cardiovascular disease. The trial of TP
antagonists as anti-cancer agents shows that the clinical utility of these compounds is finally
being recognized. However, many questions remain, such as the role of individual isoforms
in many cancers and the unrecognized contributions of TP signaling to many cancers with
the highest expression of TP/TXA2S.
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