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Introduction

During larval development in Drosophila, eight nuclear
receptors are specifically expressed and perform specific
functions [Thummel, 1995]. Seven of them are orphan
receptors, for which ligands have not yet been identified.
This phenomenon suggests nuclear receptors play an
important role in insect embryonic development. At the
end of the third instar larval and prepupal stages, pulses
of ecdysone, the molting hormone of insects, directly
induce a small set of early genes, such as the orphan
nuclear receptor E75. These early genes later repress
their own expression and also induce a large set of the
late genes, including the orphan nuclear receptors E78B
and DHR3. Then the mid-prepupal genes, such as
BFTZ-F1, are induced. This cascade of expression of
nuclear receptors during Drosophila metamorphosis not
only suggests that nuclear receptors play crucial roles in
regulating normal embryonic development, but also raises
a possibility that nuclear receptors participate in regulating
each others expression. Although this aspect of vertebrate
orphan receptor regulation has not yet been examined
in great depth, it may potentially provide another point of
convergence in the regulation and function of nuclear
receptor superfamily members [Thummel, 1995]. In
vertebrate embryonic development, homologs of some
Drosophila orphan nuclear receptors are found in embryos
and loss of function of these receptors causes severe
defects. Nuclear receptors clearly play an important role
in regulating vertebrate embryonic development. The goal
of this review is to summarize the major findings about
the expression and function of nuclear receptors during
vertebrate embryonic development (Table 1).

Hepatocyte Nuclear Factor 4a (HNF4a)
(NR2A1)

In the adult, HNF4a is highly expressed at in liver, kidney,
intestine, and pancreas and at low levels in the testis
[Drewes et al., 1996; Miquerol et al., 1994; Sladek et al.,
1990]. During embryonic development, HNF4a expression
is found in the primary endoderm at embryonic day (E)
4.5 and in the visceral endoderm between E5.5 and 8.5
[Duncan et al., 1994]. Hepatic HNF4a expression is
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detected in the liver primordia by E8.5. At E10.5, HNF4a
is expressed in the developing pancreas and the
mesonephric tubules. HNF4a binds as homodimers to
hormone responsive elements (HRES) configured as
direct repeats with one base pair spacing (DR1) and
regulates the expression of genes involved in the
metabolism of carbohydrates, lipids, and cholesterol, as
well as xenobiotics and amino acids.Targeted deletion of
the HNF4a gene results in apoptosis of the embryonic
ectoderm at E6.5, followed by abnormal mesoderm
differentiation and embryonic death [Chen et al., 1994].
However, ablation of the HNF4a gene in either ES cells
or E8.5 embryos is associated with significantly reduced
expression of glycolytic enzymes, as well as glucose and
fatty acid transport proteins [Stoffel and Duncan, 1997] .
Embryoid bodies derived from HNF4a-/- ES cells
differentiate into endoderm and express makers of the
endoderm lineage, suggesting that it may control the
differentiation of visceral endoderm [Duncan et al., 1997].
Its expression in visceral endoderm is regulated by the
zinc finger transcription factor, GATA6 [Morrisey et al.,
1998]. Recent studies show that HNF4a can directly
regulate pregnane X receptor (PXR) expression during
fetal liver development and thus regulate PXR responses
to xenobiotics [Kamiya et al., 2003]. Liver-specific
knockout of HNF4a in mice confirms its important role
during differentiation of hepatocytes, hepatic storage of
glycogen, and hepatic epithelium generation [Parviz et
al., 2003]. These results suggest that HNF4a is crucial
for early embryonic development. HNF4a is the earliest
nuclear receptor to be expressed and functional in
vertebrate embryos and HNF4a regulation of PXR is also
a prime example of a cascade of nuclear receptor
expression.

Estrogen related receptor 3 (ERRp)
(NR3B2)

Slightly later during embryogenesis, at E5.5, ERR[
transcripts are first detected in extraembryonic ectoderm
[Luo et al., 1997; Pettersson et al., 1996]. At E8.5, ERR[
is specifically expressed in the chorion, suggesting that
ERR[ may play a role in early placental development.
The ERRp knockout embryos have severely impaired
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Null mutant

Drosophila Expression Ligand Lethality Defects Reference
Name Homolog
HNF4-alpha HNF4 E4.5 primary endoderm, NA Die at E6.5 Apoptosis of embryonic ectoderm at (Chen etal., 1994; Duncan
ES5.5in visceral E6.5, abnormal mesoderm et al., 1994)
endoderm, E8.5 in liver differentiation
primordia, E10.5 in
pancreas and
mesonephric tubules
ERR-beta E5.5 in extraembryonic NA Die at E10.5 Abnormal chorion development and over  (Luo et al., 1997)
ectoderm, E8.5 in chorion abundance of trophoblast giant cells
GCNF E6.5in 3 germ layers, NA Die at E10.5 Anteroposterior defects Posterior (Chung et al., 2001)
E8.5 mainly in the truncation, open neural tube, protruded
posterior of the trunk. tail bud,
E9.5 Anterior part of the
embryo
PPAR-gamma In synctiotrophoblasts Die at E10 Severe myocardial thinning, improper (Barak et al., 1999)
and cytotrophoblasts trophoblast differentiation
RAR-alpha E6.5 in embryo proper, Alf trans RA Decreased viability, growth deficiency, (Ang and Duester, 1997;
E8.0 in neural epithelium, Lohnes et al., 1994)
RAR-beta E7.5 in presumptive Alf trans RA (Ang and Duester, 1997;
hindbrain, E8.25 in Lohnes et al., 1994)
hindbrain and hindgut
RAR-gamma E8.5 neural epithelium Alf trans RA Decreased viability, growth deficiency (Ang and Duester, 1997;
near posterior neuropore, Lohnes et al., 1994)
E13.5 limbs and skin
RXR-alpha usP Liver, kidney, spleen 9 cis RA E12.5-16.5 Vitamin A deficiency syndromes (Kastner et al., 1994;
Mangelsdorf et al., 1992)
RXR-beta usP Central nervous system 9 cis RA (Kastner et al., 1994;
Mangelsdorf et al., 1992)
RXR-gamma usp peripheral nervous 9 cis RA E12.5-16.5 (Kastner et al., 1994;
systemn Mangelsdorf et al., 1992)
COUP-TFL Svp E7.5in neural ectodemm, NA perinatal Fusion of the IX and X cranial nerves, (Qiu et al., 1997)
E8.5in neural crest cells malfunction of sensory and motor
function of pharynx and tongue
COUP-TFIL SvP In sinus venous, common NA E10 Heart and vascular defects (Pereira et al., 1999)
atrium
SF1 F1Z E9.0 in urogenital ridge, NA Perinatal Complete adrenal and gonadal agenesis (Ikeda et al., 1994; Luo et

E10.0 in adrenal
steroidogenic tissue and
gonadal steroid-producing
cells

al., 1994)

Table 1. A summary of nuclear receptors during early embryonic development See text for more details

placental formation and die owing to a lack of nutrients
by E10.5 [Luo et al., 1997]. The ERR[ knockout embryos
exhibit abnormal chorion development associated with
an over abundance of trophoblast giant cells and an
absence of diploid trophoblasts. The ERR[ null phenotype
can be rescued by aggregation of ERRB-/- embryos with
tetraploid wild-type cells that contribute exclusively to
extraembryonic tissues [Luo et al., 1997]. Recently a
synthetic estrogen diethylstilbestrol (DES) have been
shown to act as an inverse agonist of ERR(. DES
regulates ERRp transcriptional activity and affects normal
placenta development [Tremblay et al., 2001]. These
results show that ERR is required for normal trophoblast
proliferation and differentiation.

A B
E7.0 E8.25
C D
.

> b

¥
E8.75 E9.0

Figure 1. GCNF expression pattern during post-gastrulation and

neuralation stages. (A-D) Whole mount in situ hybridization of GCNF
at E7.0 (A), E8.25 (B), E8.75 (C), and E9.0 (D).
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Germ Cell Nuclear Factor (GCNF)
(NR6A1)

In the adult, GCNF is highly expressed in germ cells.
GCNF binds to DRO HREs as a homodimer and acts as
a transcriptional repressor in the absence of ligand
[Hummelke and Cooney, 2001]. GCNF expression is also
found in both frog and mouse embryos [Chung et al.,
2001; David et al., 1998; Joos et al., 1996]. In Xenopus,
levels of GCNF expression increase from the gastrula
stage to the mid-neural stage [David et al., 1998]. An
anteroposterior gradient of GCNF expression then
develops at the late neurula stage. In the mouse, GCNF
expression is turned on as early as the egg cylinder stage
(Figure 1)A. After gastrulation, GCNF expression is
detected in the head-fold and throughout the primitive
streak [Chung et al., 2001]. Unlike Xenopus, a
posterior-anterior gradient of GCNF expression develops
by the neural stage with the highest levels at presomitic
mesoderm in the posterior (Figure 1B). Slightly later, it is
expressed at its highest levels throughout the
neuroectoderm (Figure 1C). By the late neural stage
(Figure 1D), GCNF expression is markedly reduced and
GCNF expression turns off subsequently. Changes in
GCNF expression in embryos affect normal embryonic
development in both frog and mouse. Injection of the
full-length or dominant negative (dn) GCNF transcripts
into frog embryos disrupts normal embryonic development
[David et al., 1998; Joos et al., 1996]. In the mouse, loss
of GCNF function by gene targeting results in embryonic
lethality, due to cardiovascular complications [Chung et
al., 2001]. As GCNF has been shown to repress the in
vitro expression of Oct4, which is essential for the
maintenance of the mammalian germ line, ablation of
GCNF in the mouse also shows a failure to repress Oct4
expression in somatic cells [Fuhrmann et al., 2001]. Thus,
GCNF is critical for repressing Oct4 gene activity as
pluripotent stem cells differentiate and thus play role in
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confining Oct4 expression to the germ line. In addition,
GCNF-/- embryos fail to undergoes axial rotation and to
close the neural tube. Recent studies in Xenopus suggest
that GCNF participates in the process of neurulation
[Barreto et al., 2003a]. In addition, loss of GCNF affects
expression of genes involved in anteroposterior axis
formations. GCNF-/- embryos also show a halt in
somitogenesis, leading to a posterior truncation. These
results of the GCNF knockout mice suggest that GCNF
is essential for embryonic survival and it is required for
normal posterior development, somitogenesis and neural
tube closure. Recent studies in Xenopus suggests that
GCNF can interfere with retinoic acid (RA) signaling
during early embryonic development by affecting the
expression of, an important catabolic enzyme of RA,
Cyp26Al [Barreto et al., 2003b]. This finding suggests
that cross-talk exists between GCNF and RA signaling,
which is an area ripe for further investigation.

Peroxisome Proliferator-Activated
Receptor y (PPAR y) (NR1C3)

PPARs mediate the effects of fatty acids and their
derivatives at the transcriptional level by forming a
heterodimer with RXR [Hihi et al., 2002]. PPAR y is
expressed in synctiotrophoblasts and cytotrophoblasts
in human placental villi [Schaiff et al., 2000]. PPAR y
deficiency causes embryonic lethality at E10 because of
severe myocardial thinning [Barak et al., 1999]. In
addition, PPAR y is required for epithelial differentiation
of trophoblast tissue, which is important for proper
placental vascularization. Unlike PPARB/d mutants [Barak
et al., 2002], defects in PPAR y -/- placentas affects
differentiation of the labyrinthine trophoblast but do not
disrupt the placental-decidual interface clearly
distinguishing between the placental functions of either
PPAR. PRAR y /RXRa heterodimers have been recently
shown to play this crucial role in human trophoblast
differentiaton [Fournier et al., 2002; Tarrade et al., 2001a;
Tarrade et al., 2001b]. Although the loss of PPARP/3
function causes embryonic lethality at E10.5, this result
is contributed by a maternal effect of PPARB/6 in the
uterus and placenta [Barak et al., 2002].

Retinoid receptors (RARs and RXRSs)
(NR1B1, 2 & 3 and NR2B1, 2 & 3)

The function and regulation of RA signaling during
embryonic development is extremely complex and
detailed discussion is beyond the scope of this review. It
has been reviewed in detailed elsewhere [Begemann and
Meyer, 2001; Kastner et al., 1995; Morriss-Kay and Ward,
1999; Ross et al., 2000; Zile, 2001]. In this minireview we
will briefly highlight some important aspects of retinoid
receptor function during embryonic development.
Expression of different subtypes of RARs and RXRs has
been demonstrated in embryos of various animals. In
mouse embryos, RAR a is ubiquitously expressed at E6.5
-7.5 [Ang and Duester, 1997; Ruberte et al., 1991]. At
E8, RAR a transcript appears in the neural epithelium of
the brain and then at E8.5 it is widely and abundantly
expressed in the lateral neural epithelium of both forebrain

www.nursa.org

Nuclear receptors in embryonic development

and hindbrain. At gastrulation stages, RAR [ is expressed
primarily in the presumptive hindbrain ectoderm and the
adjacent mesenchyme [Ang and Duester, 1997; Ruberte
et al., 1991]. At E8.25, RAR [ expression is found in the
caudal hindbrain region and hind gut [Ruberte et al., 1991;
Ruberte et al., 1990]. RARY is expressed after E8.5 in
the open portion of the neural epithelium of the posterior
neuropore [Ang and Duester, 1997; Ruberte et al., 1991].
After the neural tube closes, RARy neural expression
disappears. At E13.5, RARYy expression reappears and
is strongly expressed in the developing limbs and skin
[Dolle et al., 1990].

There is no close relationship between the expression of
RARs and RXRs [Mangelsdorf et al., 1992; Mangelsdorf
et al., 1990]. In rodent embryos, RXR a is expressed
abundantly in liver, kidney, spleen, visceral tissues and
skin [Mangelsdorf et al., 1992]. The expression of RXR
B is mainly in the central nervous system, while RXRy is
found in the peripheral nervous system and in muscle.

Most of the single RAR gene knockouts are viable and
have less significant phenotypes [Lohnes et al., 1994;
Mendelsohn et al., 1994]. Double knockouts, however,
show more severe phenotypes [Kastner et al., 1997a;
Lohnes et al., 1994; Mendelsohn et al., 1994]. The RAR
a /y double mutants display rhombencephalic defects
[Lohnes et al., 1994]. The developmental defects
generated include axial transformations. Some of the
RAR knockout mice have phenotypes resembling those
generated by inactivation of the Hox genes, which are
targets of RA signaling [Durston et al., 1989]. Other
defects belong to the fetal vitamin A deficiency syndrome
[Lohnes et al., 1994].

Single knockouts of RXR  and RXRy are viable and do
not show defects related to the vitamin A deficiency
syndrome [Durston et al., 1989]. RXR B was shown to be
necessary for spermatogenesis [Kastner et al., 1994;
Sucov et al., 1994]. In RXRy -/-mice, the expression of
choline acetyltransferase in the cholinergic interneurons
has recently been shown to be down-regulated [Saga et
al., 1999]. These results suggest that RXRy may play an
important role in the proper functioning of neurons.

RXRa has been shown to be involved in cardiac and liver
organogenesis and homozygous mutant fetuses die from
embryonic days 12.5 to 16.5 [Kastner et al., 1994; Sucov
etal., 1994]. The defects of these fetuses resemble those
with the fetal vitamin A deficiency syndromes, including
a myocardial hypoplasia, conotruncal and ocular defects.
In addition, the lethality of RXR a fetuses may be due to
cardiac, hepatic, and placental defects [Kastner et al.,
1997b; Tran and Sucov, 1998]. In addition, a synergistic
effect was observed in RXR o /RAR mutants, however,
no synergy was observed between the effects of
mutations of either RXR 3 or RXRy and those of the RAR
mutations [Kastner et al., 1997a]. These results suggest
that RXR o /RAR heterodimers are the most common
functional unit in the RA signaling pathway during
embryogenesis.

NRS | 2003 | Vol.1| DOI:10.1621/nrs.01007 | Page 3 of 7



Review

With availability of various agonists, antagonists and
double knockouts, more specific roles of retinoid receptors
in embryonic development have been demonstrated, such
as the development of branchial arch, hindbrain, inner
ear, and pulmonary alveolus [Massaro et al., 2003; Matt
et al., 2003; Romand et al., 2002; Wendling et al., 2001].

In early studies, ectopic addition of RA has been shown
to have a teratogenic effect on normal embryonic
development [Durston et al., 1989]. A RA gradient has
been shown to exist along the anterior-posterior axis of
the embryo [Maden et al., 1998]. The findings from
knockouts of the key enzymes, retinaldehyde
dehydrogenase 2 (Raldh2) and cyp26A1, involved in RA
metabolism have demonstrated that these enzymes are
essential for mouse embryonic development and early
morphogenesis [Niederreither et al., 1999]. Raldh2 is
responsible for embryonic RA synthesis while cyp26A1
metabolizes the active RA to hydroxylated retinoids [Marill
et al., 2003]. Raldh2 and cyp26A1l are mutually
exclusively expressed in vertebrate embryos to generate
RA sensitive and RA free regions in the embryos
[Abu-Abed et al., 2001; Swindell et al., 1999]. Raldh2
deficiency cause embryonic lethality at E10 and the null
mutant embryos suffer severe defects, such as failure in
axial rotation and dilated heart [Niederreither et al., 1999].
Ablation of cyp26A1 also causes embryonic lethality at
E11.5 and the cyp26A1-/- embryos suffer severe posterior
truncation [Abu-Abed et al., 2001]. Taken together, RARs
and RXRs transduce the RA signaling, which is important
for normal embryonic development.

Chicken Ovalbumin Upstream Promoter
Transcription Factors (COUP-TFs)
(NR2F1 and NR2F2)

COUP-TF binds to HREs as a homodimer and acts as
transcriptional repressor [Pereira et al., 2000]. Similar to
its Drosophila homologs, SVP, two members of mouse
COUP-TFs are expressed in embryos. COUP-TFI is first
expressed in the neural ectoderm at E7.5 [Qiu et al.,
1994; Qiu et al., 1997]. At E8.5 it is expressed in
premigratory and migratory neural crest cells. In Xenopus
laevis, misexpression of COUP-TFI leads to anterior
truncations and malformations within the embryonic brain
[Schuh and Kimelman, 1995]. Targeted disruption of
mouse COUP-TFI results in perinatal death because of
multiple defects in central and peripheral nervous system
development [Qiu et al., 1997]. Most of COUP-TFI-/-
embryos have fusions of the glossopharyngeal (1X) and
vagus (X) cranial nerves. These defects impair both
sensory and motor functions of the pharynx and the
tongue, and lead to malnutrition, dehydration and usually
death. Moreover, axonal projection and arborization are
significantly reduced in the cervical plexus region and in
the ophthalmic branch of the trigeminal nerve. Taken
together, these results strongly suggest that COUP-TFI
is a crucial component in the regulation of axon guidance,
neurogenesis and cellular differentiation during embryonic
development [Zhou et al., 2001]. A different pattern of
expression for COUP-TFII offers clues about its distinct
functions during mouse embryogenesis. At early stages
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of development, COUP-TFII is expressed in the sinus
venosus, the elongating umbilical veins and the
neuroepithelium [Pereira et al., 1999]. Later it is
expressed in the common atrium. In addition, COUP-TFII
is expressed most highly in the mesenchymal
compartments of developing organs such as the salivary
gland, prostate, lung, kidney, pancreas primordium and
stomach. COUP-TFII knockout mice die at around E10,
showing a variety of heart and vascular defects [Pereira
et al., 1999]. Atrial development is halted at E9.0 in
COUP-TFII-/- embryos. These results suggest that
COUP-TFII may play a role in the regulation of
mesenchymal-epithelial interactions during
organogenesis, and in development of the cardiovascular
system.

Steroidogenic factor (SF1) (NR5A1)

During mouse embryonic development, SF1 expression
is first detected at E9.0 in the urogenital ridge, and
subsequently in adrenal steroidogenic primoridium (E11)
and gonadal steroid-producing cells (E13) [Ikeda et al.,
1994]. SF1 expression is also detected in the
ventromedial hypothalamic nucleus (VMH) after E11.5
and in the pituitary gland after E13.5. Pituitary SF1
expression precedes the onset of FSH expression in
gonadotropes, suggesting that SF1 might either directly
regulate FSH gene transcription or regulate gonadotrope
differentiation [Ingraham et al., 1994]. Using both in vitro
and in vivo assays, SF1 can directly regulate expression
another orphan receptor, DAX1, which is also important
in mammalian gonad development and sex determination.
[Hoyle et al., 2002]. The Wilms tumor suppressor (Wt1)
and the Lim homeobox protein, Lhx9m, have been
recently shown to directly activate SF1 expression and
thus mediate early gonadogenesis. [Wilhelm and Englert,
2002]. SF1-/- embryos have complete adrenal and
gonadal agenesis, male-to-female sex-reversal, and
persistence of Mullerian structures in males [Luo et al.,
1994; Luo et al., 1995; Sadovsky et al., 1995]. SF1 null
mutants are viable at birth, but die during the first 8 days
of life due to adrenocortical insufficiency. These gene
knockout experiments have provided strong evidence for
a direct role for SF1 in regulating mammalian sexual
development as well as the differentiation of steroidogenic
tissues.

Conclusion

In summary, knockout mouse models currently offer great
opportunities to understand the functions of individual
nuclear receptors during embryonic development. Recent
results from in vitro and in vivo studies show possible
functional relationships between nuclear receptors. For
instance, RA is capable of inducing expression of
COUP-TFs and GCNF [Fuhrmann et al., 2001]. HNF4a
regulates PXR expression [Kamiya et al., 2003], SF1
controls DAX1 expression [Hoyle et al., 2002], Oct4
expression is sequentially regulated by SF1, GCNF and
COUP-TF [Fuhrmann et al., 2001]. Xenopus GCNF is
able to regulate RA signaling by controlling the expression
of its catabolic enzyme, cyp26A1 [Barreto et al., 2003b].
These results come closer to the Thummel's speculation
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about the convergent regulation of nuclear receptors in
invertebrates and vertebrates [Thummel, 1995]. Do
nuclear receptors expressed in the early embryonic
stages induce the expression of nuclear receptors in later
stages? Although there is, as yet, no clear answer to this
guestion, new technologies, such as, transgenic mouse
techniques, RNAI, and gene array technology, as well as
genomic information and bioinformatic resources should
be capable of enhancing our opportunity to explore this
area. An area that is ripe to be explored is the degree of
cross-talk between different NR pathways in vertebrate
development.
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