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Epidemic model have been broadly used in different forms for studying and forecasting epidemiological
processes the spread of dengue, zika virus , HIV, SARS and recently , the 2019-20 corona virus which is an
ongoing pandemic of corona virus disease (COVID-19). In the present paper, an inverse problem to find
the parameters for the single term (multi term) fractional order system of an outbreak of COVID-19 is
considered. In the starting, we propose a numerical method for fractional order corona virus system
based on the Gorenflo-Mainardi-Moretti-Paradisi (GMMP) scheme, and then to find the parameters we
use GMMP method and the modified hybrid Nelder-Mead Simplex search and particle swarm optimiza-
tion algorithm. With the new fractional orders and parameters our fractional order corona virus system is
capable to providing numerical results that agree well with the real data.
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1. Introduction

In the middle of March of 2020 World health organization
announced Covid-19 as a public health emergency of international
concern. The origin of this disease is China. In December 2019
China has betimes desolation around the world as well as in India.
The first patient of Covid-19 found on 23 February 2020 in India
[1]. The virus has been affected most of the countries and taken
the lives of several crore of people worldwide. In the march 2020
the World Health Organization (WHO) declared the disease a pan-
demic, first of its kind in our generation. Many countries and
regions have been lockdown and applied strict social distancing
measures to spread of virus. From a strategic and health care man-
agement are observing pattern of the disease and the prediction of
its spread over time is great importance, to save the lives and to
minimize the social and economic consequences of the disease.

Fractional calculus has been the subject of worldwide attention
in the last decades [2] due to its broad range of application in
chemistry [3] biology [4] physics [5] engineering [6] image pro-

* Corresponding author.
E-mail address: nkshukla.kumar4@gmail.com (N. Kumar).

https://doi.org/10.1016/j.matpr.2020.12.918
2214-7853/© 2020 Elsevier Ltd. All rights reserved.

cessing [7]. Hence, fractional derivative based on epidemic system
have also been used to deal with some epidemic behaviors [8-10].
The fractional derivative can provide a better epidemic model than
an integer-order derivative [11]. The main advantage of fractional
order differential equation is to provides a powerful instrument
for incorporation of memory and hereditary properties of the sys-
tems as opposed to the integer order differential equation in which
such effects are neglected, or difficult to incorporate. An important
problem concerned with the fractional constitutive models is to
determine the unknown parameters from real data, which leads
to the so-called fractional inverse problem [12] .In the present
paper, we mainly consider the fractional order CORONA virus sys-
tem with the fractional derivatives defined in Caputo sense. This is
a general system with different fractional orders.

This paper is organized as follows : in section 2, we describe
fractional derivative and fractional order CORONA virus system
in brief. The numerical solution of fractional order CORONA virus
system is obtained using the GMMP scheme and the Newton
method in section 3. In section 4, the MH-NMSS-PSO algorithm is
described for parameter estimation in fractional differential equa-
tion. The parameter estimation techniques two term model is
described in section 5. The conclusion of our work is presented
in section 6.
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2. Fractional derivative and the system of fractional order
CORONA virus

2.1. Fractional derivatives

Fractional calculus plays an important role in modern science
[2,13]. In this study we propose the use of Caputo definition of
the fractional derivative. Another two commonly is fractional
derivative definitions are the Grunewald- Letnikov and Riemann-
Liouville derivative definitions [14].

Definition 1: The Caputo derivative with the order o of function
f(t) is given as follows:

dh
o D" 5 () =

acD?f(t) (- f'e)

=T

n-1<oa<nneZ

Definition 2: The Riemann-Liouville derivative with order o of a
function f(t) is defined as follows:

h .t
aRLDZS(0) = 450, f10) == 5 [ -0

vh—ua azﬁ.a
n-1<a<n neZ

Definition 3: The Griinwald-Letnikov derivative of order o of a
function f(t) is defined as follows:

n-1 tk o

an—s—l—a +

k=l

L
Vh — o dt

aGLDf( / [(t D" (e

It follows from the definition of fractional derivatives We may
define the Caputo derivative in terms of the Riemann - Lowville
derivative definition in the following way.

) - } n-1 (t - a)k—atf(k)(a)
aCDEf(t) = aRLth(f)kZ(:] S o s
By letting
n-1 _ k (k)
h(t) -y g
k=0 :
We get
) } . n-1 t‘f a ( )
aCD?f(t) = aRLD?h(t) = aRLD?f(t) Z k;

k=l
This may be simplified down to the following expression
aCD} h(t) = aCD{ f(t)

We will consider the caputo derivative, since it may be com-
bined with classical initial conditions. the Riemann - Lowville
derivative, for example is no suitable to be combined with classical
initial condition.

The original model used for this epidemic is the integer order
SIQR model extended form of basic SIR model [15]. The classical
model of COVID —19 epidemic considers that the total human pop-
ulation N is divided in to four subpopulation : S susceptible, I
infected, Q quarantined and R recovered. The classical model con-
sists of 4 ordinary differential equation for four independent func-
tions is as follows:

ds _
at =

BSI
N(1-1)

& = whiy — (i
dQ*nl—/Q
E = VQ;%al
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Fig. 1. Integer order Model, Simulation overlayed on real data.
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Fig. 2. Fractional order model.

Where gis the infectious rate, yindicates the rate at which new
cases are recognized from the infected population. y indicates the
rate at which isolation are become removed (recovered or died).
pindicating the removal rate of infected individuals who are
asymptotic and didn’t became quarantined, N consider as popula-
tion size. The factor (1-1) to N with ‘I’ being the fraction of popula-
tion following lockdown , is used to consider lockdown . But we
assume that everyone not following lockdown so every person
has equal probability to become infected in to contact with every
other person. After obtaining the numerical solutions of the differ-
ential equation system (7). The results are shown in the figure 0.1,
which demonstrates that the solution of the system of differential
equations provides a poor match with the real number of the
infected humans.

This integer order simulated model provider a poor fit to the
measured date shown in Fig. 1. We now consider replacing the
integer order derivative with fractional order derivative terms.
Fig. 2.

3. Fractional order model

This model now allows for extra flexibility [8-9] where the frac-
tional order of each term may now be adjusted to a non-integer
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value. Dietthelm [16] proposes the following choices for the frac-
tion order.

o1 = 0y =03 = o4 = 0.70r may another value. The result for
this specific choice of the alphas reduces the root-mean- square
relative error is g =0.98. This exhibit a major improvement from
the integer model, however noticeable error in figure encourages
further exploration into the choice of the fractional order terms
and 4 other parameters in the model. Let us discuss the numerical
solver and proposed parameter estimation techniques [13-14,17].

4. Numerical solver for the fractional order model

Since the system of equation is non-linear, Newton-GMRES [ 18]
has been chosen to solve the system numerically. Compared to
other conventional numerical solvers, using GMMP (Gorenflo-
Mainardi Moretti-Paradisi) [17] scheme and Newton method is
very time efficient.

We generate a uniform gridt; = a +jh, j = 0,1,2,.......... Nh =
t—a and o> 0.

The Caputo derivative is approximated as

. S (t-a/f )
h:x ZC tn k - ]Z[; ]-!

acCD; f(

where
" o
Ci = H)k(]ﬂ

consider the general case for our fractional order non-linear

system.
0CC; x(t) = f(t, x(t))

Where the right hand side in one of the 4th equations is in the
dynamical system. The Caputo derivative is now submitted in to
this expression to receive.

n-1

N _ 1y )]
pfes <x(rnk)—237“ ”].”‘ (")> = (b, X(t)
K=0 j:

j=1
Now by bringing x(t,)to the left hand side

&L (t—a)x0 (@)

X(tn) = h“ tm n + Z A
= I
N N n-1
(t—ay x0 (
e ( R )
k=1 (= =1

However when 0 < o < 1the expression simplifies to

n-1 )

=1

X(ta) = h”f(tn, x(

N

DA CIE()

k=1

When we plough through the algebra for each equation, we
generate the solution of equations.

S(tw) = h™ f(tw, S(tw)) + S(a) —é G [S(tn—« — S(a))]

S R I(tn — (@)

k=1

N o
- k; G lQ(

I(tn) = h* f(tw, I(ty)) +1(a)

Q(ty) = h™ f(ty, Q(tn)) + tn-x — Q(a))]

R(ty) = h™ f(ty. R(t)) +R(a) — é G [R(tv—x — R(@))]
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Newton GMRES methods is an effective method to solving non-
linear equations. Newton method is given as follows:

— Jr () TF(%), n=0,1,2, ...

Where J; (x,) denote the Jacobian matrix.

Xny1 = Xpn

5. Inverse problems parameter estimation techniques single
term model

For this study to solve the inverse problem both the Nelder-
Mead Simplex Search (NMSS) [19] and the Particle Swarm Opti-
mization (PSO) [20] were used. Both of these technique have differ-
ent traits when it comes to estimating parameter for example in
the NMSS methods, the initial points is pre-defined and the
method moves the parameter away from paints with poorer func-
tion values. The PSO methods has a set of randomly chosen points
and move towards points better with function values. The Modi-
fied Hybrid Nelder-Mead Simplex-Search and Particle Swarm Opti-
mization (MHNMSS-PSO) was adopted from these methods. Steps
of this methods are as follows

Define the mean square error (MSE) by g:

1. Create a Population of size 3m+ 1. From athe simpler of
mdimensions.

Pi= (P1j ,Pyi— —— —Pni) EDi=1, 2,— —m+1

Here
p, — i (=1 x (A" = P™)

m+1

J=1,2, i, m, i=1,2,....... ,m+1

A pair of particles are created from the PSO methods
P; = (PyiPyi— — —Pn)ED ,i=M+L, —3m+1

Where

P =PM" 4+ Rand x (P"™ —P"™") j=1,2—-M

i=m+2,..........,3M+1
Lastly their velocities are calculated

Vi = (V" = V™) /L j=1,2—--M
i=M+2, 3m+1

2. Evaluate ‘g’ at each particle ‘p’ order them from smallest to
longest.

g(P1) <g(P2) <

3. Incorporate the NMSS, Calculate center of gravity.

Py = (P10, P2g, e ,Pmo)ED
m
mp.

Pj.o=@, =12, m
m

Calculate P, = (1+ o)Po— o  Pmy1
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o > 0 recommanded that o > 1

g(Py) < g(Pm) then Ppmiy = P
g(Py) then compute rP, + (1 —r1)Py

Case —1: if g(Py)

<
Case —2: if g(Py) <

where r =2 if g(P.) < g&(P1),Pmy1 = Peelse Py = P,

Case —3: if g(P;) > (Pn) and g(P;) < gPmi1, Pmi1 Pr compute
PC = ﬁPmH +(‘1 7,3)1)0

ifg(P.) < g(Pms1), Pme1 = Py else let

Pi=0P; + Py —0)Py,i=1,2,....... m+1 chose
B=05ando =05

4. In corporate PSO update 2 m Particles with the poorest MSE
function value.
5. 1f S < & stop. otherwise return to step 2

_ 2 1/2
m+1 (9 — \/§>
Se= T m+1
i=1 m+
m+1
g> andg =g =/g PPy, Po)
i=1

From this parameter estimation method. The model now fits
much better.

6. Inverse problem estimation techniques two term model

We propose the two term fractional order model as following.

JaacDf ... X(t) + 42 acDP x(t) = f(ty,x(ty))

Apply our approximated definition for the Caputo derivative

Yt -
= f(tm ( n))

Omit k=0 term and solve for x(t,)

WZC ~x(@)

hmZC“‘ (ta 1) — X(@)] + -

[~ e =
chk (ta-k) — x(a)]

= f(tm ( n))
Simplify by letting r /3 —

h“‘2

9‘2

A = h“] Zc

X(tn-t) — x(a))

hy =ik Zﬂ (ta-t) — X(@))

Thus simplify and rearranged expression is
X(tﬂ) = X k[f rﬂv tn (Al +A2)]

From here the GMMP scheme [18,21] and Newton —~GMRES
method can be applied to obtain a numerical solution for x. So
the new two term fractional order dynamical system is

given is

A1 acDP'S +J; acDP?S = — /’15’ 5
3 acDP 1 +7q acDf =gl — (u+m)l
45 acDP Q + /s achﬁQ = 171 -7Q
/7 acDP R + /g acDPER=7yQ + ol

Following the some methodology from the single term counter-
part, we can numerically, solve this two term fractional order non-
linear system of equations.
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7. Conclusion

The final result of two term technique shows a drastic MSE test,
demonstrating great effectiveness in modeling this epidemic using
the two term fractional order model with parameter estimation.
However, there is noticeable error between 125th —225th day
and 250th-275th day of the model. However, despite this poor fit-
ting in the section, the rest of the model agrees very well with the
real data, showing this model’s effectiveness. Perturbations in each
parameter was attempted, while keeping all other parameters
fixed, but the only significant change to the model was in the mid-
dle region, between days 1st —120th and 225th —250th. So this
contribution of error could not be reduced in this two term model.

For the purpose of using this model to make predictions on the
behavior of this disease, the single term model in Fig. 3 would suf-
fice. Despite its greater error than two term model in the Fig. 4, and
also sufficiently models the entire span of the real data. This paper
has proposed a new two term method to achieve more accurate
model, Indian data of CORONA virus epidemic has been simulated
from 11/11/2019 to 18/11/2020.
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