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Abstract: Metabolic alteration, one of the hallmarks of cancer cells, is important for cancer 
initiation and development. To support their rapid growth, cancer cells alter their metabolism 
so as to obtain the necessary energy and building blocks for biosynthetic pathways, as well as 
to adjust their redox balance. Once thought to be merely byproducts of metabolic pathways, 
intermediate metabolites are now known to mediate epigenetic modifications and protein 
post-transcriptional modifications (PTM), as well as connect cellular metabolism with signal 
transduction. Consequently, they can affect a myriad of processes, including proliferation, 
apoptosis, and immunity. In this review, we summarize multiple representative metabolites 
involved in glycolysis, the pentose phosphate pathway (PPP), the tricarboxylic acid (TCA) 
cycle, lipid synthesis, ketogenesis, methionine metabolism, glutamine metabolism, and 
tryptophan metabolism, focusing on their roles in chromatin and protein modifications and 
as signal-transducing messengers. 
Keywords: oncometabolites, extra-metabolic functions, epigenetic modification, signaling 
transduction, post-transcriptional modifications

Introduction
Cell metabolism comprises an intricate network of chemical reactions that sustain 
normal growth and reproduction. Metabolism comprises catabolism and anabolism, 
the former supplying energy and the latter producing the necessary cellular com-
ponents for cell proliferation. Cancers are characterized by uncontrolled cell pro-
liferation and heterogeneous microenvironment. On the one hand, cancer cells 
adjust their metabolic preference to balance their energy needs with the need to 
generate biosynthetic precursors for growth;1 on the other hand, they develop 
nutrient-scavenging strategies to survive under nutrient-starvation and oxygen- 
limiting conditions.2 Cancer cells undergo extensive metabolic alterations, includ-
ing in glycolysis, mitochondrial biogenesis, lipid metabolism, and the pentose 
phosphate pathway (PPP),3 by either reprogramming the activities of existing 
metabolic pathways or rewiring new connections.4

Metabolic reprogramming in cancer cells results in the accumulation or deple-
tion of intermediate metabolites through a variety of mechanisms.5 The first one is 
the alteration of metabolic enzyme activity. For example, during glycolysis, the 
preferred way for cancer cells to obtain energy and biosynthetic building blocks, the 
activation of glycolysis-related enzymes leads to the accumulation of a series of 
glycolytic intermediates.6 In contrast, the loss of the activities of succinate dehy-
drogenase (SDH) and fumarate hydratase (FH) contributes to the accumulation of 
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succinate and fumarate, respectively.7 Secondly, mutations 
arising in cancer cells can result in neomorphic enzyme 
activity. For instance, wild-type isocitrate dehydrogenase 
(IDH) converts isocitrate to alpha-ketoglutarate (α-KG), 
while IDH with specific single-site mutations further cat-
alyzes the conversion of α-KG to 2-hydroxyglutarate 
(2-HG).8 Thirdly, cancer cells generate several active by- 
products of metabolic pathways, such as reactive oxygen 
species (ROS), NAD+/NADH, and NADP+/NADPH.

Since the discovery of the oncogenic roles of some 
mitochondrial metabolites, such as 2-HG, succinate, and 
fumarate, research has increasingly focused on investigat-
ing the roles of these “oncometabolites” in cancer.9,10 

Oncometabolites affect processes such as epigenetic mod-
ifications, post-transcriptional modifications (PTMs), and 
signaling transduction.10 Metabolic remodeling can pro-
mote DNA hypermethylation and histone hyperacetyla-
tion, thereby silencing tumor suppressor genes and 
promoting tumorigenesis.11 As for PTMs, a wide spectrum 
of metabolites can conjugate to proteins and regulate their 
functions. Various types of PTMs have been reported, 
among which acetylation and succinylation have attracted 
extensive research interest.12 To illustrate metabolite sen-
sing and signaling, Wang and colleagues proposed 
a ternary model consisting of a sensor, a transducer, and 
an effector.13 In their model, metabolites were first recog-
nized by sensors. Transducers subsequently transmitted the 
signal information to effectors, which finally stimulated 
the corresponding biological reactions.13 They grouped 
a variety of metabolite sensing events into three modes: 
metabolite sensor-mediated signaling (MeSr), metabolite- 
sensing module (MeS), and sensing by conjugating (SC).13 

In the first category, a sensor physically interacts with the 
metabolite and transduces the signals to downstream. In 
the metabolite-sensing module, molecules like protein 
complexes are disrupted by the metabolites without direct 
binding through a structurally conserved site, causing 
downstream changes. The last mode is the conjugation of 
metabolites to proteins or nucleotides, causing functional 
alterations.13

Besides oncometabolites, numerous intermediate 
metabolites can directly bind to proteins or nucleotides, 
leading to their dysfunction. In addition, these inter-
mediate metabolites can act as ligands for transmem-
brane receptors, activating downstream signaling 
cascades. In this review, we will introduce the roles of 
multiple intermediates classified by metabolic pathways 
in cancer. For each intermediate metabolite, we will 

briefly introduce its source, and then discuss in-depth 
its effects on epigenetic modifications, PTM, and signal-
ing transduction (Table 1).

Metabolites in Glycolysis
Glycolysis consists of energy-requiring and energy- 
releasing phases.14 In the first step of the energy- 
requiring phase, hexokinase catalyzes the phosphorylation 
of glucose, generating glucose-6-phosphate (G6P). G6P is 
then transformed to glyceraldehyde-3-phosphate (GA3P) 
through several steps. GA3P is oxidized to 1,3-bispho-
sphoglycerate (1,3-BPG) by glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH), which is the first step in the 
energy-releasing phase. 1,3-BPG loses a phosphate and 
becomes 3-phosphoglycerate (3-PG), which is further con-
verted to 2-phosphoglycerate (2-PG) by phosphoglycerate 
mutase (PGAM). After losing one molecule of H2O, 2-PG 
is converted to phosphoenolpyruvate (PEP). 
Dephosphorylation of PEP yields pyruvate. Under oxygen- 
rich conditions, pyruvate is transferred to the mitochondria 
and participates in the tricarboxylic acid (TCA) cycle; 
under hypoxic conditions; however, pyruvate is converted 
to lactate by lactate dehydrogenase (LDH)14 (Figure 1).

1,3-BPG
1,3-BPG brings about PTMs to a variety of glycolytic 
proteins. During the modification process, active 
1,3-BPG binds to lysine residues in these proteins, gener-
ating 3-phosphoglyceryl-lysine (pgK) in an enzyme- 
independent manner. Under high-glucose conditions, the 
generation of pgK inhibits glycolysis and redirects glyco-
lytic intermediates to alternative biosynthetic pathways, 
which represents a crucial feedback regulatory mechanism 
(SC mode).15 Additionally, 1,3-BPG can activate PGAM1 
by directly phosphorylating its histidine residues 
(Figure 1), thereby maintaining glycolytic flux and sup-
porting cell growth in HCT116 or MDA-MB-231 cancer 
cells.16

3-PG and 2-PG
3-PG competitively occupies the active site of phosphoglu-
conate dehydrogenase (PGD), the rate-limiting enzyme in the 
PPP, resulting in impaired PGD function and the suppression 
of the PPP flux17 (Figure 1). Increased expression of PGAM1 
in tumor cells leads to enhanced 3-PG consumption, PPP 
activation, and increased 2-PG levels. 2-PG can further 
downregulate the level of 3-PG by enhancing the phospho-
glycerate dehydrogenase (PHGDH)-mediated production of 
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Table 1 Roles of Metabolites in Chromatin and Protein Modifications, Signal Transduction and Their Effects on Cancer

Metabolites Roles in Modification or Signal Transduction Effects on Cancer References

1,3-BPG pgK modification Feedback regulation of glycolysis [15]

PGAM1 phosphorylation Maintaining glycolytic flux and support cell growth [16]

3-PG and 

2-PG

Inhibiting PGD, activate PHGDH Balancing the glycolysis and anabolic biosynthesis [17]

PEP Suppressing SERCA-Ca2+-NFAT signaling Suppressing the antitumor function of T cells [18,19]

Lactate Inhibiting HDAC Histone hyperacetylation and deregulating gene 

transcription

[33]

Histone lactylation Stimulating gene transcriptions [34]

PHD-mediate signaling Angiogenic and proliferative effects [22,24]

Arg1/GPR81/MAVS signaling Driving immune evasion [25–30,32]

Ru-5-P and 

6-PGL

Disrupting the LKB1-MO25-STRAD complex; Binding to 

Src and inhibiting PP2A activity

Regulating AMPK activity [38,39]

2-HG 

Succinate 

Fumarate

Inhibiting TET/KDMs DNA/histone hypermethylation [53,54,56– 

60] 

[68–73] 
[68]

Inhibiting PHD Inhibiting HIF signaling and pseudohypoxia response [61–63] 
[74,75] 

[73]

Succinate Lysine succinylation Maintaining the activity of multiple chromatin and 

metabolic enzymes

[76–78]

SUCNR1-mediated signaling Activating oncogenic signaling pathways, including 

ERK, STAT3, and PI3K/HIF-1α
[80,81]

Fumarate Succination Activating multiple glycolytic enzymes [83–87]

Ac-CoA 
Acetate

Acetylation Acetylation of histones and proteins, promoting 
tumorigenesis

[95– 
98,100,101] 

[104]

Acetate GPR signaling Preventing cancer cells from stress-induced damage [106]

LCFA FABP5 mediated signaling SLCFA and ULCFA orchestrally regulate PPARβ/δ 
signaling

[107,108]

AA Binding to BRAFV600E Activation of MEK-ERK signaling and promoting 
tumor growth

[111–113]

3-OHB Inhibiting Class I HDAC Increasing histone acetylation [118]

Kbhb modification Activating multiple oncogene promoters [119,120]

GPR109A signaling Enhancing colonic cancer cells apoptosis and 

depressing survival

[121]

SAM Methylation Methylating numerous nucleic acids and histones [123–127]

Repressing β-catenin and IL-6 signaling Reducing inflammation [128,129]

(Continued)
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3-phosphohydroxypyruvate (pPYR) (Figure 1), which is the 
first committed step in serine synthesis. Through these 
mechanisms, tumor cells precisely adjust 3-PG and 2-PG 
levels, thereby regulating glycolysis and anabolic 
biosynthesis.17

PEP
In intratumoral T cells, PEP suppresses the activity of 
sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA), 
a calcium transporter that mediates Ca2+ uptake into the 
endoplasmic reticulum, resulting in Ca2+ accumulation in 

Table 1 (Continued). 

Metabolites Roles in Modification or Signal Transduction Effects on Cancer References

GSH S-glutathionylation S-glutathionylation of proteins, protecting cancer 

cells from ROS attack

[133–135]

Kyn and KA AhR signaling Pro-carcinogenic effects [139–143]

KA Glutamate receptors Promoting glioma cell proliferation [145]

Abbreviations: 1,3-BPG, 1,3-bisphosphoglycerate; 3-PG, 3-phosphoglycerate; 2-PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; 6-PGL, 6-phosphogluconolactone; Ru- 
5-P, ribulose-5-phosphate; 2-HG, 2-hydroxyglutarate; Ac-CoA, Acetyl-CoA; LCFA, long chain fatty acid; AA, acetoacetate; 3-OHB, 3-hydroxybutyrate; SAM, S-adenosyl- 
methionine; GSH, glutathione; Kyn, kynurenine; KA, kynurenic acid.

Figure 1 Key metabolites in glycolysis and oxidative PPP. Schematic representations of the biologic effects of those metabolites, including 1,3-BPG, 3PG, 2PG, PEP, lactate, γ- 
6-PGL and Ru-5-P, are in pink. 
Abbreviations: PPP, pentose phosphate pathway; G6P, glucose 6-phosphate; GA3P, glyceraldehyde-3-phosphate; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; 
1,3-BPG, 1,3-bisphosphoglycerate; PGAM, phosphoglycerate mutase; 3-PG, 3-phosphoglycerate; 2-PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; LDH, lactate 
dehydrogenase; PHGDH, phosphoglycerate dehydrogenase; G6PD, glucose-6-phosphate dehydrogenase; δ-6-PGL, δ-6-phosphogluconolactone; γ-6-PGL, γ-6-phosphoglu-
conolactone; PGLS, 6-phosphogluconolactonase; 6PG, 6-phosphogluconate; PGD, phosphogluconate dehydrogenase; Ru-5-P, ribulose-5-phosphate; R-5-P, ribose- 
5-phosphate.
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the cytosol and further nuclear factor of activated T cells 
(NFAT) signaling activation, which is vital for T cells to 
exert their antitumor effects.18,19 This process of metabo-
lite sensing and signaling can be classified as the MeS 
mode.

Lactate
Due to higher glucose-to-lactate flux, lactate overproduc-
tion is commonly detected in a subset of cancer cells, 
especially under hypoxic conditions. In oxygenated 
tumor cells, monocarboxylate transporter 1 (MCT1) can 
also mediate lactate import from hypoxic cancer cells20,21 

(Figure 1).
Although widely known as an energy source, lactate 

displays active nonmetabolic characteristics. Lactate can 
inhibit α-KG-dependent prolyl hydroxylase domain pro-
teins (PHDs), which are involved in the hydroxylation of 
hypoxia-inducible factor 1-alpha (HIF-1α) and IκB kinase 
β (IKKβ). Inhibition of HIF-1α leads to its stabilization, 
leading to the activation of HIF-1-mediated vascular 
endothelial growth factor (VEGF) signaling.22 

Meanwhile, the inhibition of IKKβ hydroxylation results 
in IKBα degradation, which activates nuclear factor kappa 
B (NF-κB) signaling.23 The effects of lactate on VEGF 
and NF-κB signaling can be classified as the MeS mode. 
Lactate can also interrupt the association between PHDs 
and N-Myc downstream-regulated protein (NDRG3) by 
directly binding to the latter in a manner that is indepen-
dent of HIFs, which is an MeSr mode. This prevents the 
proteasomal degradation of NDRG3 and further activates 
Raf/ERK signaling, contributing to angiogenic and prolif-
erative effects in cancer cells.24

In terms of driving immune evasion, the lactate- 
induced expression of arginase 1 (Arg1) promotes the 
functional polarization of tumor-associated macrophages 
(TAMs).25,26 In breast cancer, lactate was reported to 
induce TAM polarization through the ERK/STAT3 
pathway.27 There are several examples of MeSr mode 
about lactate driving immune evasion. G protein-coupled 
receptor 81 (GPR81) is a lactate receptor that is highly 
expressed in multiple cancer cell lines.28 Lactate-GPR81 
signaling stimulates the expression of programmed cell 
death ligand 1 (PD-L1) through the transcriptional coacti-
vator TAZ, thereby suppressing interferon-gamma produc-
tion in lung cancer.29,30 Lactate also suppresses innate 
immune responses in cancer. By binding to GPR81, lactate 
inactivates yes-associated protein (YAP) and further dis-
rupts the interaction of YAP and NF-κB in macrophages, 

resulting in the reduced production of macrophage pro- 
inflammatory cytokine.31 Furthermore, Zhang et al 
reported that lactate prevented the aggregation of mito-
chondrial antiviral-signaling protein (MAVS) by directly 
binding to its transmembrane domain. This suppressed the 
production of downstream type I interferons triggered by 
retinoic acid-inducible gene I-like receptor (RLR)-MAVS 
signaling, impairing cancer immunosuppression.32

Lactate also regulates gene expression by inhibiting 
histone deacetylases (HDACs),33 and can provide the lac-
tyl group for lysine residues in histone tails, known as 
histone lactylation. Histone lactylation is active in TAMs, 
implying that this process has a role in immune 
surveillance.34

Metabolites in the PPP
The PPP consists of oxidative and nonoxidative phases, 
and leads to the production of metabolites and NADPH, 
which are pivotal for nucleotide biosynthesis, lipogenesis, 
and the maintenance of redox homeostasis. In the first 
step, G6P is oxidized to δ-6-phosphogluconolactone (δ- 
6-PGL) by glucose-6-phosphate dehydrogenase (G6PD). 
Then, one carbon of hydrolytically unstable δ-6-PGL is 
cleaved by 6-phosphogluconolactonase (PGLS), yielding 
6-phosphogluconate (6-PG). 6-PG is further converted to 
ribulose-5-phosphate (Ru-5-P) by PGD. Ru-5-P is isomer-
ized into ribose-5-phosphate (R-5-P), which serves as the 
main building block for ribonucleotide synthesis.35 

Notably, there is another form of 6-PGL—γ-6PGL—that 
is generated by the intramolecular rearrangement of δ- 
6PGL. It is relatively stable, represents a “dead-end” 
byproduct, and is not subsequently involved in the PPP 
(Figure 1).

Ru-5-P and 6-PGL
AMP-activated protein kinase (AMPK), a central metabolic 
sensor, is activated by upstream kinases and inactivated by 
phosphatase-mediated dephosphorylation. Liver kinase B1 
homolog (LKB1) can form a complex with STE20-related 
adaptor protein (STRAD) and mouse protein 25 (MO25), 
acting as a major upstream activator of AMPK.36 Protein 
phosphatase 2A (PP2A) is a serine/threonine protein phos-
phatase that dephosphorylates AMPK at Thr172, thereby 
inactivating it.37 Ru-5-P can disrupt the LKB1-MO25- 
STRAD complex, resulting in the inactivation of AMPK.38 

In contrast, γ-6PGL binds to Src and inhibits PP2A activity 
by dephosphorylation, leading to AMPK activation39 

(Figure 1). The action of Ru-5-P and γ-6PGL belongs to 
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the MeS and MeSr mode, respectively. Cancer cells exhibit 
an active oxidative PPP, accompanied by decreased γ-6PGL 
and increased Ru-5-P levels. These alterations collectively 
inactivate AMPK, activate acetyl-CoA carboxylase 1, and, 
finally, enhance lipogenesis and tumor growth.38,39

Metabolites in the TCA Cycle
The TCA cycle, also called the Krebs cycle or the citric 
acid cycle, comprises a series of enzyme-catalyzed reac-
tions and is the major energy production pathway in 
cells.40 The third step is catalyzed by IDH, in which 
isocitrate undergoes oxidation to form α-KG, releasing 
NADH. α-KG is further converted to succinate, which is 
enzymatically catalyzed to fumarate by SDH. Fumarate is 
further oxidized to malate by FH. Finally, malate is oxi-
dized to oxaloacetate (OAA) by malate dehydrogenase 
(MDH). Notably, MDH catalyzes the interconversion of 
malate and OAA. There are two isoforms of MDH, 
namely MDH1 and MDH2, which are localized to the 
cytoplasm and mitochondria, respectively. Similarly, IDH 
has three isoforms—cytosolic IDH1 as well as 

mitochondrial IDH2 and IDH3—with IDH3 primarily 
functioning in normal enzymatic processes40 (Figure 2).

2-HG
2-HG consists of two enantiomers, namely D-2-HG (also 
known as R-2-HG) and L-2-HG (also known as S-2-HG) 
(Figure 2). 2-HG has attracted extensive research interest 
since the discovery of the neomorphic enzymatic activity 
of mutant IDH (mIDH) in 2009.8,10,41 Specific missense 
mutations in both IDH1 and IDH2 result in a neomorphic 
enzymatic activity that catalyzes α-KG to D-2-HG, but not 
L-2-HG. The most common mutations are Arg132 in 
IDH1 and Arg172 plus Arg140 in IDH2, occurring in 
~80% of low-grade gliomas and ~20% of cases of acute 
myeloid leukemia (AML),42–44 as well as in a spectrum of 
other malignancies, including cartilaginous tumors, intra-
hepatic cholangiocarcinoma, and angioimmunoblastic 
T cell lymphoma.45,46 In addition to being produced by 
mIDH in the TCA cycle, 2-HG can also be generated 
through several promiscuous enzymatic reactions. 
PHGDH, which normally catalyzes the first step of serine 

Figure 2 Key metabolites in TCA cycle and ketogenesis. The blue arrows and pink boxes highlight the extrametabolic functions of 2-HG, succinate, fumarate, AA, and 
3-OHB. 
Abbreviations: TCA cycle, tricarboxylic acid cycle; PDH, pyruvate dehydrogenase; IDH, isocitrate dehydrogenase; SDH, succinate dehydrogenase; FH, fumarate hydratase; 
α-KG, alpha-ketoglutarate; 2-HG, 2-hydroxyglutarate; MDH, malate dehydrogenase; OAA, oxaloacetate; PHGDH, phosphoglycerate dehydrogenase; LDH, lactate dehy-
drogenase; ICL, isocitrate lyase; Ac-CoA, acetyl-CoA; AcAc-CoA, acetoacetyl-CoA; HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA; HMGCL, 3-hydroxy-3-methylglutaryl- 
CoA lyase; 3-OHB, 3-hydroxybutyrate.
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biosynthesis, has been reported to be a source of D-2-HG 
in human breast cancer cell lines at quite low efficiency.47 

In contrast, and surprisingly, L-2-HG is produced through 
the activities of MDH and lactate dehydrogenase 
A (LDHA). MDH catalyzes the production of L-2-HG in 
mammals, although this reaction is 107,8 times less effi-
cient when compared with OAA production.48 LDHA has 
been identified as the major L-2-HG-producing 
enzyme under hypoxic conditions49 (Figure 2). 
D-2-hydroxyglutarate dehydrogenase (D2HGDH)50,51 and 
L-2-hydroxyglutarate dehydrogenase (L2HGDH)52 cata-
lyze the conversion of D-2-HG and L-2-HG to α-KG, 
respectively. Mutations in these two enzymes result in 
2-HG accumulation and lead to 2-hydroxyglutaric acidur-
ias (2HGAs).50,52

2-HG functions as an antagonist of α-KG as they have 
highly similar structures.45 Crystallographic structural stu-
dies revealed that 2-HG competitively occupies the active 
binding sites of multiple α-KG-dependent enzymes, 
including the JmjC domain-containing histone demethy-
lases (KDMs) and the ten-eleven translocation (TET) 
family of 5-methylcytosine (5mC) hydroxylases, and 
hence inhibits their activities.53–55 These enzymes remove 
methyl moieties through sequential reactions, the inhibi-
tion of which by 2-HG increases global DNA methylation 
and epigenetically silences multiple proteins with known 
and postulated roles in tumor suppression53 (Figure 2).

Histone demethylases are classified into two subfami-
lies, ie, the lysine demethylase 1 (KDM1) subfamily and 
the JmjC domain-containing KDMs (consisting of over 30 
enzymes in humans, including KDM2, KDM3, KDM4, 
KDM5, KDM6, and others).56 Enzymes in the latter 
group are the major targets of D-2-HG. The related inhibi-
tion potencies vary, with KDM4A/JMJD2A being the most 
sensitive to D-2-HG, followed by KDM4C/JMJD2C, 
KDM2A/FBXL11, AlkB homolog 2 (ALKBH2), factor 
inhibiting HIF (FIH), PHD, and BBOX-1.54 Studies 
showed that the addition of D-2-HG or the stable over-
expression of mIDH1 augments histone demethylation in 
glioma, including H3K4, H3K9, H3K27, and H3K79, an 
effect that can be counteracted by α-KG treatment.53,57 

D-2-HG activates the mechanistic (previously mamma-
lian) target of rapamycin (mTOR) signaling pathway in 
brain cancer by inhibiting KDM4A,58 which is an MeSr 
mode.

TET sequentially converts 5mC first to 5-hydroxy-
methylcytosine (5hmC), then to 5-formylcytosine, and 
finally to 5-carboxylcytosine.59 Biochemical assays 

showed that D-2-HG exerts a direct inhibitory effect on 
recombinant TET2 (Figure 2), which can be rescued by α- 
KG. mIDH expression leads to the consistent reduction of 
TET2-dependent 5hmC levels.53 Moreover, both mIDH 
expression and TET2 silencing impair hematopoietic dif-
ferentiation, implying that they have similar proleukemo-
genic effects.60

2-HG can also modulate the activity of several α-KG- 
dependent dioxygenases independently of epigenetic 
alterations. PHD, which is involved in the hydroxylation 
of HIF1α, was the first dioxygenase reported to be inhib-
ited by 2-HG (MeSr mode).61,62 The inhibition of hydro-
xylation leads to HIF-1α stabilization and the subsequent 
activation of genes containing HIF response elements 
(HREs), such as glycolytic enzymes, further contributing 
to tumor development.63 Additionally, D-2-HG has been 
reported to directly inhibit ALKBH2,54 a protein that 
repairs DNA damage caused by alkylating agents. Cells 
with mIDH accumulate double-strand breaks (DSBs) in 
their DNA, leading to genetic instability.64

Succinate
Succinate accumulation results primarily from loss-of- 
function mutations in SDH, which are found in a variety of 
cancer types, such as paraganglioma/pheochromocytoma 
(PGL/PCC), renal carcinoma, ovarian cancer, neuroblas-
toma, and gastrointestinal stromal tumor.65,66 Impairment 
of SDH activity can also lead to succinate accumulation. 
For example, tumor necrosis factor receptor-associated pro-
tein 1 (TRAP1) downregulates SDH activity by inhibiting 
respiratory complex II.67 Tumor-associated inflammatory 
responses can also suppress SDH activity, while isocitrate 
lyase (ICL) also likely contributes, as it directly converts 
isocitrate to succinate66 (Figure 2).

Like 2-HG, succinate can competitively inhibit α-KG- 
dependent KDMs and TETs,68 resulting in epigenetic 
alterations. Succinate promotes proliferation, epithelial-to- 
mesenchymal transition (EMT), migration, and invasion 
by regulating the activities of a plethora of downstream 
genes.69–72 For example, increased succinate levels due to 
SDH mutations lead to DNA and histone hypermethyla-
tion in PGL/PCC, thereby suppressing EMT and neuroen-
docrine differentiation.69,73 Succinate also inhibits PHD 
and impairs HIF-1α signaling (MeSr mode)74,75 (Figure 2).

Besides, succinate provides a succinyl moiety for 
lysine succinylation, a PTM that occurs in both chromatin 
and metabolic enzymes such as GLUT1, LDHA, and 
GAPDH,76 regulating their activities in cancer (SC 
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mode)10,77,78 (Figure 2). For example, Li et al proved that 
succinylation of LDHA decreased its lysosomal degrada-
tion, promoting cell proliferation, invasion, and migration 
in gastric cancer.79

In addition, succinate can activate signaling pathway 
by the MeSr mode. Succinate binds to GPR91 (also known 
as succinate receptor 1 [SUCNR1]), which leads to 
increased VEGF expression and further triggers down-
stream signaling cascades, including those associated 
with extracellular regulated kinase (ERK) 1/2 and signal 
transducer and activator of transcription 3 (STAT3).80 

Succinate secreted by cancer cells binds to GPR91, further 
activating PI3K/HIF-1α signaling and triggering TAM 
polarization (Figure 2). This promotes cancer cell migra-
tion, invasion, and metastasis.81

Fumarate
Abnormal fumarate accumulation is attributed to inactivating 
mutations in FH, which have been reported in skin leiomyo-
mata, uterine fibroids, and papillary renal cell cancer.82 

Fumarate appears to be multifaceted.10 Like 2-HG and succi-
nate, fumarate can allosterically inhibit α-KG-dependent 
enzymes, including KDMs, TETs, and PHDs (MeSr 
mode),68,73 regulating the epigenetic landscape and producing 
pseudohypoxia. A distinct PTM related to fumarate is succi-
nation, during which the thiol group of a cysteine residue is 
converted to S-(2-succino)-cysteine (2SC)83 (Figure 2). 
Fumarate accumulation affects the normal succination of gly-
colytic enzymes, adiponectin, cytoskeletal proteins, and endo-
plasmic reticulum chaperones, impairing their functions.84,85 

For instance, when succinated, Kelch-like ECH-associated 
protein-1 (KEAP1) is dissociated from nuclear factor ery-
throid 2-related factor 2 (NRF2). The latter is then stabilized, 
translocated to the nucleus, and modulated the transcription of 
several genes involved in antioxidant signaling and 
cytoprotection.86,87 In addition, the direct binding of fumarate 
to glutathione88 or glutathione succination89 leads to persistent 
oxidative stress and cellular senescence.

Metabolites in Lipid Synthesis
Acetyl-CoA
Acetyl-CoA (Ac-CoA) is the main intermediate for lipid 
synthesis and is located in several cellular compartments, 
including the cytosol, mitochondria, and the nucleus. 
Generally, pyruvate is transferred to the mitochondria and 
decarboxylated to Ac-CoA by pyruvate dehydrogenase 
(PDH).90 Interestingly, Ac-CoA synthetase (ACSS) is another 

major enzyme that catalyzes the ATP-dependent incorporation 
of acetate into Ac-CoA. In mammalian cells, there are two 
ACSSs, namely, mitochondrial ACSS1 and cytosolic ACSS2. 
The expression of ACCS1 is markedly upregulated in multiple 
tumors.91 Under hypoxia, mitochondrial citrate is preferen-
tially shuttled to the cytoplasm and converted to Ac-CoA and 
OAA by ATP citrate lyase (ACL).92 Acetate uptake, which is 
catalyzed by ACSS2, is also responsible for increased Ac- 
CoA levels.93 Reductive glutamine metabolism by IDH1 is 
another source of Ac-CoA under hypoxic conditions94 

(Figure 3).
Ac-CoA is the starting material for fatty acid synthesis, 

while also being indispensable for the acetylation of histones 
and proteins (SC mode). There is a strong correlation 
between Ac-CoA levels and global histone acetylation.95,96 

By modulating epigenetic alterations, Ac-CoA regulates the 
expression of numerous genes and ultimately promotes 
tumorigenesis.97 For example, in pancreatic ductal adenocar-
cinoma harboring KRAS mutations, ACL-mediated H3K27 
acetylation (H3K27ac) is increased, thereby promoting 
tumor development.98 H3K27ac due to upregulated Ac- 
CoA level also promotes the progression and 
chemoresistance of nasopharyngeal carcinoma.99 In human 
hepatocellular carcinoma, hypoxic cells show increased his-
tone H3 acetylation due to an increase in Ac-CoA levels 
catalyzed by ACCS, which promotes lipid synthesis and 
tumor growth.100 Numerous proteins are also modulated 
through post-translational acetylation. For example, when 
acetylated at K540, 546, and 554, ACL tends to be stabi-
lized, leading to increased Ac-CoA production through 
a feedforward mechanism101 (Figure 3). After K413 acetyla-
tion, mutant IDH2 (mIDH2) R140Q presents higher enzyme 
activity, producing sufficient 2-HG for the transformation in 
AML.102

Acetate
Exogenous acetate is mainly derived from saccharolytic fer-
mentation in the colon, but can also be obtained from other 
sources, such as ethanol oxidation. Endogenously, acetate is 
generated via deacetylation and hydrolysis reactions that 
release acetyl groups. Recent studies have shown that acetate 
is produced de novo from pyruvate, via either ROS- 
dependent oxidative decarboxylation or incomplete oxida-
tion by ketoacid dehydrogenases (KDHs) in a thiamine- and 
glutathione-dependent manner103 (Figure 3).

As previously mentioned, acetate maintains the Ac- 
CoA pool in cancer cells, thereby influencing multiple Ac- 
CoA-associated biological processes.104 Acetate is also an 
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agonist of free fatty acid receptors (FFARs), which belong 
to the GPR family. Acetate activates FFAR2 in 3T3 fibro-
blasts, potentiating their malignant transformation.105 In 
breast cancer, acetate-GPR signaling, which belongs to 
the MeSr mode, activates p38 mitogen-activated protein 
kinase (MAPK) and, subsequently, heat shock protein 27 
(HSP27), thereby preventing stress-induced damage106 

(Figure 3).

Long Chain Fatty Acids (LCFA)
Besides the role of energy source, LCFA also functions as 
signaling molecules. By displacing retinoic acid, saturated 
LCFA (SLCFA) binds to and inhibits fatty acid-binding 
protein 5 (FABP5) (MeSr mode). This suppresses the 
nuclear localization of peroxisome proliferator-activated 
receptor β/δ (PPARβ/δ), inhibiting the growth of carci-
noma cells in vitro and in vivo.107,108 Interestingly, unsa-
turated LCFA (ULCFA) displays opposing effects.107

Metabolites in the Ketogenesis 
Pathway
In a fasted state, the body switches to breaking down fatty 
acids to ketone bodies (ketogenesis) to satisfy the energy 
requirements of key organs, including the brain, muscles, 
and other tissues. Ketogenesis occurs primarily in the 
mitochondria and begins with the condensation of Ac- 
CoA to acetoacetyl-CoA (AcAc-CoA). Subsequently, 

3-hydroxy-3-methylglutaryl–CoA synthase (HMGCS) cat-
alyzes the condensation of Ac-CoA and AcAc-CoA to 
form 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA), 
which is further cleaved to acetoacetate (AA) by 
3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL). AA is 
then either dehydrogenized to 3-hydroxybutyrate (3-OHB) 
or decarboxylated to acetone. Finally, AA, 3-OHB, and 
AcAc-CoA acetone are transferred to the circulation and 
taken up by cells as alternative energy sources109 

(Figure 2).

AA and 3-OHB
AA has been reported to activate ERK1/2 and p38 MAPK 
signaling in primary cultured rat hepatocytes in a ROS- and 
oxidative stress-dependent manner110 (Figure 2). Kang et al 
conducted a systematic screen for metabolic synthetic lethal 
partners of BRAFV600E and found that HMGCL and 
HMGCS1 could specifically promote the growth of 
BRAFV600E-positive melanoma.111 The authors further 
demonstrated that AA bound to BRAFV600E, which enhanced 
the binding of BRAFV600E and MEK1, thereby promoting 
the activation of MEK-ERK signaling (MeSr mode).111,112 

Meanwhile, a different study reported that a high-fat keto-
genic diet could increase serum AA concentrations, 
resulting in the enhanced growth of tumors derived from 
BRAFV600E -positive melanoma cells in xenografted 
mice.113 Conversely, both reducing circulating AA levels 
with hypolipidemic agents and treating with an inhibitory 

Figure 3 Key metabolites in lipid synthesis. Schematic diagram shows the Ac-CoA pool in different cell compartments. The functions of Ac-CoA and acetate outside 
metabolism are marked in pink. 
Abbreviations: Ac-CoA, acetyl-CoA; PDH, pyruvate dehydrogenase; ACSS, Ac-CoA synthetase; ACL, ATP citrate lyase; KDHs, ketoacid dehydrogenases.
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AA homolog could effectively attenuate the growth of 
BRAFV600E-positive tumors.113 Collectively, these findings 
suggest that AA mediates the crosstalk between the ketogen-
esis metabolic pathway and the MAPK signaling pathway 
(Figure 2).

Of note, 3-OHB is known to have functions beyond 
metabolism, including inhibiting HDACs and transducing 
signals through GPRs, effects that are closely correlated 
with diabetes and lifespan.114–117 Similarly, 3-OHB could 
inhibit Class I HDACs in cancer cells, which increases 
histone acetylation.118 Moreover, the generation of lysine 
β-hydroxybutyrylation (Kbhb), a novel type of histone 
posttranslational modification, is specifically attributed to 
3-OHB. This new epigenetic regulatory is enriched in 
active gene promoters and closely linked with gene 
expression.119 For example, p53 is a well-known tumor 
suppressor gene. Its activity was significantly attenuated 
after Kbhb modification, leading to reduced cell growth 
arrest and apoptosis in cancer cells.120

As an intracellular signal mediator, 3-OHB also works 
as the only endogenous ligand of G-protein coupled recep-
tors 109A (GPR109A), which is a potent tumor suppres-
sor. In colonic epithelial cells, 3-OHB activates GPR109A, 
enhancing colonic cancer cells apoptosis and depressing 
survival (MeSr mode).121

Metabolites in Methionine 
Metabolism
S-Adenosyl-Methionine
S-adenosyl-methionine (SAM) is produced from methionine 
through the activity of methionine adenosyltransferase 2A 
(MAT2A), which represents the first step in the methionine 
cycle. In the following step, which is catalyzed by methyl-
transferases (MTs), SAM donates the methyl group and is 
converted to S-adenosyl-homocysteine (SAH)122 (Figure 4).

As a universal methyl donor, SAM can greatly influence 
the methylation status of nucleic acids123 and histones,124 

thereby modulating diverse and critical cellular processes in 
cancer (SC mode). For example, SAM inhibits the expres-
sion of urokinase-type plasminogen activator (uPA) and 
matrix metalloproteinase-2 (MMP-2) through the hyper-
methylation of their promoters, which suppresses invasive-
ness and tumorigenesis in prostate125 and breast cancer.126 

Moreover, SAM can reverse the hypomethylation of the 
promoters of the oncogenes c-Myc and H-Ras, resulting in 
the inhibition of cell growth in gastric and colon cancer.127

SAM is also reported to reduce inflammation by repressing 
β-catenin and interleukin-6 (IL-6) signaling in liver and colon 
cancer,128,129 and also exerts proapoptotic effects through the 
ERK1/2 and STAT3 pathways in osteosarcoma cells130 

(Figure 4). However, further studies are needed to elucidate 
the mechanism underlying its role in signaling transduction.

Glutamine Metabolism
Glutathione
Glutamine is another substrate that is vital for energy produc-
tion and macromolecule biosynthesis in cancer cells. 
Glutamine is transported into cells and converted to glutamate 
by mitochondrial glutaminases (GLSs). Glutamate has two 
major metabolic fates. It can either be converted to α-KG by 
glutamate dehydrogenase (GLUD) or aminotransferases and 
used for energy production in the TCA cycle or is first con-
verted to γ-glutamylcysteine by glutamate-cysteine ligase 
(GCL) and then to glutathione (GSH) by GSH synthetase 
(GSS).131 GSH exists in both thiol-reduced and disulfide- 
oxidized forms, namely, GSH and GSSG, respectively. GSH 
can be oxidized to GSSG by GSH peroxidase, while GSSG 
can be reverse-catalyzed to GSH by GSH reductase132 

(Figure 4).
GSH is a well-known antioxidant. Abundant GSH in 

tumor cells protects themselves through the detoxification 
of carcinogens and the scavenging of free radicals. In terms 
of PTM, GSH binds to the cysteine residues of proteins, 
a process called S-glutathionylation, thereby protecting them 
from ROS attack. A growing number of GSH protein targets 
have been identified, including P53, HSP27, thioredoxin, 
caspase-3, and NF-κB, involving a vast number of cellular 
processes (SC mode).133–135 The S-glutathionylation of his-
tone H3, a GSH target, can lead to altered chromatin struc-
ture and nucleosome instability.136

Tryptophan Metabolism
Tryptophan (Trp) is an essential amino acid. A small fraction 
of Trp enter either serotonin or indole pathway, which are 
mainly occurred in nervous or innate immune system, respec-
tively. Over 95% of free Trp is degraded by the kynurenine 
(Kyn) pathway (KP), which is closely related to cancer pro-
gression. In the KP, Trp is firstly converted to 
N-formylkynurenine by indoleamine-2,3-dioxygenase 1 
(IDO1), IDO2, and tryptophan-2,3-dioxygenase (TDO), 
which is the rate-limiting step. N-formylkynurenine is then 
catalyzed by kynurenine formamidase (AFMID) to produce 
Kyn. Kyn is further converted to 3-hydroxykynurenine 
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(3-HK) by kynurenine 3-monooxygenase (KMO), to anthra-
nilic acid (AA) by kynureninase (KYNU), and to kynurenic 
acid (KA) by kynurenine aminotransferases (KATI–KATIII). 
After further series of enzymic reactions, multiple biologically 
active acids are produced, such as 3-hydroxyanthranilic acid 
(3-HAA), quinolinic acid (QA), picolinic acid (PA), etc. In the 
end of the KP, NAD+ is generated, which is an important 
redox cofactor137,138 (Figure 5).

Kyn and KA
Both Kyn and KA are potent agonists for the human aryl 
hydrocarbon receptor (AhR),139 which has extensive roles in 
carcinogenesis.140 Thus, Kyn and KA have potential pro- 
carcinogenic effects in cancer. Kyn is significantly elevated 
in colon cancer cells and promotes the proliferation through 
activating the AhR.141 AhR blockade induces by Kyn could 
also interrupt the interplay between Tregs and tumor- 
associated macrophages, which is associated with the resis-
tance to immune checkpoint inhibitors.142 DiNatale et al 
reported that KA activated AhR and subsequently induced 
IL-6 production in primary human hepatocytes143 (Figure 5).

KA also works as the ligand of other receptors, includ-
ing glutamate receptors, α-7 nicotinic acetylcholine 

receptor (α-7 nAChR), and G-protein coupled receptor 
35 (GPR35).144 As antagonist for endogenous glutamate 
receptors, KA reverses the promotion effect of glutamate 
on glioma T98G cell proliferation, and enhances the anti-
proliferative effect of glutamate receptor antagonists 
MK801 and GYKI 52466145 (Figure 5). However, the anti- 
cancer potential of KA through binding to α-7 nAChR and 
GPR35 warrants further study.

Conclusions and Future 
Perspectives
Metabolites are multifaceted in cancer cells, exerting 
metabolic as well as extra-metabolic functions. The com-
prehensive deciphering of these functions holds immense 
potential for developing new classes of therapeutics. 
Multiple intermediates exert extra-metabolic effects on 
processes such as epigenetic modifications, PTMs, and 
signaling transduction.

As they are highly heterogeneous, tumors have dis-
tinct metabolic signatures, and identifying tumor- 
specific biomarkers has the potential to improve precise 
cancer diagnosis. Additionally, there is ample evidence 
to support the anti-tumor efficacy of targeting this 

Figure 4 Key metabolites in methionine and glutamine metabolism. The metabolic reactions closely related to SAM and GSH production are shown. SAM is a universal 
methyl donor and primarily regulates methylation. GSH mainly modify glutathionylation through binding to the cysteine residues of proteins. 
Abbreviations: GSH, glutathione; MAT, adenosyltransferase; MT, methyltransferases; SAM, s-adenosyl-methionine; SAH, s-adenosyl-homocysteine; HCY, homocysteine; 
GLS, glutaminases; GCL, glutamate cysteine ligase; GSS, GSH synthetase.
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metabolic vulnerability alone or in combination. 
Notably, metabolic pathways are intertwined and largely 
overlap. A complete blockade may cause active com-
pensatory supply, impairing the inhibitory effects, high-
lighting the importance of monitoring metabolite 
dynamics and moderate intervention.

What we have described here is merely the tip of 
the iceberg, providing the impetus for further investi-
gation. Studies are needed to uncover how metabolites 
affect the expression of specific genes and signaling 
pathways in more detail. Furthermore, metabolites exist 
both outside and inside different cellular compart-
ments, and it would be of interest to explore how 
metabolite transportation and localization are regulated. 
It is likely that additional extra-metabolic functions of 
metabolites will be identified in the near future, which 
will have far-reaching implications for the understand-
ing of tumor biology and improving translational clin-
ical approaches.

Abbreviations
1,3-BPG, 1,3-bisphosphoglycerate; 2-HG, 2-hydroxygluta-
rate; 2-PG, 2-phosphoglycerate; 3-OHB, 3-hydroxybutyrate; 
3-PG, 3-phosphoglycerate; 6-PG, 6-phosphogluconate; 
AcAc-CoA, acetoacetyl-CoA; Ac-CoA, acetyl-CoA; ACL, 
ATP citrate lyase; ACSS, ac-CoA synthetase; AhR, aryl 
hydrocarbon receptor; D2HGDH, D-2-hydroxyglutarate 
dehydrogenase; EMT, epithelial-to-mesenchymal transition; 
FABP5, fatty acid-binding protein 5; FH, fumarate hydratase; 
G6P, glucose-6-phosphate; G6PD, glucose-6-phosphate 
dehydrogenase; GA3P, glyceraldehyde-3-phosphate; 
GAPDH, glyceraldehyde 3-phosphate dehydrogenase; 
GCL, glutamate cysteine ligase; GLS, glutaminases; 
GLUD, glutamate dehydrogenase; GPR, G-protein coupled 
receptors; GSH, glutathione; GSS, GSH synthetase; 
HIF1α, hypoxia-inducible factor 1-alpha; HMGCL, 
3-hydroxy-3-methylglutaryl-CoA lyase; HMG-CoA, 
3-hydroxy-3-methylglutaryl-CoA; HMGCS, 3-hydroxy- 
3-methylglutaryl–CoA synthase; ICL, isocitrate lyase; IDH, 

Figure 5 Key metabolites in the tryptophan (Trp) metabolism. The enzymatic reactions in kynurenine (Kyn) pathway (KP) are shown. Kyn and KA work as signal 
messengers, which are highlighted. 
Abbreviations: Trp, tryptophan; Kyn, kynurenine; KP, Kyn pathway; IDO1, indoleamine-2,3-dioxygenase 1 (IDO1); TDO, tryptophan-2,3-dioxygenase; AFMID, kynurenine 
formamidase; 3-HK, 3-hydroxykynurenine (3-HK); KMO, kynurenine 3-monooxygenase; AA, anthranilic acid; KYNU, kynureninase (KYNU); KA, kynurenic acid; KAT, 
kynurenine aminotransferases; 3-HAA, 3-hydroxyanthranilic acid; QA, quinolinic acid; PA, picolinic acid.
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isocitrate dehydrogenase; Kbhb, lysine β- 
hydroxybutyrylation; KDHs, ketoacid dehydrogenases; 
L2HGDH, L-2-hydroxyglutarate dehydrogenase; KP, kynur-
enine (Kyn) pathway; KYNU, kynureninase; LCFA, long 
chain fatty acids; LDH, lactate dehydrogenase; LDHA, lac-
tate dehydrogenase A; MAT2A, methionine adenosyltrans-
ferase 2A; MCT1, monocarboxylate transporters; MDH, 
malate dehydrogenase; MeS, metabolite-sensing module; 
MeSr, metabolite sensor-mediated signaling; MTs, methyl-
transferases; NF-κB, nuclear factor κB; PDH, pyruvate dehy-
drogenase; PEP, phosphoenolpyruvate; PGAM, 
phosphoglycerate mutase; PGD, phosphogluconate dehydro-
genase; PGLS, 6-phosphogluconolactonase; PHD, prolyl 
hydroxylase domain; PHGDH, phosphoglycerate dehydro-
genase; PPARβ/δ, peroxisome proliferator-activated receptor 
β/δ; PPP, pentose phosphate pathway; PTM, post- 
transcriptional modifications; R-5-P, ribose-5-phosphate; 
Ru-5-P, ribulose-5-phosphate; SAH, S-adenosyl- 
homocysteine; SAM, S-adenosyl-methionine; SC, sensing 
by conjugating; SDH, succinate dehydrogenase; TCA 
cycle, tricarboxylic acid cycle; δ-6-PGL, δ- 
6-phosphogluconolactone.
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