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Abstract

Recent advances in protein-design methodology have led to a dramatic

increase in reliability and scale. With these advances, dozens and even thou-

sands of designed proteins are automatically generated and screened. Never-

theless, the success rate, particularly in design of functional proteins, is low

and fundamental goals such as reliable de novo design of efficient enzymes

remain beyond reach. Experimental analyses have consistently indicated that a

major reason for design failure is inaccuracy and misfolding relative to the

design conception. To address this challenge, we describe complementary

methods to diagnose and ameliorate suboptimal regions in designed proteins:

first, we develop a Rosetta atomistic computational mutation scanning

approach to detect energetically suboptimal positions in designs (available on

a web server https://pSUFER.weizmann.ac.il); second, we demonstrate that

AlphaFold2 ab initio structure prediction flags regions that may misfold in

designed enzymes and binders; and third, we focus FuncLib design calcula-

tions on suboptimal positions in a previously designed low-efficiency enzyme,

improving its catalytic efficiency by 330-fold. Furthermore, applied to a de

novo designed protein that exhibited limited stability, the same approach

markedly improved stability and expressibility. Thus, foldability analysis and

enhancement may dramatically increase the success rate in design of func-

tional proteins.
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1 | INTRODUCTION

Over the past decade, protein design methodology has
made remarkable progress. New methods enable the rou-
tine design of new folds,1–4 assemblies,5,6 and new or
improved functions.7–13 Despite these achievements,
however, only a small fraction of experimentally tested

designs are functional,8,14,15 and fundamental protein
design objectives still lie beyond our reach. For example,
reliable de novo enzyme design remains an unsolved
challenge despite decades of research, and to date, all
designs exhibit low efficiency.15–17 Previous analyses of
successful and failed enzyme designs indicated that inac-
curacies in the design of catalytic constellations are partly
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to blame for failures.18–21 Furthermore, observations
across many different fold, binder, and enzyme design
studies indicated misfolding relative to the design model
as likely to be the most general and critical problem in
failed designs.2,22–25 Indeed, the significance of misfold-
ing has served as the primary motivation for studies
regarding the principles for designing new and idealized
folds2,26,27 and for developing general methods to
improve designed proteins' foldability and stabil-
ity.11,13,27–29

The current study is motivated by our ongoing efforts
to develop a reliable strategy for de novo enzyme design.
Our strategy is based on recent methods developed in our
lab to design new backbones through the modular assem-
bly of large (60–150 amino acid) backbone fragments of
natural enzymes.25,30,31 Modular assembly and design
was successful in generating accurate antibodies27 and
ultrahigh specificity binders24 and enzymes25 with as
many as 100 mutations from any natural protein. Applied
to de novo enzyme design, however, this same strategy
has so far failed to generate high-efficiency enzymes. Fur-
thermore, the majority of the failed designs exhibited
non-cooperative folding transitions. The correspondence
between foldability and activity in our ongoing de novo
enzyme design study prompts us to examine the sources
of low foldability in proteins generated using current
atomistic design methods and to develop strategies for
detecting and ameliorating suboptimality in designed
proteins.

2 | RESULTS

2.1 | Energy-based suboptimality
detection

We develop an automated computational approach to
identify energetically suboptimal positions in protein
designs based on their model structure (Figure 1). Our
approach, which we call pSUFER for protein Strain,
Unsatisfactoriness, and Frustration findER, starts by

relaxing the input structure using Rosetta atomistic
modeling. It then models all single-point mutations at
every position, iterating sidechain packing and whole-
protein minimization and computes the change in system
energy (ΔΔG) relative to the parental protein. These cal-
culations use the Rosetta all-atom energy function 2015
(ref2015) which is dominated by van der Waals packing,
hydrogen bonding, electrostatics, and implicit solvation.32

Finally, pSUFER flags positions that exhibit more than a
certain number of mutations (typically 5) that lower the
native-state energy (ΔΔG < 0) as potentially suboptimal.
These thresholds were chosen empirically and may be
changed according to modeling needs. An online web
server for automatically running pSUFER calculations is
available for academic users at https://pSUFER.
weizmann.ac.il. Customizable scripts for automatically
relaxing a protein structure, computing suboptimal posi-
tions, and visualizing them in PyMOL are available in
https://github.com/Fleishman-Lab/pSUFER.

Our approach is similar in principle to strategies for
computing local frustration in proteins.33,34 Methods for
analyzing local frustration detect contacting pairs of
amino acids that exhibit high energies relative to a com-
puted ensemble of mutational or structural decoys. Frus-
trated positions are often associated with the protein's
activity since active-site positions and regions that are
involved in allosteric communication or conformational
change are evolutionarily selected for their role in activity
rather than for improving native-state stability.35 We
note, however, that since these previous approaches
search for high-energy pairs of positions, they do not
directly detect positions that may be optimized through
single-point mutations. By contrast, pSUFER indicates
specific positions for design.

2.2 | Orders of magnitude improvement
in catalytic efficiency of a failed design

To test pSUFER, we analyzed a set of enzymes and
binders designed and experimentally characterized over

FIGURE 1 Key steps in the pSUFER

pipeline. (1) The structure is relaxed;

(2) every position is mutated to every amino

acid identity, the whole structure is relaxed

and the energy is compared to the original

relaxed structure; (3) positions that exhibit

more stabilizing mutations than a

predetermined threshold are flagged.

pSUFER, protein Strain, Unsatisfactoriness,

and Frustration findER.
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the past 4 years. To be included in this set, we required
that the same design method produced both proteins that
accurately folded into the design conception according to
X-ray crystallography and ones that misfolded. Despite
the availability of experimental structures in these cases,
we applied pSUFER to the models to verify that the
method could uncover flaws in the design conception
without recourse to experimental data. The designs
included enzymes25 and binders24 generated through
modular backbone assembly and design as well as
binders in which an immunogenic epitope was incorpo-
rated in a de novo designed scaffold protein.36 Therefore,
these designs encompass a range of contemporary appli-
cations of protein design methodology.

The first design pair we examine was generated by
modular assembly and design of glycoside hydrolase
10 (GH10) xylanases.25 In this set, 21 out of 43 designs
exhibited detectable xylanase activity, and only two
exhibited high activity levels as observed in natural
enzymes from the GH10 family. From that study, we
chose for pSUFER analysis two designs that exhibited the
highest and lowest levels of detectable activity and for
which we have crystallographic data, xyl3.1 and xyl8.3
(kcat/KM 9,417 and 0.61 M�1 s�1, respectively). Both
designs were highly mutated relative to natural GH10
enzymes, exhibiting 105 and 130 mutations from any nat-
ural enzyme, respectively (out of �350 amino acids) and
exhibited apparent thermal denaturation temperatures
>55�C. The crystal structure of xyl3.1 showed remarkable
accuracy relative to the design conception with 0.7 Å root
mean square deviation (rmsd) across the entire protein
and <1 Å all-atom rmsd of active-site residues. By con-
trast, although xyl8.3 was globally accurate
(rmsd = 0.9 Å) and core catalytic groups aligned well
between the design model and the experimental struc-
ture, the experimental structure exhibited significant
missing density in two neighboring loops near the active-
site pocket, indicative of local misfolding. Visual inspec-
tion of the two designs following their structure determi-
nation failed to suggest significant flaws in xyl8.3 that
might explain design inaccuracy.

Applied to the two xylanase design models, pSUFER
flags a similar number of positions. As expected, most of
the flagged positions are either in the active-site pocket
or in solvent-accessible positions (Figure 2a,b). Conspicu-
ously, however, in xyl8.3, pSUFER flags position Lys306,
which is buried at the stem of one of the loops that does
not exhibit electron density. Furthermore, Lys306 is not
stabilized by counter charges, suggesting that the loop
disorder may be the result of strain in and around this
position.

We hypothesized that eliminating the strain observed
around Lys306 (and the other positions flagged by

pSUFER) might improve the enzyme's catalytic effi-
ciency. To test this hypothesis, we applied FuncLib
design12 to the five positions pSUFER flagged outside the
active-site pocket in xyl8.3. FuncLib starts by using phy-
logenetic information and atomistic design calculations
to rule out mutations that may be destabilizing to the
native-state structure. It then enumerates all combina-
tions of allowed mutations at the designed positions,
ranks them by energy and suggests low-energy combina-
tions of mutations. An advantage of the FuncLib method-
ology over typical stochastic combinatorial design
algorithms is that FuncLib relaxes each combination of
mutations by whole-protein minimization. Therefore,
FuncLib may find stabilizing mutations, including radical
small-to-large mutations in the core of the protein that
may elude other atomistic design methods.37–39 Applied
to the five suboptimal positions flagged by pSUFER, one
of the top FuncLib designs, which we called xyl8.3fix,
improved system energy by 10 Rosetta energy units (R.e.
u) by mutating four positions (Thr1Asn, Asn4Glu,
Gly139Asp, and Lys306Leu). Among these four, only the
Lys306Leu mutation is radical, whereas the others impact
solvent-exposed positions to increase surface polarity.

We expressed xyl8.3 and xyl8.3fix fused N-terminally
to maltose-binding protein (MBP) in E. coli BL21 cells
and purified the proteins using an amylose column. We
then tested the two designs' catalytic efficiency using the
4-nitrophenyl β-xylobioside (OPNPX2) chromogenic sub-
strate. Remarkably, Michaelis–Menten analysis revealed
that xyl8.3fix exhibits catalytic efficiency of 226 M�1 s�1

(Figure 2c), 330-fold greater than that of the parental
xyl8.3. We also analyzed the thermal denaturation of the
two designs following cleavage from the MBP tag, finding
that both had similar apparent denaturation tempera-
tures 57 and 59�C for xyl8.3 and xyl8.3fix, respectively
(Figure S1). Thus, the dramatic improvement in catalytic
efficiency was not due to protein stabilization. Rather, it
was likely due either to an improvement in the design's
ability to fold into the active conformation or to reduced
strain in the active site.

Significantly, in the modular assembly and design
study that included xyl3.1 and xyl8.3,25 we noted that
assembling backbone fragments from more than a few
natural templates led to low activity (xyl3.1 and 8.3 were
based on 3 and 8 backbone fragments, respectively). The
activity we observe for xyl8.3fix, however, would place it
among the top three designs in that set despite compris-
ing fragments from eight proteins. Thus, the pSUFER
analysis may significantly improve the reliability of pro-
tein design methods and their ability to generate diverse
and functional proteins.

To test whether a similar approach may improve
computed system energies in other designs, we applied
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FuncLib to positions flagged by pSUFER in 62 proteins
designed in our lab to generate de novo enzymes. Fun-
cLib introduced an average of five mutations and
improved the energies by an average of 13 R.e.u in this
set (Figure 2d), similar to the values we obtained by
applying this approach to xyl8.3. These computational
results suggest that the pSUFER approach can be applica-
ble to other significant challenges in protein design.

2.3 | Suboptimality in designed binders

We next ask whether pSUFER may shed light on prob-
lems in designed binders. In the following example, we

examine de novo designed binders of biosensors that
detect and quantify epitope-specific antibodies. The
design strategy uses a bottom-up approach: first defining
the function-rendering motifs and then designing a pro-
tein fold to support the motifs.36 One of the designs
(4H.01) forms the binding site accurately as determined
by X-ray crystallography; however, the experimentally
determined structure shows substantial backbone devia-
tions (2.9 Å) relative to the design conception and
exhibits missing density in a loop (Figure 3a). pSUFER
flags 11 positions in this design; for instance, Gln84,
which is positioned in a cavity next to the loop that
exhibits missing density, and Leu78. According to the
design model, Gln84 is partly desolvated and does not

FIGURE 2 pSUFER identifies flaws in enzyme designs that FuncLib can fix. (a) The xyl8.3 backbone is shown in cartoon with regions

that failed to exhibit electron density in a crystallographic analysis (PDB entry: 6FHE) shown in wheat. (Inset) Lys306 is flagged by pSUFER

since the Lys is buried in a hydrophobic region without countercharge stabilization. Lys306 is proximal to two loops that failed to exhibit

electron density and is in close contact with active-site position Trp305. (b) For comparison, in the case of the high-efficiency and accurately

designed xyl3.1, pSUFER only flags surface-exposed polar positions and active-site positions. In both cases, a position was flagged if

computational mutation scanning suggested at least six amino acid identities with ΔΔG < 0 at the position. (c) xyl8.3fix shows an

improvement of 330-fold in activity compared to xyl8.3, kcat/KM = 226 and 0.69 M�1 s�1, respectively. Data points and standard deviations

are based on at least two repetitions. (d) Improvement in system energy following FuncLib design of positions flagged by pSUFER in

62 models of de novo designed enzymes generated by modular assembly and design. On average, 5–6 mutations are introduced, yielding an

average improvement of 13 Rosetta energy units (R.e.u.). pSUFER, protein Strain, Unsatisfactoriness, and Frustration findER.
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form intimate polar contacts with the loop. Leu78 is
forced into a strained sidechain conformation exhibiting
Rosetta sidechain conformation energy (fa_dun) of � +3
energy units. This sidechain cannot pack into a favorable
conformation due to steric overlaps in relaxed sidechain
conformations. In contrast to this design, in the accu-
rately crystallized design, only three positions are flagged,
all of which are solvent-exposed (His1, Thr19, and Thr35,
Figure 3b).

We applied FuncLib to alleviate strain in the 4H.01
design. We chose eight flagged positions that were far
from the binding site (His1, Met2, Glu7, His47, Gln53,
Gly76, Leu78, and Gln84) for FuncLib design. As 4H.01

is a de novo design, phylogenetic analysis, which is a crit-
ical part of the FuncLib design strategy,12 cannot be
applied to it. Instead, we computed the free-energy
change upon mutation for all 20 identities at each of the
11 strained positions, and mutations that exhibited
ΔΔG < +0.5 R.e.u. were selected for full combinatorial
enumeration and relaxation according to the FuncLib
workflow. The lowest-energy 20 designs were visually
inspected and 4 were chosen for experimental characteri-
zation. All designs harbored eight mutations compared to
the original 4H.01, and at least two mutations compared
to one another. In all designs, Gln84 was mutated to Leu,
alleviating the desolvation penalty of the original Gln.

FIGURE 3 pSUFER and FuncLib flag and improve the stability of a de novo designed binder. (a,b) pSUFER analysis of de novo

designed binders. Positions were flagged if mutational scanning suggested at least four amino acid identities with ΔΔG < 0. Wheat backbone

marks missing density on the design model. Disulfides are indicated by sticks. (a) Crystallographic analysis of 4H.01 (PDB entry: 6YWD)

revealed regions of missing density. pSUFER flags several strained positions in the design model surrounding the region that exhibited

missing density. (thumbnails) Gln53 is partly desolvated but does not form stabilizing hydrogen bonds. The sidechain conformation of Leu78

is strained in the design model (purple). The most likely sidechain conformation for this position (white) is disallowed due to steric overlaps

with neighboring sidechains. (b) Design 4E1H_95 was atomically accurate as verified by X-ray crystallography (PDB entry: 6YWC) and

pSUFER analysis flags only a few exposed polar sidechains. (c) Temperature melts of 4H01 variants monitored by CD at 220 nm. The

original 4H.01 does not show cooperative melting curves as opposed to the FuncLib designs. pSUFER, protein Strain, Unsatisfactoriness, and

Frustration findER
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Furthermore, Leu78, which exhibited a strained side-
chain conformation, was mutated to either Ala or Ser.
The computed energies improved by at least 25 R.e.u.

The designs were expressed in pET11b vector, trans-
formed into BL-21(DE3)pLySs cells, and the proteins
were purified using HisTrapTm FF column following gel
filtration on Superdex 16/600 75 pg. All designs showed
improvement of expression relative to 4H.01 of up to
threefold. The designs also improved apparent thermal
stability, as determined by circular dichroism, by 17–
27�C (Table 1, Figures 3c and S2). Moreover, the original
4H.01 design did not exhibit a clear melting transition,
whereas all of the designs did. This suggests that the orig-
inal 4H.01 design was not cooperatively folded and
became a clearly folded protein upon the introduction of
the eight designed mutations. We next attempted to test
the designs' ability to bind their target antigen using sur-
face plasmon resonance (SPR). The designs, however,
exhibited high binding to the reference cell, precluding
accurate affinity measurements and suggesting that they
bind nonspecifically. Thus, the designed mutations sub-
stantially improved stability, expressibility, and apparent
folding cooperativity but potentially at the price of loss in
activity. Although it remains to be seen whether the Fun-
cLib approach can be generally applied to de novo
designed proteins, we conclude that the pSUFER strategy
flags positions that are amenable to stabilizing mutations.

For a final example of pSUFER's abilities and limita-
tions, we examine binders generated through modular
assembly and design. Using modular assembly and
design, we previously started from a high-affinity colicin
endonuclease-immunity binding pair40 to design a set of
binders, some of which exhibited ultrahigh specificity
(>100,000 fold) relative to the parental pair and other
designed pairs.24 Our approach focused on the design of
a new interfacial loop backbone in the immunity protein
by grafting loop backbones from completely unrelated
proteins and optimizing the sequence of the binding pair.
X-ray crystallographic analysis demonstrated that an

ultraspecific designed pair (des3) exhibited atomic accu-
racy throughout the structure and in the designed loop
relative to the model, whereas a multispecific design
(des4) exhibited missing density in parts of the
designed loop.

We applied pSUFER to the immunity protein in the
absence of its endonuclease partner. In each design, pSU-
FER flags a position within the designed binding loop
(Figure 4a,b). The flagged position in des4, Gly26, cannot
be redesigned as the backbone atoms of Gly26 come into
close contact with the endonuclease. In des3, by contrast,
two positions in the binding loop are flagged, Glu25 and
Asn27. While Glu25 can be designed to other identities
which are less strained according to our models, Asn27
forms polar contacts with the endonuclease and thus
may be crucial for binding. In addition, in both designs
pSUFER flags several solvent-accessible positions
(Figure 4b). The results on des3 and des4 demonstrate
that the pSUFER analysis may in some cases indicate
problems that cannot be relieved without compromising
the objectives of design of function.

2.4 | Analyzing design foldability by
AlphaFold2

pSUFER analyzes suboptimality based on a molecular
structure or model and is thus limited to analyzing the
native-state properties of the design. Foldability, how-
ever, also depends on whether the protein is likely to fold
into alternative (misfolded) states, a possibility that may
be assessed by ab initio structure predictors. Recently,
methods that use deep learning have been very successful
in ab initio structure prediction.41–44 The most successful
of these, AlphaFold2, has shown atomic-accuracy predic-
tion in community blind-prediction experiments and
other structure-prediction challenges.41 Significantly for
the purposes of assessing design foldability, AlphaFold2
provides a confidence score (per-residue local distance

TABLE 1 Expressibility and stability of FuncLib variants of de novo designed 4H01

Amino acid position

Expression levels (μg/L)a Tm (�C)b1 2 7 47 53 76 78 84

4H01 H M E H Q G L Q 54 41.4

4H01_mut1 P E T T K R A L 128 62.4

4H01_mut3 P E T S K R S L 146 58.7

4H01_mut5 P E D R K R A L 108 68.4

4H01_mut8 P E T R K S A L 78 66.6

aDetermined using nanodrop.
bDetermined by thermal melt analysis using circular dichroism (CD).
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difference test; plDDT) for each position in the predicted
model structure. We hypothesized that the plDDT scores
and the rmsd between the AlphaFold2 predicted struc-
ture and the design model might predict design accuracy
and foldability. AlphaFold2 depends on multiple-
sequence alignments of homologs for accurate structure
prediction so we did not analyze the de novo designed
binders.

The AlphaFold2 analysis of the two accurately
designed proteins (the GH10 xyl3.1 and the colicin
immunity des3) correspond very well to the design
models (rmsd < 0.7 Å). Furthermore, except in the N-
and C-terminal tails, the plDDT scores are high in xyl3.1

and the majority of des3 (>90%). For des3, the binding-
surface loop backbone was grafted from a non-
homologous protein, explaining why the plDDT scores
are not as high in this region (>80%). Significantly, in the
case of the colicin immunity des4, the AlphaFold2 model
deviates from the design model in the region correspond-
ing to the missing density (Figure 5a). Furthermore, the
plDDT scores clearly depress around these regions in
both des3 and xyl8.3 relative to the two other designs. We
next analyzed the AlphaFold2 results for xyl8.3fix. The
AlphaFold2 model structure recapitulated the design
model with rmsd < 0.8 Å, similar to xyl8.3. Remarkably,
the plDDT scores in the region surrounding position

FIGURE 4 pSUFER limitations in designed binders. (a,b) Binders generated through modular assembly and design by grafting an

interfacial loop (top) from an unrelated protein and designing the two binding partners.24 Positions were flagged if mutational scanning

suggested at least six amino acid identities with ΔΔG < 0 at the position. Wheat backbone marks missing density on the design model.

(a) The interfacial loop failed to exhibit electron density. pSUFER flags Gly26 in the designed loop. (b) pSUFER analysis of the accurately

designed des3 flags exposed residues and two interfacial positions. Asn27 is one of the interface loop positions that forms polar contacts with

the binding protein and thus may be crucial for function (inset). pSUFER, protein Strain, Unsatisfactoriness, and Frustration findER

FIGURE 5 AlphaFold2 analysis of designs. (a) plDDT scores for designed binders des3 and des4. The plDDT scores of des4 are

depressed relative to those of des3 in the region in which des4 exhibits missing density. (b) Comparison of the plDDT scores of xyl8.3 and

design xyl8.3fix in the region surrounding the positions that exhibit missing density in crystallographic analysis of xyl8.3 (PDB entry: 6FHE;

density is missing surrounding positions 259–265 and 301–312). In this region, only a single mutation was designed in xyl8.3fix, Lys306Leu;

yet, the plDDT scores of both loops improve significantly. plDDT, per-residue local distance difference test
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306, as well as in the loops that exhibit missing density
according to the crystallographic analysis are higher and
equivalent to those observed for the remainder of the pro-
tein (>92%) (Figure 5b). This result suggests that the
AlphaFold2 confidence scores are sensitive even to some
single-point mutations in designed proteins. We con-
cluded that the AlphaFold2 analysis can provide critical
information on the likely accuracy and foldability of
newly designed backbone structures, indicate regions
that may misfold, and assess mutations that are designed
to mitigate misfolding.

3 | DISCUSSION

Recent advances in protein design methodology extend
its scope to the design of large proteins that are highly
mutated relative to natural ones25 and to sets comprising
thousands of designs.3,14 Nevertheless, the success rate is
typically low and some critical goals remain elusive.
Thus, methods to assess design reliability may have a
profound impact on the ability to design desired molecu-
lar activities. Assessing a design's accuracy and foldabil-
ity, however, remains challenging. As a general rule,
design studies, particularly ones devoted to backbone
design, often reveal significant deviations between experi-
mental structures and design conceptions. When the
designs are small (<100 amino acids), they may be sub-
jected to atomistic forward-folding ab initio simulations
to verify that the sequences favor the designed conforma-
tion over others.1–3,45 In large proteins, however, accurate
forward-folding simulations were until recently impossi-
ble. Our results demonstrate that the deep-learning based
method AlphaFold2 can shed light on design foldability
even in large proteins that exhibit more than 100 muta-
tions from any natural protein.

Furthermore, the pSUFER energy-based method can
pinpoint specific positions that may be poorly designed.
The functional consequences of poor design choices are
strikingly demonstrated in our study: by redesigning just
four positions in xyl8.3 that were flagged by pSUFER (out
of 350 positions), and eight positions in 4H01 the
enzyme's catalytic efficiency rises by three orders of mag-
nitude, and the expressibility and stability of 4H01
improves by threefold and 27�C, respectively. These
flagged positions are located outside the active or binding
sites, demonstrating the significance of accurate and
strain-free design throughout the protein. These observa-
tions, together with the improvement in the AlphaFold2
confidence scores for the enzyme design variant, impli-
cate foldability or reduced active-site strain as the cause
of improvement in activity. It is also striking that a

handful of poor design choices in a large protein led
almost to complete dysfunction. We note, however, that
the protein's ability to fold into the desired conformation
also depends on other factors, such as the kinetic accessi-
bility of the native state and the stability of folding inter-
mediates.46 These kinetic factors are not assessed by
pSUFER, and it is unlikely that they can be deduced from
current deep-learning-based ab initio structure predic-
tors. Nevertheless, the strategy we described may free
protein designers to introduce more radical changes than
previously and increase the success of backbone design
in large enzymes and binders.

4 | MATERIALS AND METHODS

4.1 | pSUFER algorithm

RosettaScripts47 and commandlines are available through
github https://github.com/Fleishman-Lab/pSUFER. For
all Rosetta calculations the ref15 energy function is used
for scoring.48 We start the procedure with four iterations
of refinement of the input structure comprising sidechain
packing and harmonically constrained whole-protein
minimization. Next, computational mutation scanning is
performed using the FilterScan mover in Rosetta10: for
each position all 20 amino acids are modeled against the
refined structure, and sidechains within 8 Å are repacked
including constrained whole-protein minimization in
order to accommodate the mutation. The energy differ-
ence between the refined structure and the single-point
mutant is calculated. Positions that exhibit several muta-
tions with ΔΔG ≤ 0 R.e.u. are flagged as suboptimal with
the mutation threshold in this work set to four for the de
novo designed binders and six for all the other designs.
Thresholds can be set by the user. pSUFER can be
accessed through a web server at https://pSUFER.
weizmann.ac.il. In this case, the user inputs a PDB-
formatted coordinate file and the energy difference
threshold for which a mutation is defined as favorable.
The output consists of a folder containing (a) a PyMOL
session file in which suboptimal positions are marked in
yellow sticks. The session includes several models in
which suboptimal positions are marked according to dif-
ferent cutoffs for the number of amino acid identities that
exhibit ΔΔG smaller than the set energy threshold. For
instance, at threshold 4, all positions that exhibit 4 or
more favorable identities relative to the starting structure
are marked. (b) A table summarizing the suboptimal
positions according to the cutoffs. (c) Tables indicating
all of the favorable identities at each position (Rosetta
resfile). (d) The Rosetta-refined structure.
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4.2 | FuncLib design calculations

FuncLib on xyl8.3 was performed on the pSUFER
flagged positions as described in12 with the following
thresholds PSSM ≥ �2 and ΔΔG ≤ 1 R.e.u. in all flagged
positions outside the active site. The 4H01 binder is the
outcome of de novo design and lacks a multiple-
sequence alignment from which a PSSM can be com-
puted. We therefore extended the computational muta-
tion scan to probe all 20 amino acid identities at any
position >5 Å from the binding site, and identities that
exhibited ΔΔG ≤ 0.5 R.e.u were chosen for combinato-
rial enumeration using FuncLib. All combinations of
mutations were scored using Rosetta. For xyl8.3, within
the top 20 designs ranked by system energy, the designs
converged on the same solution for two of the positions
and we chose the design that exhibited the most polar
solvent facing residues (Thr1Asn and Asn4Glu) for
experimental characterization.

4.3 | AlphaFold2 ab initio structure
prediction calculations

All AlphaFold241 calculations were implemented by
adapting and locally running the code written by Colab-
Fold.49 All runs were performed using the five model
parameters presented in CASP14, without templates,
with Amber relaxation and using three recycle rounds
only. Multiple-sequence alignments were generated
through the MMseqs2 API server.50–52

4.4 | Materials

4-Nitrophenyl β-xylobioside (OPNPX2) was purchased
from Megazyme.

4.5 | Cloning, protein expression, and
purification of xyl8.3

All experimental procedures were performed as described
in Reference 25. Briefly, the xyl8.3fix design was ordered
as a synthetic gene fragment from Twist Bioscience and
cloned into pETMBPH vector which contains N-terminal
6-His-tag and MBP. EcoRI and PstI sites were used. The
xyl8.3 and xyl8.3fix designs were transformed into BL21
DE3 cells and the DNA was extracted and validated by
Sanger sequencing.

Fifty milliliters of 2YT with 50 μg ml�1 kanamycin
was inoculated with 500 μl overnight culture and grown

at 37�C to OD of 0.4–0.8. Overexpression was induced by
0.2 mM isopropylthio-β-galactoside and the cultures were
grown for �20 hr at 20�C. Bacteria were pelleted by cen-
trifugation and frozen for at least 20 min before
purification.

Pellets were resuspended in lysis buffer (50 mM Tris-
Cl pH 6.5, 150 mM NaCl, benzonase and 0.1 mg ml�1

lysozyme) and lysed by sonication. The supernatant was
loaded on a column packed with amylose resin (New
England Biolabs), washed twice with 50 mM Tris pH 6.5
and 150 mM NaCl, and eluted with wash buffer contain-
ing 10 mM maltose. Protein purity was evaluated by SDS-
PAGE gel and protein concentration was estimated by
OD280. In cases where purity was not satisfactory, the elu-
tion was loaded on an Ni-NTA, washed and eluted
(50 mM Tris-Cl pH 6.5, 150 mM NaCl, 20 mM imidazole,
and 250 mM imidazole, respectively). The proteins were
then dialyzed against 50 mM Tris-Cl pH 6.5, 150 mM
NaCl buffer.

4.6 | Kinetic measurements of xyl8.3

Kinetic measurements were performed with purified pro-
teins (fused to MBP) in 96-well plates (optical length
�0.5 cm) by monitoring the absorbance of the leaving
group of O-PNPX2 at 405 nm (activity buffer 50 mM Tris
pH 6.5 and 150, 25�C). No background hydrolysis was
observed with O-PNPX2. Final protein concentrations in
the reaction varied between 2.56 and 6.23 μM. The data
were fitted to the linear regime of the Michaelis–Menten
model (v0 = [S]0[E]0kcat/KM) and kcat/KM values were
deduced from the slope. The reported values represent
the means ± SD of at least two independent
measurements.

4.7 | Apparent melting-temperature
measurements of enzyme designs

Tm measurements were done using nanoDSF experi-
ments53 performed on Prometheus NT.Plex instrument
(NanoTemper Technologies). Melting temperatures
were between 20 and 85�C with 1.0�C min�1 slope. For
xyl8.3 and xyl8.3fix, the MBP tag was removed by
tobacco etch virus cleavage. For xyl8.3 and xyl8.3fix, the
buffer was 50 mM Tris-Cl pH 6.5, 150 mM NaCl. For de
novo enzyme designs, the buffer was 100 mM Tris-Cl
pH 7.25, 200 mM NaCl. Protein concentrations varied
between 2.8 and 6.0 mg ml�1 for all proteins. Fluores-
cence intensity was adjusted to suit all samples per
experiment.
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4.8 | Cloning, protein expression, and
purification of 4H01 series

The 4H01 designs were ordered as a synthetic gene frag-
ment from Twist Bioscience with addition of a C-
terminal 6-His-Tag and cloned into a pET11b vector
using NdeI and BlpI restriction sites. The designs were
transformed into XL-10-Gold cells and the DNA was
extracted and validated by Sanger sequencing. The vali-
dated DNA sequences were transformed into BL21 DE3
cells and put in 20 ml of LB medium with 100 μg ml�1

Ampicillin overnight at 37�C as starting cultures. The
next day, 500 ml of Auto-Induction medium with
100 μg ml�1 Ampicillin was inoculated with 10 ml over-
night culture and grown at 37�C to OD of 0.6 then the
cultures were grown for �20 hr at 20�C. Bacteria were
pelleted by centrifugation and resuspended in lysis
buffer (100 mM Tris-Cl pH 7.5, 500 mM NaCl, 5% glyc-
erol, 1 mM phenylmethanesulfonyl fluoride, 1 mg ml�1

lysozyme and 1:20 of CelLyticTm B Cell Lysis Reagent).
The resuspensions were put at room temperature on a
shaker at 40 rpm for 2 hr and then centrifuged at
48,300g for 20 min. We filtered the supernatant with a
0.2 μm filter and loaded the mixture on a 1 mL His-
TrapTm FF column using an AKTApure system and a
predefined method regarding Cytiva's recommendations
with that column. We used 50 mM Tris–HCl pH 7.5,
500 mM NaCl, 10 mM imidazole as wash buffer and
processed the elution with 50 mM Tris–HCl pH 7.5,
500 mM NaCl, 500 mM imidazole. We collected the
main fraction released through the elution step and
injected it on a Gel Filtration column Superdex 16/600
75 pg filled with PBS. The peaks corresponding to the
size of the design were collected and concentrated till a
concentration of �1 mg ml�1 for further analysis. Pro-
tein concentrations were determined by nanodrop.

4.9 | Apparent melting-temperature
measurements of 4H01 series

Tm measurements were done using ChirascanTm V100
from appliedPhotophysics. Melting temperatures were
between 20 and 90�C with measurements every 2�C.
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