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Abstract
Purpose of Review Multiple sclerosis (MS) is a complex neurodegenerative disease characterized by inflammation, demy-
elination, and neurodegeneration. Significant hypoxia exists in brain of people with MS (pwMS), likely contributing to 
inflammatory, neurodegenerative, and vascular impairments. In this review, we explore the concept of a negative feedback 
loop between hypoxia and inflammation, discussing its potential role in disease progression based on evidence of hypoxia, 
and its implications for therapeutic targets.
Recent Findings In the experimental autoimmune encephalomyelitis (EAE) model, hypoxia has been detected in gray mat-
ter (GM) using histological stains, susceptibility MRI and implanted oxygen sensitive probes. In pwMS, hypoxia has been 
quantified using near-infrared spectroscopy (NIRS) to measure cortical tissue oxygen saturation  (StO2), as well as through 
blood-based biomarkers such as Glucose Transporter-1 (GLUT-1). We outline the potential for the hypoxia-inflammation 
cycle to drive tissue damage even in the absence of plaques. Inflammation can drive hypoxia through blood–brain barrier 
(BBB) disruption and edema, mitochondrial dysfunction, oxidative stress, vessel blockage and vascular abnormalities. The 
hypoxia can, in turn, drive more inflammation.
Summary The hypoxia-inflammation cycle could exacerbate neuroinflammation and disease progression. We explore thera-
peutic approaches that target this cycle, providing information about potential treatments in MS. There are many therapeutic 
approaches that could block this cycle, including inhibiting hypoxia-inducible factor 1-α (HIF-1α), blocking cell adhesion 
or using vasodilators or oxygen, which could reduce either inflammation or hypoxia. This review highlights the potential 
significance of the hypoxia-inflammation pathway in MS and suggests strategies to break the cycle. Such treatments could 
improve quality of life or reduce rates of progression.
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Introduction

Multiple sclerosis (MS) is a complex disease that involves 
both inflammation and autoimmunity [1]. Historically, it was 
considered a disease of the nerves, as it involves demyeli-
nation and loss of function of the central nervous system 
(CNS) [2, 3]. As more evidence is gathered, it has become 
clear that the pathophysiology is highly complex, involving 
various cell types and multiple forms of cellular damage [3]. 
This includes inflammatory cell invasion, as well as dam-
age to oligodendrocytes, astrocytes and cells associated with 
blood vessels and the blood–brain barrier (BBB).

Given this complexity, treatment approaches have evolved 
as well. Currently, three categories of disease treatment are 
being considered [4]. One is a treatment that will cure people 
with MS (pwMS) such that there is no further cell damage, 
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and function is restored. This represents the ultimate goal. 
A second type is a treatment that will prevent progression 
to more severe symptoms. The third includes treatments 
that address symptoms and improve quality of life. In some 
cases, the latter two types of treatment may overlap.

An example of overlap includes many of the anti-inflam-
matory treatments. Those that reduce specific types of 
inflammatory responses, such as blocking T-cell activation, 
were expected to fall under the second category, where peri-
ods of relapse are reduced, and symptoms appear to stabi-
lize. We now find that people on some of these treatments 
still had an inexorable loss of brain volume. Thus, atrophy 
persisted even with a lack of relapses [4]. Short of a cure 
for MS, there remains a critical need for treatments that 
reduce both symptoms and progression. To find such treat-
ments, targets are required and to find the targets, a greater 
understanding of the basic pathophysiology of the disease 
is required.

This paper focuses on the occurrence of oxygen defi-
ciency (hypoxia) in many pwMS and MS animal models. 
Evidence also suggests an interaction between hypoxia 
and inflammation. We will present evidence for a hypoxia-
inflammation cycle that may contribute to MS pathogenesis 
and discuss its potential as a treatment target.

Inflammation‑Induced Hypoxia

Inflammation and hypoxia are now recognized to be inte-
gral to the phenotypes of MS. It is important to determine 
whether inflammation or hypoxia occurs first [5]. In the cur-
rent review, we discuss a negative hypoxia-inflammation 
cycle, and assume inflammation comes first. However, this 
is not critical for the existence of such a cycle. In the experi-
mental autoimmune encephalomyelitis (EAE) model of MS, 
inflammation is certainly the initial step, as it is triggered 
with an adjuvant often accompanied by pertussis toxin. Even 
before motor symptoms and demyelination occurs, there 
is elevation of pro-inflammatory cytokines interleukin-1β 
(IL-1β) and tumor necrosis factor α (TNF-α) in the hypo-
thalamus, and IL-6 and TNF-α in normal appearing corti-
cal gray matter (GM) [6, 7]. Thus, although most work on 
the EAE model is in the spinal cord, there is diffuse CNS 
inflammation.

There is strong evidence that inflammation can cause both 
hypoxia and upregulation of hypoxia-response genes. Using 
the hypoxia marker EF5 [2-(2-nitro-1H-imidazol-1-yl)-N-
(2,2,3,3,3-pentafluoropropyl)acetamide], the endothelial 
area of intestinal mucosa shows significant hypoxia [8]. 
Inflammation may cause hypoxia through multiple path-
ways. Research on Coronavirus disease 2019 (COVID-19) 
supports this hypothesis and may have identified a similar 
negative feedback loop to that which we propose for MS: “a 

vicious cycle, as infection- and hypoxia-related inflammation 
cause capillary function to deteriorate, which in turn accel-
erates hypoxia-related inflammation and tissue damage.” 
[9]. Similar damage also occurs in sepsis [10].

Abnormal oxygen delivery, where it no longer meets 
demand, will cause hypoxia. Inflammation can result in 
both physical blockage of the microvasculature and abnor-
mal regulation in the vasculature [11, 12]. The phenom-
enon called “vascular stalling” halts capillary perfusion 
possibly in association with pericyte constriction or leu-
kocyte adhesion [13]. BBB disruption occurs with inflam-
mation, followed by edema. Edema, and changes in regu-
lation can shift flow from gas exchanging small vessels 
to less effective microvascular shunts [12]. Inflammation-
induced edema, and therefore hypoxia, may be regional, 
as lipopolysaccharide (LPS) induced CNS inflammation in 
a mouse model causes periventricular edema [14]. Perive-
ntricular lesions are recognized as a phenotype of MS, 
perhaps relating to this link between inflammation and 
hypoxia [15].

Impairment in blood flow regulation with inflamma-
tion can also cause hypoxia [16, 17]. Astrocytes are certain 
to play a role in inflammation-induced hypoxia. They are 
associated with inflammation related disruption of the BBB 
and development of edema [18]. This may involve pericyte 
constriction [19].

Also, hypoxia could occur if oxygen utilization increases 
without an appropriate increase in perfusion. Inflammation 
is associated with changes in the metabolism of inflamma-
tory cells that could cause an imbalance in oxygen delivery. 
In theory, demyelinated neurons may also have a higher 
metabolic rate for a given action potential. Thus, inflamma-
tion could cause the hypoxia observed in MS.

Evidence for Hypoxia in MS

The hypothesis that hypoxia plays a role in MS pathogenesis 
was first proposed in 1990, suggesting that MS might be 
characterized, at least in part, as a cerebrovascular condition 
[20]. This vascular injury triggers a cascade of biochemi-
cal and physiological events, ultimately leading to ischemic 
hypoxia, phagocytosis of endothelial cells, and consequent 
demyelination. This process is then compounded by a sec-
ondary immune response that exacerbates the damage. How-
ever, in many cases, such inflammation-induced hypoxic-like 
lesions occur in the absence of significant vascular dam-
age, and thus certain inflammatory mediators, in particular 
reactive oxygen species (ROS), nitric oxide (NO), or their 
combined products may induce mitochondrial dysfunction 
[21]. Structural and functional mitochondrial damage in 
acute lesions has been confirmed, while in inactive plaques, 
increased mitochondrial activity indicates higher energy 
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demand in demyelinated axons [22, 23]. Additionally, MS 
samples show suppressed mitochondrial respiratory chain 
complexes in axonal pathology [24]. Further supporting 
this concept, a multi-center European study demonstrated 
that serum lactate levels—an indicator of anaerobic metabo-
lism—were significantly higher in individuals with MS com-
pared to healthy controls, with the highest levels correlating 
with disease progression [25]. The strong positive corre-
lations between lactate levels, Expanded Disability Status 
Scale (EDSS) scores, and various clinical and radiological 
outcomes underscore the potential link between mitochon-
drial dysfunction and MS progression [25, 26]. As evidence 
accumulated, the idea of “virtual hypoxia” was identified as 
a significant mechanism in MS, while highlighting various 
methods to quantify it [5, 27]. This, however, is a poten-
tially related but distinct concept from true hypoxia, which 
involves actual oxygen deficiency [5].

Hypoxia in MS Animal Models

Over the past decade, studies on MS animal models like 
EAE have consistently quantified hypoxia using a range 
of in vitro and in vivo techniques. Researchers discovered 
significant hypoxia in the lumbar spinal cord of EAE rats 
using two independent methods: pimonidazole labeling and 
oxygen probes. In this study, severity of hypoxia closely mir-
rored the extent of neurological impairment [28]. Notably, 
partial pressure of oxygen (PO₂) levels normalized during 
periods of disease remission but dropped sharply again dur-
ing relapses. Furthermore, they demonstrated that hypoxia 
was linked to increased labelling of hypoxia-inducible fac-
tor 1α (HIF-1α) in neurons. The blood vessels in the spinal 
cord also showed changes consistent with the body's action 
to compensate for this hypoxia. Specifically, during relapse 
periods, rats with neurological impairments had larger and 
more numerous blood vessels in the lumbar and sacral areas. 
Additionally, the overall size of the spinal cord increased 
during periods of disease activity, further supporting the 
presence of hypoxic conditions. These findings imply that 
hypoxia may not only reflect but also drive pathological 
changes in the spinal cord, potentially setting the stage for 
early inflammatory events that contribute to demyelination.

More recently, researchers used a LPS injection to mimic 
the molecular events of inflammatory demyelination, iden-
tified early-stage transient hypoxia in the spinal cord [29]. 
This hypoxia was particularly prominent at the white mat-
ter (WM)/GM junction and in the dorsal white column and 
was associated with elevated levels of reactive oxygen spe-
cies (ROS) and NO, preceding the onset of demyelination. 
Based on these findings, the researchers proposed a model 
where the activation of innate immune responses triggers 
transient hypoxia in susceptible vascular regions, initiating 
pathological changes that contribute to disease progression. 

This concept was further studied in the other part of the 
CNS, using mixes of in vivo and in vitro techniques.

In one study, susceptibility-weighted imaging (SWI) was 
used to detect hypointense lesions in the spinal cord and 
cerebellum of EAE and control mice [30]. Blood was then 
removed through perfusion with saline. The rationale was 
that if the SWI lesions disappeared following the removal 
of blood from vessels, this would indicate they were caused 
by deoxyhemoglobin, suggesting that these areas were rela-
tively hypoxic. In the spinal cord, SWI lesions were pri-
marily located at the WM/GM boundary, with some found 
in the ventral WM. In the cerebellum, SWI lesions were 
largely observed in the WM tracts, mostly in regions with 
perivascular cuffs. Moreover, results showed that many SWI 
lesions, especially at the WM/GM boundary of the lumbar 
spinal cord and in the cerebellum, disappeared after per-
fusion, suggesting that these lesions were associated with 
deoxyhemoglobin and hypoxia. This was a groundbreaking 
approach to identifying hypoxic lesions; however, a more 
practical method was needed that did not require sacrificing 
animals.

A solution was to modify the inspired oxygen content 
during SWI imaging to identify deoxyhemoglobin-driven 
hypointensities in vivo [31]. SWI was performed on the lum-
bar spinal cords of naïve control and EAE mice using 30% 
O₂, followed by 100% O₂. In some mice, imaging was also 
conducted after perfusion. Most SWI lesions observed with 
30% O₂ changed in appearance with 100% O₂ and were no 
longer visible after perfusion. Those lesion changes upon 
 O2 alteration, indicates that they were most likely driven by 
deoxyhemoglobin and hypoxia. This research suggest that 
future studies could employ this method to assess the impact 
of vascular hypointensities with SWI in tracking the progres-
sion of EAE and MS over time.

In vivo oxygen measurements were conducted over time 
in the cerebellum and cortex of awake EAE mice [32]. Fiber-
optic-based PO₂ sensors were implanted to allow continu-
ous measurement over several weeks. The study revealed a 
marked increase in PO₂ variance following the induction of 
autoimmunity, with a pattern that was primarily hypoxic. 
Notably, significant hypoxia was observed in the GM of both 
the cerebellum and cortex, with cortical hypoxia occurring 
in approximately 75% of the measurements. The diminished 
PO₂, in the cerebellum and in the cortex, was sufficient to 
potentially stimulate a hypoxic response, which may influ-
ence immune modulation. Furthermore, the study suggested 
that greater behavioral impairment correlates with increased 
hypoxia and PO₂ variance. The cerebellum was identified as 
becoming hypoxic earlier than the cortex, implying a rostral 
progression of hypoxia from the spinal cord to the cortex in 
EAE model.

In order to assess oxygenation and vascular integrity in 
the spinal cord of EAE animals, light sheet fluorescence 
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microscopy and optoacoustic imaging was used in real-time 
and non-invasively [33]. Comparing the spinal cords of EAE 
mice to those of healthy mice, the researchers discovered 
decreased hemoglobin content and oxygen saturation, which 
may indicate hypoxia and impaired perfusion in the cord.

Evidence for hypoxia was also seen in the optic nerves 
of the EAE model [34]. Acutely inflamed optic nerves were 
marked by significant hypoxia, which was tightly associ-
ated with the upregulation of several innate immune factors, 
including superoxide, NO, and peroxynitrite. These results 
suggest that the hypoxia may be caused by insufficient per-
fusion of blood vessels, likely driven by vasoconstriction, 
increased tissue pressure from edema, and compression of 
blood vessels by extravasated cells. In their review on tissue 
energy dynamics in MS, Desai and Smith concluded that 
recent findings suggest hypoxia plays a significant role in 
MS pathogenesis and neurological dysfunction [35].

Hypoxia in People with MS

For years, researchers have suggested that hypoxia plays 
a role in MS pathophysiology, drawing parallels between 
the histological features of types III and IV lesions and 
ischemic lesions [36]. According to recent research, lower 
metabolic rates in MS appear to be widespread, especially 
in GM, rather than localized [37]. These findings imply that 
hypoxia in MS may be a diffuse phenomenon, affecting mul-
tiple regions of the brain, beyond just the plaques, empha-
sizing the importance of considering GM when quantifying 
hypoxia. The first direct measurement of hypoxia in human 
volunteers was done using frequency-domain near-infrared 
spectroscopy (fdNIRS). This method indirectly assessed cor-
tical hypoxia by measuring tissue oxyhemoglobin saturation 
(StO₂) within the microvasculature.

Studies demonstrated that 42% of pwMS had statisti-
cally lower StO₂ values compared to healthy controls, with 
this threshold defined as two standard deviations below 
the control mean [38]. A significant correlation was found 
between StO₂ values and clinical disability, as measured by 
the EDSS. These findings were pioneering in showing how 
quantitative NIRS can be utilized to detect reduced StO₂ in 
pwMS. Subsequent studies have confirmed low values for 
StO₂ in cortical GM of pwMS [39–42].

Research shows that hypoxia persists for at least a year in 
80% of cases [39]. The fact that more individuals remained 
hypoxic rather than returning to normoxia suggests that 
hypoxia development may be tied to disease progression. 
Functional imaging studies using functional NIRS showed 
that normoxic pwMS exhibit higher brain coherence—a 
measure of brain function—compared to hypoxic subtypes 
[40]. This finding suggests that hypoxia may be associ-
ated with alterations in brain function and other disease-
related functional changes. Although hypoxia in MS persists 

chronically for at least a year and impacts brain coherence, 
only a weak correlation was observed between cognitive 
functioning and brain StO₂ [39]. These findings, which sug-
gest a weak correlation between brain hypoxia and cogni-
tive function as well as disease severity, are consistent with 
later studies [42]. This limited association may be attrib-
uted to the heterogeneous nature of MS and the intricate 
factors influencing levels of hypoxia. Further investiga-
tion into brain StO₂ values in the progressed MS subtype 
revealed that individuals with secondary progressive MS 
(SPMS) have significantly lower cortical StO₂ compared 
to age-matched controls, reinforcing the role of hypoxia in 
the pathogenesis of SPMS. These studies underscore the 
potential of using NIRS to quantify hypoxia in MS, offering 
invaluable insights.

Blood-based biomarkers and other non-imaging methods 
have also been used to look into hypoxia and progression in 
pwMS [43]. People with SPMS have considerably greater 
concentrations of Glucose Transporter-1 (GLUT-1) than 
healthy controls. GLUT-1 is a known marker of hypoxia and 
affects glucose metabolism. Furthermore, more impairment 
has been linked to low levels of angiogenesis biomarkers, 
such as hepatocyte growth factor (HGF) and angiopoietin-2 
(APN2), indicating the possible involvement of vascular 
components in hypoxia and its connection to the advance-
ment of disease.

Sleep apnea research also provides evidence of increased 
hypoxia [44]. Increased cognitive impairments are correlated 
with varying levels of apnea severity in pwMS. Specifically, 
apnea severity was linked to deficits in processing speed, 
attention, working memory, visual memory, psychomotor 
speed, cognitive flexibility, and manual dexterity. These 
findings highlight the significance of considering relevant 
factors, like sleep disruptions, while studying hypoxia in 
MS.

The Hypoxia‑Inflammation Cycle

The concept is that inflammation can induce hypoxia, which 
leads to the upregulation of hypoxia-response genes. This, 
in turn, triggers a negative hypoxia-inflammation cycle [45]. 
The fact that there is an interaction between hypoxia and 
inflammation responses is now well established [46]. Once 
a hypoxic condition exists, a multitude of responses occur 
which can further increase inflammation (Fig. 1).

A master regulator of hypoxia associated gene tran-
scription is the HIF pathway. HIF-1β is steadily expressed. 
HIF-1α is also produced but is rapidly degraded under nor-
mal oxygen conditions through the ubiquinone pathway and 
prolylydroxylases (PHD). This pathway is inhibited under 
hypoxic conditions, resulting in a build-up of HIF-1α. This 
binds to HIF-1β, resulting dimer translocates to the nucleus, 
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where it results in transcription of hundreds of hypoxia-asso-
ciated genes [47].

Inflammatory responses can also stabilize HIF-1α in an 
oxygen-independent fashion [48]. For instance, human pul-
monary epithelia cultured with respiratory syncytial virus 
showed stabilization of HIF-1α without a decrease in oxygen 
levels [49]. Mechanisms are complex but can involve protein 
kinase A [50]. After LPS-induced inflammation, HIF-1α sta-
bilization may also involve sirtuin 1 (SIRT1) or the 60-kDa 
Tat-interactive protein (Tip60) [51, 52].

The master regulator of inflammation is NF-κB through 
either the canonical or non-canonical pathway. There is evi-
dence that the canonical pathway is stimulated by hypoxia 
through inhibition of the PHDs, leading to the activation of 
IκB kinase (IKK). This results in the degradation of IKK, 
allowing for upregulation of NF-κB [53, 54]. Hypoxia induc-
tion of inflammation often involves disorders where there is 
a question of what comes first—hypoxia or inflammation 
[5]. High altitude adaptation research is helpful as hypoxia 
is likely the driving event. A range of inflammatory response 
genes are activated in humans during high altitude exposure 
including Toll-like receptor 4 (TLR4) and genes associated 
with active neutrophils and phagocytes [55].

Inflammation can also stimulate a hypoxia-associated 
gene response through oxygen-independent stabilization of 
HIF-1α during inflammation may also involve factors such 
as ROS production, TNFα and IL-1β, as well as changes in 
PHD regulation [56, 57].

Thus, inflammation can cause hypoxia, resulting in 
two outcomes: the upregulation of the hypoxia-response 
genes through HIF-1α stabilization, and the upregulation 
of inflammation-associated genes through both the oxygen-
sensing PHD system and HIF stimulated transcription of 
inflammatory genes. Some of these inflammatory products 
further stabilize HIF in a non-oxygen sensitive mechanism.

Specific Hypoxia‑Inflammation Interactions

The key point is that there is a complex interaction between 
hypoxia, and inflammatory gene responses. There is a clear 
link between HIF and TLR4, as HIF can stimulate the pro-
duction of TLR4 [58]. The oxygen-independent stabiliza-
tion of HIF may be facilitated by TLR4, which in turn 
stimulates further TLR4 production, establishing a positive 
feedback loop [56]. TLR4 production is associated with 
increases in the inflammatory products such as TNFα and 

Fig. 1  A Hypoxia-Inflammation Cycle. Inflammation triggers numer-
ous responses that lead to hypoxia and upregulate hypoxia-response 
genes. These inflammatory factors contribute to vessel plugging 
through mechanisms like leukocyte and platelet adhesion and throm-
bin upregulation, as well as blood–brain barrier (BBB) disruption 
via the dysregulation of endothelial cells, pericytes, and astrocytes. 
Furthermore, inflammation can independently upregulate hypoxia-

responsive genes, even in the absence of low oxygen conditions. In 
turns, many hypoxia-related gene responses can, in turn, amplify 
inflammation. Major regulatory targets of this feedback loop include 
prolyl hydroxylase domain (PHD) enzymes, hypoxia-inducible factor 
1-alpha (HIF-1α), and nuclear factor kappa B (NF-κB). Image created 
using Biorender.com



 Current Treatment Options in Neurology            (2025) 27:6     6  Page 6 of 12

IL-1β, Inducible nitric oxide synthase (iNOS), ROS and 
NO [59].

The complexity of the interaction between HIF, hypoxia, 
and inflammation is exemplified by myeloid cell activation, 
which is particularly important in MS, as cells like mac-
rophages migrate to sites of injury and plaque formation. 
The response may vary depending on the cell type. Increased 
neutrophil activity may require HIF-2α and, depending on 
the state of the myeloid cell, HIF can either enhance or 
supress inflammation [48].

SIRT-1 is induced by hyperoxia and reduced by hypoxia 
[51]. SIRT-1 deficiency increases activity of NF-κB. There 
is an interaction between SIRT-1 and HIF-1α that impacts 
regulation of both the innate and adaptive immune responses 
[60].

Extracellular matrix metalloproteinase inducer (EMM-
PRIN) is induced by HIF-1α, vascular endothelial growth 
factor (VEGF), and MMP-1 expression in human retinal 
microvascular endothelial cells [61]. EMMPRIN upregula-
tion is associated with both hypoxia and inflammation, and is 
elevated in a range of diseases, such as MS and Alzheimer’s 
disease [62].

Hypoxia can stimulate conversion of microglia to the pro-
inflammatory type 1 phenotype [63, 64]. HIF-1α plays mul-
tifactorial role in regulating macrophage activity, including 
reducing macrophage autophagy [64].

The monocyte plugging and vascular blockage are linked 
to increased TNF-α and thrombin as well as platelet metabo-
lism. For example, the endothelial protein C receptor inhib-
its leucocyte extravasation, but TNF-α downregulates this 
receptor, promoting cell adhesion. Thrombin, platelets, and 
fibrinogen together contribute to microvascular damage [65].

This short list of examples highlights the growing aware-
ness, and therefore critical importance, of the interaction 
between immune responses and hypoxia [5, 46, 66–68].

Potential Therapeutic Approaches 
Associated with the Hypoxia‑Inflammation 
Cycle

There are various therapeutic approaches that could target 
different aspects of the hypoxia-inflammation pathway. As 
shown in Table 1, the upregulation of HIF-1α, pro-inflam-
matory cytokines (e.g., NF-κB), inflammatory mediators 
(e.g., ROS), mitochondrial dysfunction, and leukocyte 
adhesion represent potential initial targets for studying these 
treatment options, though they are not the only possibilities. 
However, given the complexity of the hypoxia-inflammation 
cycle, this review primarily focuses on these factors. These 
molecules and drugs are not proposed as a cure but may help 
improve quality of life or slow the progression associated 
with this cycle.

Regulation of HIF-1α can be achieved through inhibi-
tion or stabilization, which respectively aim to suppress 
inflammatory genes or activate hypoxia-responsive ele-
ments, facilitating adaptation in ischemic conditions [96]. 
There are various HIF-1α inhibitors. Non-specific inhibi-
tors include 2-methoxyestradiol (2MeO-E2), which targets 
HIF-1α at the mRNA and protein levels, and cardiac gly-
cosides like digoxin, which inhibit HIF-1α synthesis and 
show potential benefits in ischemic tissues [69, 70]. Spe-
cific small-molecule inhibitors such as Topotecan, PX-478 
(S-2-amino-3-[4′-N,N,-bis (2-chloroethyl) amino]-phenyl 
propionic acid N-oxide dihydrochloride), and cyclo-CLL-
FVY have been identified, each working through different 

Table 1  Potential therapeutic targets and corresponding molecules/
drugs for addressing upregulated pathways in hypoxia-related inflam-
matory conditions

The table is a short list of the many potential agents that target 
hypoxia-inducible factor 1-alpha (HIF-1α), tumor necrosis factor-
alpha (TNF-α), leukocyte adhesion, nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB), reactive oxygen species 
(ROS), and mitochondrial dysfunction

Initial target Molecule/Drug Reference

HIF-1α upregulation 2-methoxyestradiol (2MeO-
E2)

[69]

Digoxin [70]
Topotecan [71]
PX-478 [72]
Cyclo-CLLFVY [73]
RO7070179 (EZN-2968) [74]
D-mannose [75]
Tanshinone IIA (Tan-IIA) [76]
Curcumin [77]
Hydroxychloroquine [78]
Roxadustat (FG-4592) [79]
Cyclosporine [80]
Sevoflurane [81]
4-octyl itaconate (4-OI) [82]
YC-1 [83]
Echinomycin [84]
Metformin [85]

TNF-α upregulation Infliximab [86]
Adalimumab [86]
Clemastine [87]

Leukocyte adhesion SR1001 [88]
Lipoxins [89]
Eplerenone [90]

NF-κB upregulation Dimethyl fumarate (DMF) [91]
ROS upregulation Resveratrol [92]
Mitochondrial dysfunction Biotin [93]
Vascular dysregulation Nicardipine [94]

Nimodipine [95]
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mechanisms like inhibiting translation, reducing mRNA 
levels, or preventing HIF-1α dimerization [71–73]. Addi-
tionally, RO7070179 (EZN-2968), a locked nucleic acid 
antisense oligonucleotide, inhibits HIF-1α expression and 
downregulates target genes [74]. While these inhibitors show 
promise, further research is needed to evaluate their safety 
and efficacy in humans and potential in treating hypoxia in 
MS [96]. Several drugs inhibit HIF-1α or modify its bind-
ings to directly impact immune cells towards anti-inflam-
matory phenotypes. This can occur without involving the 
HIF-1α as well. The mechanisms can vary depending on 
the targets [97].

Inhibiting HIF-1α promotes an anti-inflammatory mac-
rophage phenotype by disrupting glycolysis and related 
pathways. Compounds like D-mannose, and Tanshinone 
IIA (Tan IIA) reduce HIF-1α activation, altering mac-
rophage polarization from the pro-inflammatory M1 type to 
the anti-inflammatory M2 type [75, 76, 98]. Curcumin and 
hydroxychloroquine also reduce HIF-1α levels and inflam-
mation, contributing to improved macrophage function and 
decreased inflammatory cytokine release [77, 78].

Anti-inflammatory drugs also suppress inflammation by 
inhibiting inflammatory cytokines and neutrophil activity, 
with HIF-1α as a key target. Roxadustat (FG-4592), a PHD 
inhibitor, stabilizes HIF-1α to prevent neutrophil infiltra-
tion and reduce hypoxia-induced inflammation [79]. Cyclo-
sporine enhances neutrophil HIF-1α expression, aiding gly-
colysis and reducing migration in conditions like ulcerative 
colitis [80]. Sevoflurane inhibits neutrophil adhesion by 
stabilizing HIF-1α and the Adenosine A2B receptor [81]. 
Itaconic acid and its derivative, 4-octyl itaconate (4-OI), 
reduce pro-inflammatory cytokines and inhibit neutrophil 
extracellular traps (NET) formation by suppressing HIF-1α 
[82]. Additionally, HIF-1α inhibitors like YC-1[3-(5′-
hydroxymethyl-2′-furyl)-1-benzyl indazole] block inflam-
matory signaling pathways, specifically involving NF-κB, 
reducing neutrophil infiltration [83].

Under hypoxic conditions, the imbalance between regula-
tory T (Treg) and T helper 17 (Th17) cells drives inflamma-
tion, with Th17 cells promoting cytokine release, including 
TNF, IL-6, and IL-17. TNF and IL-17 inhibitors, such as inf-
liximab and adalimumab, are used to treat inflammatory dis-
eases and may influence the hypoxia-inflammation pathway 
[86]. Compounds like SR1001, reduces Th17 differentiation 
and function [88]. HIF-1α modulates inflammation and T 
cell interactions, and inhibitors like echinomycin improve 
Treg development while suppressing Th17 activity [84].

Other drugs can shift immune cells toward anti-inflamma-
tory phenotypes in broader, less specific ways. Eplerenone, 
for instance, downregulates leukocyte adhesion and inhib-
its vessel plugging [90]. Lipoxin is a pro-resolving lipid 
mediator that inhibits neutrophil recruitment and activation 
while promoting the clearance of apoptotic neutrophils by 

macrophages [89]. This process helps shift macrophages 
toward an anti-inflammatory M2 phenotype and reduces 
inflammatory responses. Similarly, clemastine, an antihista-
mine, shows immunomodulatory effects by reducing micro-
glial activation, which is crucial in neuroinflammation [99]. 
In MS, clemastine aids remyelination and indirectly affects 
T cell responses by mitigating neuroinflammation [87].

There are substances influence the inflammation-
hypoxia pathway through more direct anti-inflammation 
and antioxidant mechanisms. For instance, dimethyl fuma-
rate activates oxidative stress responses by upregulating 
Nrf2 and is currently used in treating RRMS [91]. Res-
veratrol shows antioxidant effects by reducing intracellu-
lar ROS and mitigating hypoxia-induced apoptosis but has 
negative effects on demyelination and inflammation in MS 
[92, 100]. Metformin inhibits HIF1α-driven inflammation 
in macrophages by inducing its degradation through mito-
chondrial complex I inhibition, reducing oxygen consump-
tion independently of ROS [85]. It also inhibits Th17 cells 
and enhances Treg activity, while suppressing dendritic 
cell activation, thereby reducing T cell-mediated inflam-
mation [101]. Biotin, used in progressive MS, supports 
mitochondrial function by regulating fatty acid synthesis 
and energy production, indirectly influencing the hypoxia-
response [93]. Similarly, dihydropyridines like nicardi-
pine, calcium channel blockers, modulate calcium levels 
in cells, including mitochondria [94]. By maintaining cal-
cium homeostasis, nicardipine reduces oxidative stress and 
prevents mitochondrial dysfunction and ROS production, 
ultimately affecting hypoxia levels. Dihydropyridines, as 
vasodilators, have the potential to reduce vascular resist-
ance and address hypoxia related to vascular dysfunction 
[102]. Notably, nimodipine, which has been studied in 
the EAE model of MS, has demonstrated the ability to 
restore spinal oxygenation, improve neurological function, 
and reduce demyelination [95]. These effects contribute 
to improved oxygen delivery and may alleviate hypoxic 
conditions caused by impaired blood flow [102].

In animal models of MS, research has demonstrated the 
potential effects of normobaric oxygen therapy in reversing 
hypoxia, partially restoring function, and reducing disease 
severity. Studies using the LPS rat model have shown that 
breathing normobaric oxygen not only reduces demyelina-
tion but, in some instances, prevents it altogether [28, 29]. 
This includes initially addressing the HIF-1α upregulation 
and inflammatory pathway, mitochondrial dysfunction, vaso-
dilation impairment, or energy demand alterations [45]. In 
human MS, the objective has been to explore the relationship 
between oxygen therapies and disease outcomes. However, 
no human study to date has controlled for hypoxia levels 
when administering oxygen. Many of these studies have 
shown moderate or limited success [103, 104]. However, 
considering that only approximately 40% of pwMS exhibit 
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hypoxia in GM at any given time, it would be valuable to 
control for brain oxygenation levels in future trials.

Conclusion

The evidence in this review highlights the important role 
hypoxia plays in MS pathogenesis, as seen in both pwMS 
and MS animal models. The hypoxia-inflammation cycle 
emerges as a potential key driver of disease progression, 
leading to tissue damage even in the absence of overt inflam-
mation. This hypoxia-inflammation cycle likely drives many 
of the pathological changes seen in MS, including BBB dis-
ruption, oxidative stress, mitochondrial dysfunction, vascu-
lar abnormalities, and heightened inflammatory responses. 
The uncertainty surrounding whether hypoxia or inflamma-
tion occurs first in real-world MS adds complexity to this 
phenomenon. We present evidence supporting the presence 
of hypoxia in both MS animal models and pwMS. The ability 
to perform non-invasive, real-time quantification of hypoxia 
is a groundbreaking step toward understanding this phenom-
enon. However, these techniques are not without limitations. 
Optical-based imaging tools, such as fdNIRS, have shown 
promise in quantifying microvasculature hypoxia and hold 
potential for clinical application. Still, further research is 
necessary to identify a direct biomarker for hypoxia in the 
CNS of pwMS. Further, targeting the hypoxia-inflammation 
cycle offers a promising opportunity for therapeutic inter-
ventions that may not only alleviate symptoms but also slow 
disease progression. By categorizing individuals based on 
their oxygenation status, treatments can be more precisely 
tailored, potentially improving outcomes for those with 
hypoxia-driven disease characteristics. Moreover, given the 
complexity of the cycles and the broad spectrum of potential 
treatments (only some of which are noted in this paper), 
combining therapeutic approaches could yield significant 
benefits. Overall, the hypoxia-inflammation pathway pre-
sents a new target for treatment strategies.
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