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ABSTRACT Animal (human) gut microbiomes have been coevolving with their
hosts for many millions of years. Understanding how the coevolution shapes the
processes of microbiome assembly and diversity maintenance is important but rather
challenging. An effort may start with the understanding of how and why animals
and humans may differ in their microbiome neutrality (stochasticity) levels. Here, we
attempted to perform layered comparative stochasticity analyses across animal spe-
cies (including humans), class, and kingdom scales, corresponding to microbial meta-
community, landscape, and global-landscape scales. By analyzing 4,903 microbiome
samples from 274 animal species covering 4 major invertebrate classes and all 6 ver-
tebrate classes and including 1,787 human gut microbiome samples, we discovered
the following: (i) at the microbial metacommunity (animal species) scale, although
the general trend of stochasticity (measured in the relationships between fundamen-
tal biodiversity/dispersal numbers of Hubbell’s neutral theory and host species phy-
logenetic timeline) seems continuous, there seems to be a turning point from ani-
mals to humans in the passing rate of neutrality tests (12% to 45% versus 100%).
We postulate that it should be the human experiences from agricultural/industrial
activities (e.g., diet effects) and frequent social/familial contacts that are responsible
for the dramatically rising stochastic neutrality in human gut microbiomes. (ii) At the
microbial landscape (animal class) and global landscape (animal kingdom) scales,
neutrality is not detectable, suggesting that the landscape is niche differentiated—
animal species may possess “home niches” for their coadapted microbiomes. We fur-
ther analyze the reliabilities of our findings by using variable P value thresholds
(type I error) and performing power analysis (type II error) of neutrality tests.

IMPORTANCE Understanding how the coevolution (evolutionary time scale) and/or the
interactions (ecological time scale) between animal (human) gut microbiomes and their
hosts shape the processes of the microbiome assembly and diversity maintenance is
important but rather challenging. An effort may start with the understanding of how
and why animals and humans may differ in their microbiome neutrality (stochasticity)
levels. Here, we attempted to perform layered comparative stochasticity analyses across
animal species (including humans), class, and kingdom scales, corresponding to micro-
bial metacommunity, landscape, and global-landscape scales by analyzing 4,903 micro-
biome samples from 274 animal species covering 4 major invertebrate classes and all 6
vertebrate classes, and including 1,787 human gut microbiome samples. The analyses
were implemented by fitting the multisite neutral model and further augmented by
checking false-positive and false-negative errors, respectively. It appears that there is a
turning (tipping) point in the neutrality level from animal to human microbiomes.
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Microbes represent the earliest life forms on earth, and early microbes evolved to
be sufficiently complex and form spatially organized communities, as evidenced

by distinguishable fossils up to 3.43 billion years ago. In contrast, fossil evidence has
revealed that animals appeared much more recently during the Ediacaran Period at
about 635 to 541 million years ago (1). It is therefore conceived that early evolution of
kingdom Animalia would have happened in a “microbial soup,” leading to both patho-
genic and symbiotic relationships between microbes and animals. A fundamental
question about the coevolutionary soup is how the microbial community (i.e., the ani-
mal microbiome) is assembled and maintained. An alternative scenario, which proved
to be rare in nature, would be that only one or even zero microbial species interacts
with an animal, given that more than two species are required to constitute a commu-
nity (2).

Addressing the question of community assembly and diversity maintenance, argu-
ably the most essential ingredients of community structure and dynamics, has
attracted extensive attention and also led to vigorous debates (3–6). Two leading and
competing theories in this field have been the traditional niche theory with a history
back to 1910s (7–10). Both theories were invented to explain a familiar phenomenon
on earth, which was vividly described as follows by Charles Darwin (1859) in the last
paragraph of his On the Origin of Species: “It is interesting to contemplate a tangled
bank, clothed with many plants of many kinds, with birds singing on the bushes, with
various insects flitting about, and with worms crawling through the damp earth, and
to reflect that these elaborately constructed forms, so different from each other, and
dependent upon each other in so complex a manner, have all been produced by laws
acting around us.” With modern ecological terminology, entangled bank is essentially
the concept of ecological community. Darwin was wondering how diverse lives (spe-
cies) could coexist and form a beautiful entangled bank, while his theory stipulated the
universal struggle for life as a consequence to natural selection. He was wondering
since the seemingly universal struggle for life would most likely lead to monopoly by a
few strongest competitors but would contradict what is usually observed in the
entangled bank.

The classic niche theory assumed that each species has its own niche in which its
individuals are adapted to live and prosper, and the entangled bank consists of many
different niches suitable for many different species. In terms of niche theory, the deter-
ministic traits a species possesses (or selective niche forces) play critical roles in driving
the assembly of an ecological community as well as in maintaining the diversity after
the community is established. In the late 1990s, Stephen Hubbell challenged the tradi-
tional theory view by proposing the unified neutral theory of biodiversity (UNTB) (10).

We realized that since the UNTB optimizes the fitting of the relative abundance to
the predictions of the neutral model (11, 12), it might overestimate the true strength
of neutral processes. Furthermore, some ecologists argue that even if empirical species
abundance distributions (SADs) pass the neutrality test statistically, it does not guaran-
tee that communities are truly neutral because nonneutral models can produce similar
or even identical SAD patterns (13). To deal with these issues, we adopted the follow-
ing three tactics to reinforce the robustness of our study and more importantly deepen
our understanding of the focal question raised in the manuscript title.

First, we adopted what is considered a revolutionary computational advance in fit-
ting the UNTB model, namely, the Harris et al. multisite neutral model (MSN) (14). This
model greatly relieved a giant computational challenge in simultaneously estimating
the migration rates among the local communities of a metacommunity since the com-
putation problem is a so-termed nondeterministic polynomial hard problem (NP-hard
problem). The NP-hard problem is inherently hard-to-compute optimum solutions
since the required computational time grows exponentially with the problem size (i.e.,
the number of local communities in this case). The exponential magnitude means that
when the problem is sufficiently large, it is infeasible (intractable) to obtain the opti-
mum solutions even with the fastest supercomputers human can make because the
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computational time can be an astronomical number. This reality determines that the
only feasible solution is to find suboptimal approximations to the solutions, even
though they may not be easy to implement. The Harris et al. MSN model is such a solu-
tion that was implemented as an efficient Bayesian fitting framework by approximating
the neutral models with the hierarchical Dirichlet process (HDP) (14). Harris et al.
approximation captures the essential elements of the UNTB, i.e., neutrality, finite popu-
lations, and multisite metacommunity setting (14). For this reason, we term the Harris
et al. HDP-neutral approximation framework as multisite neutral (MSN) model (14). We
also realized that the adoption of P value in testing the neutral theory including the
MSN model might introduce barely avoidable uncertainty in inferring conclusions. In
this study, we report a series of P value thresholds for accepting the neutrality assump-
tions to obtain reliable common denominators. The variable thresholds of the P allow
us to examine the influence of the statistical type I error (i.e., rejection of a true null hy-
pothesis or obtaining a false-positive finding) in testing the null hypothesis of neutral-
ity in animal and human gut microbiomes.

Second, we adopt a power analysis approach developed by Hammal et al. to cross-
verify the results of the neutrality test with MSN (13). The power of the statistical test is
measured with the probability that the null hypothesis is rejected when it is indeed
false. The power analysis for the neutrality test is then aimed to deal with the previ-
ously mentioned argument—passing the neutrality test does not guarantee that the
community is indeed neutral since nonneutral processes can still be the underlying
mechanisms that generate the apparent neutral patterns (SADs). Hammal et al. showed
that the presence of nonneutral processes is detectable as long as the sample size is
sufficiently large and/or the effect size of nonneutral processes is strong enough in
communities whose SAD patterns satisfy the neutral theory (13). Their power analysis
(calculation) for neutral theory including the MSN model can be used to estimate an
upper bound for the strength of nonneutral processes and therefore offer cross-verifi-
cation for the neutrality test results based on the MSN model. In contrast with the pre-
viously mentioned variable P value threshold that is aimed to examine the influence of
a type I error, the power analysis is designed to deal with a type II error (i.e., nonrejec-
tion of a false null hypothesis or obtaining a false-negative finding). To the best of our
knowledge, the manuscript is likely the first study that simultaneously examines the
influences of type I and II errors in testing the neutral theory with human and animal
microbiome data sets.

Third, we put the neutrality analysis of the animal gut microbiome (AGM) and
human gut microbiome in an evolutionary perspective by incorporating the evolution-
ary timeline (ET) or phylogenetic timeline (PT) of the host (animal) species into the
analysis (15). The ET or PT is different from familiar phylogenetic distance (PD) in the lit-
erature. While PD refers to the divergence time for a pair of taxa, ET or PT refers to an
evolutionary timeline for a taxon. The adoption of PT allows us to assess and interpret
the ecological/evolutionary insights of the UNTB model parameters.

Understanding how animal (human) gut microbiomes are assembled is of critical
significance both practically and theoretically. For example, if the stochastic (random)
forces are indeed significant in maintaining microbiome structures, the design of
human interventions to maintain or restore microbiome structures (such as, for exam-
ple, fecal transplantation in medical practice and animal and human nutrition manage-
ment) cannot ignore this important, innate aspect of the animal/human microbiomes.
Theoretically, the hologenome theory of evolution treats the individual animal or plant
as a holobiont or metaorganism consisting of the host and all of its symbiotic microbes
(16, 17). The hologenome, a genome set carried by the holobiont, may be inherited
from generation to generation with reasonable fidelity. The variations in the hologe-
nome are subject to selection and drift effects evolutionarily (16–19). Nevertheless, in a
recent review, Hammer et al. proposed that animals cover a continuum of dependence
on the microbiome from symbiont-dependent species (such as aphids, humans, and
cows) to species that lack beneficial symbionts (2). In the middle, there are species that
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are minimally or facultatively dependent on microbes. Therefore, the “strength” of
intraholobiont (metaorganism) interactions between microbes and animal hosts may
vary among animal species. These theoretical advances suggest that the coevolution
between animal (human) microbiomes and hosts is beyond coadaptations on an eco-
logical time scale. One side result of the present study was to construct mechanistic
hypotheses for the coadaptations on an ecological time scale across community, meta-
community, and global landscape spatial scales.

RESULTS

Table 1 shows a summary (the mean and standard error) of model-fitting parame-
ters, and Table 2 shows the passing percentage under various P value thresholds for
neutrality tests (i.e., new discovery indistinguishable from MSN predictions); both are
summarized from Tables S2 to S4 (for species level), Table S5 (for class), and Table S6
(for kingdom) in the supplemental material. Fig. 1 illustrates the passing percentage
and model-fitting examples at species, class, and kingdom levels. Fig. 2 displays the
box charts for the distributions of fundamental biodiversity and dispersal numbers,
which are two critical parameters of the neutral theory, and demonstrates the differen-
ces among 10 animal classes. Tables S7 and S8 in the supplemental materials list the
results from analyzing the relationships between neutral theory parameters and spe-
cies phylogenetic timeline (PT), as well as a logistic regression (LR) model for predicting
neutral status with PT.

Neutrality analysis at the microbial metacommunity (animal species) scale. At
the animal (host) species or microbial metacommunity scale, all animal gut micro-
biome (AGM) samples from the individuals (hosts) of the same animal species are
treated as a microbial metacommunity. A total of 274 metacommunities for 274 animal
species are separately fitted to the MSN models for testing the neutrality at the animal
species level (Table S2). The American gut microbiome project (AGP) and Chinese gut
microbiome project (CGP) data sets of 1,473 American and 314 Chinese adults are fit-
ted to the MSN model to represent the species of Homo sapiens (Table S3 and S4).
Table 1 shows the summarized parameters from Tables S2 to S4.

As displayed in Table 2 and Fig. 1, the passing percentage for the neutrality tests at
the metacommunity level range from 12.0% to 45.2% depending on the P value
thresholds (0.05 to 0.95) chosen for rejecting the null hypothesis or inferring new dis-
covery. Strictly speaking, the term passing percentage that we use throughout the arti-
cle is not accurate since it only indicates that certain percentages of metacommunities
are indistinguishable from the theoretical prediction of the MSN model. Both ends of
the previously mentioned range of 12.0% to 45.2% correspond to P values of 0.95 and
0.05, respectively, with the former being the strictest and the latter the least strict crite-
ria. Fig. 1A shows the passing percentages corresponding to different thresholds of the
P value for the MSN neutrality tests at the animal host species or microbial metacom-
munity level. Fig. 1D shows the successful fitting of the MSN model to the gut micro-
biome of dwarf chimpanzee (Pan paniscus) as an example of host species level model-
ing; when the P value is .0.95, the gut microbiome metacommunity of this primate is
indistinguishable from that predicted by the MSN model.

While the neutrality rates of AGM above indicate “partial” neutrality (12.0% to
45.2%) or a limited role of neutral forces in shaping the animal gut microbiomes at the
host species level, the neutrality levels demonstrated by the AGP and CGP data sets
are 100%, across all P value thresholds adopted (Table 2, Table S4 to S5, Fig. 1). That is,
compared with animal gut microbiomes, human gut microbiomes seem to possess a
significantly higher neutrality level and that stochastic neutral forces play a signifi-
cantly larger role in the assembly and diversity maintenance of human gut micro-
biomes. Results of a Fisher’s exact test confirmed the statistical significances of their
differences in neutrality percentages (20). As shown in Table 2, the differences were
significant across all P value thresholds, from the least strict (P =0.05) and to the most
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strict (P = 0.95). Across all the thresholds, the P values from the Fisher’s exact test are
less than 0.001.

Neutrality analysis at the microbial landscape (animal class) and global landscape
(animal kingdom) levels. At the animal (host) class taxon or microbial landscape scale,
all AGM samples from same animal class are treated as a supermetacommunity or mi-
crobial (microbiome) landscape. As shown in Tables 2 and 3 (see Table S5 for the
detailed results), the passing percentages of neutrality tests for all animal classes were
nil. Our interpretation for this lack of neutrality at the animal class or microbial land-
scape level is that the animal host species within a class may form different niches for
their own gut microbiomes. In other words, each animal species may exert host-spe-
cific selection to its gut microbiome, resulting in a nonneutral pattern at the host class
or microbial landscape scale.

Similarly, at the animal (host) kingdom or microbial global landscape scales, all AGM
samples from the animal kingdom are treated as a supersupermetacommunity or micro-
bial (microbiome) global landscape. As shown in Table 1 and 2 (see Table S6 for the
detailed results), the passing percentage of neutrality at the global landscape level was
nil again. Our interpretation for the lack of neutrality at the global landscape level (animal
kingdom) is similar to the previous postulation for the landscape level (animal class)—
each animal species in the animal kingdom may have species-specific “home” niche.

Power analysis of the MSN neutrality tests. Table 3 lists the power calculation
results for selected metacommunity samples at three focal scales of this study, namely,
the animal species (microbial metacommunity), animal class (microbial landscape), and
animal kingdom (microbial global landscape) scales. The first column displays the three
scales and the fourth test (with human AGP data set). The second column further speci-
fies the metacommunity samples from each of the three scales and the AGP. The third
and fourth columns are the P values from regular MSN neutrality testing performed
and explained in previous sections. The last two columns (each further divided into
two subcolumns for metacommunity and local community) represent the power val-
ues computed for Pigolotti and Cencini's model (PC) and intrinsic fitness (IF)

TABLE 2 Passing percentages of the MSN neutrality tests with different P value thresholds at different levels, as well as the P values from
Fisher’s exact tests

P value
threshold

Passing percentages with different P values for:a

Animal gut microbiomes Human gut microbiomes

Species Class Kingdom AGP CGP Fisher’s exact test for PMb

PM PL PM PL PM PL PM PL PM PL Species vs AGP Species vs CGP
0.05 45.3 37.6 0 0 0 0 100 100 100 100 ,0.001 ,0.001
0.10 37.6 27.4 0 0 0 0 100 100 100 100 ,0.001 ,0.001
0.15 32.1 23.4 0 0 0 0 100 100 100 100 ,0.001 ,0.001
0.20 28.8 18.2 0 0 0 0 100 100 100 100 ,0.001 ,0.001
0.25 27.7 15.3 0 0 0 0 100 100 100 100 ,0.001 ,0.001
0.30 27.0 12.0 0 0 0 0 100 100 100 100 ,0.001 ,0.001
0.35 24.8 9.5 0 0 0 0 100 100 100 100 ,0.001 ,0.001
0.40 23.7 8.8 0 0 0 0 100 100 100 100 ,0.001 ,0.001
0.45 20.8 8.0 0 0 0 0 100 100 100 100 ,0.001 ,0.001
0.50 19.3 6.2 0 0 0 0 100 100 100 100 ,0.001 ,0.001
0.55 18.6 5.8 0 0 0 0 100 100 100 100 ,0.001 ,0.001
0.60 17.5 5.5 0 0 0 0 100 100 100 100 ,0.001 ,0.001
0.65 17.5 4.7 0 0 0 0 100 100 100 100 ,0.001 ,0.001
0.70 17.2 4.4 0 0 0 0 100 100 100 100 ,0.001 ,0.001
0.75 16.1 4.0 0 0 0 0 100 100 100 100 ,0.001 ,0.001
0.80 15.0 4.0 0 0 0 0 100 100 100 100 ,0.001 ,0.001
0.85 13.9 3.3 0 0 0 0 100 100 100 100 ,0.001 ,0.001
0.90 13.5 2.9 0 0 0 0 100 100 100 100 ,0.001 ,0.001
0.95 12.0 2.6 0 0 0 0 100 100 100 100 ,0.001 ,0.001
aPM and PL columns list the passing percentages corresponding to different P value thresholds (the first column) for determining the neutrality at the metacommunity (PM)
and local community (PL), respectively.

bThe last columns list the P values from Fisher’s exact tests for detecting the differences between animals and humans in their gut microbiome neutrality.
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nonneutral model. Note the opposite trend between the P values from regular MSN
neutrality tests and the power values from the power analysis, which indicates that the
findings from both MSN-neutral testing and corresponding power analysis are consist-
ent because a small power value means weak nonneutral process (or strong neutral
process) and consequently a large P value of the neutrality test.

For example, at the animal host class scale (microbial landscape scale), the power
values for 10 animal classes ranged from 0.217 to 0.817 at metacommunity scale and
ranged from 0.167 to 0.817 at local community scale indicate strong nonneutral pro-
cess captured by nonneutral PC model. That is, the alternative nonneutral (PC) hypoth-
esis was accepted and the null neutral hypothesis was rejected. The regular or stand-
ard MSN-neutral testing for the same samples of the 10 animal classes also rejected
the neutral null hypothesis (P value ranged from 0.000 to 0.003 for the metacommun-
ity scale and 0.000 to 0.009 at the local community scale). The findings from MSN neu-
trality testing and power analysis on other scales are also consistent in majority of the
cases tested. The behavior with the IF model is slightly more complicated at the animal
species scale, as expected by reference 13. In conclusion, the power analysis with the
Hammal et al. approach confirms that the MSN neutrality tests are reasonably reliable
(13, 14).

FIG 1 Passing percentages of MSN neutrality testing and model fitting example. (A to C) Passing percentages under different P value thresholds; animal
gut microbiome, ranged 12% to 45% depending on the P value thresholds (A), American gut project, 100% for all thresholds (B); and Chinese gut project
(100% for all thresholds) (C). (D to F) Examples of fitting the MSN model; host species level, successful fitting with the dwarf chimpanzee gut microbiome
(D); host class level with Mammalia (E); and host Animalia kingdom level (F).
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FIG 2 The box plots show the fundamental biodiversity number (u ) (top graph) and fundamental dispersal number (M) (bottom graph) computed from
fitting the MSN model to the AGM at the animal class scale. Three standard summary numbers (statistics) of the parameters u and M, including the first
quartile (bottom edge of the rectangle), median (the inside segment), third quartile (top edge of the rectangle), were displayed. The “whiskers” above and
below the box (rectangle) show the location of the minimum and maximum. The interquartile range (IQR) (showing the range of variation) is displayed by
the height of the box, and the median shows the typical value. Outliers (,3 times IQR or .3 times IQR) are displayed outside the box. The smaller red
points display the estimated values of u or M from each of the 100 times of resampling (within each class) for fitting the MSN models. Notably, the IQR of

(Continued on next page)
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The evolution of the fundamental biodiversity and dispersal numbers. Table S7
exhibits Spearman’s correlation coefficients (Rs) between the animal host phylogenetic
timeline (PT) and the neutral theory parameters, including the fundamental biodiversity
number (u ) and fundamental dispersal number (M). The M in the MSN model is the immi-
gration rate—measured as the average individuals immigrated from the metacommunity
(that the local community belongs to) to the local communities (14). The u is the rate at
which new individuals are appearing in the metacommunity as a result of speciation.
Fig. 2 shows the box charts of M and u , computed at the animal class level.

At the animal host species level, the negative Spearman’s correlation (R = 20.326,
P, 0.001) between PD and M suggests that the gut microbiome in more recent animal
host species exhibits a higher immigration rate among individuals of the same animal
species. Furthermore, the human is not an exception. However, at the host class level,
the correlation is insignificant statistically (P=0.515). The loss of statistical significance
is likely because the class scale is too coarse to exhibit significant correlation or, alter-
natively, the neutral model failed at the class level as explained previously.

In addition, the negative correlation (R = 20.122, P =0.10) between PT and u also
suggests that the more recent animal species host higher gut microbiome biodiversity.
The positive correlation between M and u confirms that the more recent animal spe-
cies may host not only higher gut microbiome diversity but also higher microbe

TABLE 3 Power tests for selected data sets with PCa and IFb models

Scalec Metacommunityd PM
e PL

e

PCpower
f IFpowerf

PowerM PowerL PowerM PowerL
Species Caenorhabditis remanei 0.564 0.328 0.050 0.033 0.217 0.433

Spider 0.666 0.691 0.267 0.317 0.733 0.583
Callinectes sapidus 0.254 0.292 0.033 0.267 0.283 0.217
Acanthocinus aedilis 0.001 0.000 0.517 0.733 0.350 0.683
Galeocerdo cuvier 0.396 0.347 0.217 0.333 0.333 0.017
Carassius auratus 0.004 0.006 0.383 0.217 0.650 0.583
Dendropsophus minutus 0.375 0.255 0.783 0.350 0.833 0.717
Chelonia mydas 0.000 0.000 0.317 0.417 0.367 0.383
Duck 0.000 0.002 0.283 0.533 0.100 0.250
Pan paniscus 1.000 0.000 0.067 0.167 0.017 0.217

Classes (landscape) Chromadorea 0.003 0.009 0.517 0.750 0.100 0.517
Arachnida 0.000 0.000 0.433 0.450 0.050 0.333
Malacostraca 0.002 0.007 0.817 0.483 0.833 0.617
Insecta 0.000 0.000 0.233 0.300 0.400 0.933
Chondrichthyes 0.000 0.000 0.333 0.517 0.883 0.317
Actinopteri 0.000 0.000 0.650 0.817 0.250 0.067
Amphibia 0.001 0.005 0.400 0.350 0.233 0.450
Sauropsida 0.000 0.000 0.217 0.167 0.833 0.783
Aves 0.000 0.000 0.483 0.467 0.150 0.750
Mammalia 0.000 0.000 0.333 0.183 0.967 0.750

Global landscape Randomly sampled 0.001 0.001 0.583 0.767 0.033 0.633
AGP Randomly sampled 1.000 1.000 0.083 0.150 0.783 0.267
ac=1.
bk=0.01.
cDisplays the three scales and the fourth test (with human AGP data set).
dFurther specifies the metacommunity samples from each of the three scales and the AGP.
eP values from regular MSN neutrality testing performed and explained in previous sections.
fThe last two columns are each further divided into two subcolumns for metacommunity and local community, respectively and represent the power values computed for
PC and IF nonneutral models, respectively. Notice the opposite trend between the P values and power values, which indicates that the findings from MSN neutral testing
and corresponding power analysis are consistent because small power value indicates weak nonneutral or strong neutral process (large P value from neutrality test).

FIG 2 Legend (Continued)
u seems narrower than that of M, indicating that the variation of M is much larger than the variation of u or that within animal class the variability of
dispersal limitation is much larger than that of the microbiome diversity. This result is expected since the former should strongly depend on the behavior
and life styles of hosts, and the latter should mostly depend on the inner microenvironments of guts, which should be relatively stable. Insects, birds, and
mammals exhibited the narrowest ranges of variations in M, and amphibians exhibited the highest variations in M. However, insects and mammals also
exhibited the highest variations in u . We do not yet understand the underlying mechanisms for the differences.
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exchange among individuals of the same animal host species. The human is not an
exception since the incorporation of AGP and CGP data sets actually raised the correla-
tion level and lowered the P value.

We further applied the logistic regression (LR) to analyze the relationship between
the neutrality status (neutral = 1, nonneutral = 0; at the host species level) and the phy-
logenetic timeline (PT) of host species (Table S8). The top section of Table S8 shows
that the PT alone was able to predict the neutrality status with a 65% precision level,
which is somewhat remarkable. Furthermore, the positive regression coefficient for PT
indicates that PT is positively correlated with nonneutrality, suggesting that more an-
cient animal species (with larger PT) are more likely to host nonneutral microbial com-
munities. Consequently, more recent species such as primates (e.g., Fig. 1D of dwarf
chimpanzee) and humans are more likely to host neutral gut microbiomes. This finding
is obviously consistent with the previous comparative results between the AGM and
AGP/CGP (Table 2).

Finally, to illustrate the previously explained phylogenetic perspectives, we drew
the four phylogenetic trees, annotated with PM (Fig. 3), PL (Fig. 4), M (Fig. 5), and u

(Fig. 6). The phylogenetic trees annotated with PM (Fig. 3) and PL (Fig. 4) illustrated the
distributions of P values (from neutrality testing at metacommunity or local community
levels) on the trees. Similarly, Fig. 5 illustrates the distribution of average medians of
the migration rates (M), while Fig. 6 illustrated the distribution of fundamental biodi-
versity number (u ).

DISCUSSION

Here, we summarize the conclusions from previous findings and further discuss
their ecological/evolutionary mechanisms and implications.

First, at the animal host species or microbial metacommunity level, animals and
humans appear to have evolved “continuously” in the sense that the MSN parameters
(fundamental biodiversity and dispersal numbers) showed consistent patterns, i.e.,
more recent species are more likely to host the gut microbiomes with higher biodiver-
sities and larger dispersal capabilities. Furthermore, more recent species such as
humans are more likely to host neutral gut microbiomes.

Second, despite the “evolutionary continuity” stated above, the human gut micro-
biomes may have experienced a turning point—the neutral drifts in human gut micro-
biomes are so strong that the passing percentages of MSN neutrality tests reached
100%, whereas the percentages in animal gut microbiomes were less than one-half
(12% to 45%). This finding is supported by a virtually full spectrum of confidence levels,
as determined by the P value thresholds from 0.05 to 0.95. With the P value threshold
of 0.95, the reliability or robustness of this finding is exceptionally strong.

Third, at the host class or kingdom levels, which correspond to microbial landscape
or global landscape level, the neutrality in animal gut microbiomes was not detectable,
as demonstrated by the zero passing percentage of MSN neutrality tests. We postulate
that animal species should be able to evolve their species-specific niches for their own
microbiomes. Globally, the different animal species together build a mosaic of different
niches, leading to the loss of neutrality at the landscape or global landscape levels.

The above findings were sustained after further scrutiny of both type I and type II
errors associated with the Harris et al. MSN neutrality tests (14). First, to deal with a
type I error, usually the false-discovery rate (FDR) control is applied. However, the
slightly unorthodox convention used in testing the neutral theory does not allow us to
apply FDR adjustment, and we resolved the issue by using a series of P value thresh-
olds. This resolution allows us to obtain the most conservative estimation of neutrality
rates, i.e., minimizing type I error. Second, to deal with a type II error, we applied the
Hammal et al. power analysis framework and concluded that the findings from the
MSN neutrality tests are reliable (13). The power analysis is particularly useful because
it confirmed that the neutral patterns revealed by the MSN modeling are indeed the
product of neutral processes, rather than that of nonneutral selection forces such as
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competitions and/or inherent species fitness differences, as frequently criticized
regarding applications of neutral theory (13). Power analysis also confirmed the exis-
tence of nonneutral competitions at the microbial landscape (animal class) and global
landscape (animal kingdom) scales.

There have been extensive studies on the diversity of animal and human gut micro-
biomes (21–32), including the neutral theory testing and coevolution with the host ani-
mals. For example, the Sloan neutral model was applied to investigate neutrality in the
animal microbiome and confirmed the applicability of the neutral model (11, 12), but
the number of animal species tested was limited to approximately a dozen species (19,
33). For another example, Youngblut et al. collected over 400 gut microbiome samples
from 180 different species and found that both the host phylogeny (evolutionary his-
tory) and diet have modulated different aspects of the microbiome diversity (32). They

FIG 3 The phylogenetic tree of 179 animal species, annotated with the Pm values from their MSN (multisite neutral model) testing at metacommunity level.
(i) Branches and species labels constitute a standard phylogenetic tree and were colored differently for each of the 10 animal classes (each color of the
branches represents an animal class, and species labels were colored in terms of their class identities). (ii) The band of mosaic color is a heatmap
representing the size of the Pm value. The Pm value ranged between 0 (green) and 1 (red) and is used to determine the outcome of neutrality testing as
explained in the manuscript. The closer the color is to red in the heatmap, the greater the Pm value (the more likely being neutral); and the closer the
color is to green, the smaller the value (the less likely being neutral).
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identified an intensified phylogenetic signal in Mammalia (versus non-Mammalia) evi-
denced by the existence of operational taxonomic units (OTUs) with local phylogenetic
signals and revealed by so-termed cophylogeny analyses, which verified that the phy-
logenies of the host and symbiont (microbes) correspond in their branching patterns.

Finally, we discuss a limitation of this study. As shown in previous sections, despite
extensive efforts, we could only reveal the relationships between neutral-theoretic pa-
rameters and the host phylogenetic timeline (PT), as well as the relationship between
PT and passing rate of neutrality testing. Beyond these relationships, our study could
not further shed light on the coevolution between animal gut microbiomes and their
hosts. This limitation has to do with the difficulty of the problem. Yeoman et al.
reviewed extensive literature then available on the evolution of animal-associated
microbiomes (1). They proposed to classify evolutionary forces applied to animal

FIG 4 The phylogenetic tree of 179 animal species, annotated with their Pl values from their MSN (multisite neutral model) testing at local community
level. (i) Branches and species labels constitute a standard phylogenetic tree and were colored differently for each of the 10 animal classes (each color of
the branches represents an animal class, and species labels were colored in terms of their class identities). (ii) The band of mosaic color is a heatmap
representing the size of the Pl value. The Pl value ranged between 0 (green) and 1 (red) and is used to determine the outcome of neutrality testing as
explained in the manuscript. The closer the color is to red in the heatmap, the greater the Pl value (the more likely being neutral); and the closer the color
is to green, the smaller the value (the less likely being neutral).
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microbiomes into three categories, including the primary intraspecific competition
(e.g., mutation and horizontal gene transfer), secondary ecological interactions (e.g.,
competition, predation, and symbiosis), and tertiary host influences (e.g., host diet,
phylogeny, and immune system). They suggested that modularity as an essential
adaptive strategy to accommodate evolutionary complexity given that evolution is of-
ten considered a march toward increasing complexity. In particular, the cooperation
prevalent in the microbiome may play an important role in shaping the modularity.
Nevertheless, quantifying each category of evolutionary forces is hardly possible with
state-of-the-art data in microbiome research. On a positive side, Zeng et al. and Zeng
and Rodrigo developed an agent-based computational framework to simulate and an-
alyze the dynamics of microbiome evolution (34, 35). Their framework includes neutral
assumptions for both host genetics and microbiome demography, which allowed
them to construct a minimalist null model to compare with the observed patterns of

FIG 5 The phylogenetic tree of 179 animal species, annotated with the “average medians of the migration rates” (M) from their multisite neutral model
(MSN) testing. (i) Branches and species labels constitute a standard phylogenetic tree and were colored differently for each of the 10 animal classes
(species labels were colored in terms of their class identities). (ii) The mosaic color band (the tree terminal circle) is a heatmap representing the M values.
The closer the color is to red in the heatmap, the greater the M value; and the closer the color is to green, the smaller the M value (see Table S7 for the
relationship between M and phylogenetic timeline).
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human microbiomes. An interesting result they obtained was that parental inheritance
of hosts appears to lower microbial diversity and raise homogeneity within hosts, but
ongoing environmental acquisitions do the opposite. Furthermore, the relationship
between parental inheritance and interhost heterogeneity in the microbiome is nonlin-
ear. Their framework allows for simulation analysis of the neutral dynamics of micro-
biomes within a host population under different transmission modes and shared envi-
ronment (35). Scanlan also reviewed the relationship between microbial evolution and
ecological opportunity (i.e., niche availability or niche differentiations) in the gut envi-
ronment (36) and suggested that the development and application of experimental
evolution approaches associated with genomic and metagenomic analyses can play a
critical role in disentangling stochastic neutral drifts from selection. While we totally
concur with Scanlan that carefully designed experimental evolution studies are critical
(36), we also argue that neutral-theoretic analyses such as that in this study can offer

FIG 6 The phylogenetic tree (P-Tree) of 179 animal species, annotated with the fundamental biodiversity number (u ) from their multisite neutral model
(MSN) testing. (i) Branches and species labels constitute a standard phylogenetic tree and were colored differently for each of the 10 animal classes
(species labels were colored in terms of their class identities). (ii) The mosaic color band (the tree terminal circle) is a heatmap representing for the u
values. The closer the color is to red in the heatmap, the greater the u value; and the closer the color is to green, the smaller the u value (see Table S7 for
the relationship between u and phylogenetic timeline).
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an important baseline (null model) for designing and implementing the evolution
experiments.

MATERIALS ANDMETHODS
Data sets of AGM and HGM. The 16S rRNA sequencing read data sets of more than 6,900 samples

of the animal gastrointestinal tract microbiome (AGM) were collected from 108 published studies, cover-
ing 5 phyla and 19 classes. To balance sample sizes and the distribution across taxa, the classes with less
than 10 samples were excluded. The samples treated with antibiotics and some others that with spuri-
ously small sample sizes were excluded from the analysis, and 4,903 samples from 10 classes were pre-
served. The 4,903 samples covered 3 primary phyla (Nematoda, Arthropoda, and Chordata), 10 classes
(Chromadorea, Arachnida, Malacostraca, Insecta, Chondrichthyes, Actinopteri, Amphibia, Sauropsida Aves,
and Mammalia), and 274 animal species. That is, the selected data sets cover all six classes of vertebrates
and the two most important phyla (Nematoda and Arthropoda) of invertebrates and therefore are rather
representative for the animal kingdom. Table S1 (MS-Excel file) in the supplemental material provided
detailed sample information, including data accession numbers.

From the 16S rRNA raw sequencing reads, we utilized the QIIME 2 (version 2018.6.0) software pack-
age to compute the operational taxonomic unit (OTU) tables (37). Specifically, the 16S rRNA amplicon
sequences were processed using tools (plugins) in QIIME 2 (version 2019-08). Specifically, we used the
demux plugin to demultiplex reads. Then, the sequences were processed using the dada2 plugin with
default settings, including denoising, dereplicating, and extracting features (amplicon sequence variants
[ASVs]). Finally, we used feature-classifier (classify-sklearn plugin) for taxonomy classification, which com-
pares the ASVs obtained in the previous step to the reference sequence database, and obtained the
OTU tables.

Phylogenies were analyzed and visualized with the ape and ggtree R-packages (38, 39). The phyloge-
netic tree and phylogeny information were obtained online at http://timetree.org (15). Phylogenetic
timeline (PT), which can be considered a proxy of the phylogenetic history of a taxon, or the “age” of a
taxon with ancient taxa having larger PT values and recent (modern) taxa having smaller PT values, is
harnessed to investigate the evolutionary implications of the neutral theory parameters.

The two human gut microbiome data sets were from the American gut project (AGP) (http://
americangut.org/) and a Chinese gut microbiome project (CGP) reported by Zhang et al. (40, 41). The
AGP sequenced the gut microbiome samples of 1,473 healthy American adults. A total of 14,355 OTUs
(at 97% similarity level) were identified, and the average number of 16S rRNA reads per sample was
14,585. The CGP project sequenced the gut microbiome samples of 314 healthy Chinese adults covering
20 rural and urban cohorts from 7 ethnic groups throughout China. A total of 36,918 OTUs (at 97% simi-
larity level) were identified, and the average number of 16S rRNA reads per sample was 14,035. The OTU
tables from the AGP and CGP were obtained from their respective websites.

General study design. Table 4 and Fig. 7 summarize the general study design (strategy) we adopted
for testing the UNTB-MSN model with the previously described AGM/AGP/CGP data sets, as well as the
objectives we tried to achieve with the modeling analysis.

MSN implementation of Hubbell’s UNTB. Different from traditional niche theory, Hubbell’s UNTB
was formulated as a probability distribution model (10), which can be fitted with the species abundance
distribution (SAD) data, obtainable by sampling ecological communities, and rigorously tested statisti-
cally. The theory assumes that the individuals of all species in a community are demographically equiva-
lent, but their birth/death rates are stochastic. Consequently, random drift and dispersal can play critical
roles in driving community assembly and diversity maintenance. This conceptually distinguishes local
community dynamics from metacommunity dynamics, of which both are postulated to be controlled by
similar neutral processes—stochastic drifts in species demography, local speciation, and global dispersal
(migration). The theory possesses two key parameters (elements), as follows: (i) the immigration rate (Mi)
that couples local community to the metacommunity and (ii) the speciation rate (u , also named the fun-
damental biodiversity number), i.e., the rate at which new individuals are added to the metacommunity
due to speciation. The UNTB assumes that the SAD of each community sample can be fitted with the
multinomial (MN) distribution, which is parameterized by the immigration rate and speciation rate

TABLE 4 The multiple scales for studying the animal/human gut microbiomes from the perspectives of the gut microbiome, animal host taxa,
and microbiome-host complexa

Animal (host) scale Microbiome scale Components of (super)metacommunity Holobiont scale
Individual Microbial community Single-animal individual host of a single species M1 H = holobiont
Species Metacommunity Multiple animal individuals hosts of single animal species m [M1H]
Class Landscape Multiple animal individuals frommultiple species of a single class m [M1H(C)]
Kingdom Global landscape Multiple animal individuals from all species across the animal kingdom m [M1H(K)]
aAlso see Fig. 7. A total of 274 animal species belonging to 10 animal classes (covering all 6 vertebrates and 4 major invertebrates) were sampled for their gut microbiomes,
and a total of 4,903 animal gut microbiome (AGM) samples were sequenced and the microbial OTU tables corresponding those samples were computed with QIIME II (see
Table S1 for the detailed sample information, including data accession numbers). In addition, 1,473 human gut microbiome samples from the American gut microbiome
project (AGP) and 314 samples from the Chinese gut microbiome project (CGP) were utilized to perform comparative analyses with the AGM data sets. All sequencing data
were collected from public domain, and we computed only standardized OTU tables with QIIME II.
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mentioned previously. Testing the UNTB model is then computationally equivalent to testing the good-
ness of fitting to the MN distribution.

Nevertheless, a fully general algorithm of fitting multiple sites with UNTB with different immi-
gration rates is computationally intractable even for a small number of sites, which implies that
when the problem size (the size of sites) becomes large, the running time of the algorithm becomes
too time consuming to be useful. Consequently, to test the UNTB in true multisites (multiple local
communities), approximate algorithms must be used. Harris et al. then developed an efficient
Bayesian fitting framework for testing the UNTB by approximating the neutral models with the hier-
archical Dirichlet process (HDP) (14). In the following text, we briefly outline the formulation of DHP
that sets foundation for the Bayesian fitting framework for implementing Hubbell’s UNTB in a true
multisite setting, i.e., the UNTB-HDP multisite neutral (MSN) model (or the MSN model for short
hereafter).

For large local population sizes, assuming a fixed finite-dimensional metacommunity distribution
with S species present, the local community distribution (p i) could be approximated by a Dirichlet distri-
bution (11, 12). Based on this observation, Harris et al. derived their computationally efficient (14) gen-
eral algorithm for approximating the UNTB. Assuming there is a potentially infinite number of species
observed in the local community, the stationary distribution of observing local population i can be mod-
eled with a Dirichlet process (DP), i.e.,

FIG 7 General study design for the data sets, questions answered, and approaches used in this study.
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p i jMi; b ;DPðMi; b Þ (1)

where b ¼ ðb 1; . . . ; bSÞ is the relative frequency of each species in the metacommunity.
Similarly, a Dirichlet process is also applicable at the metacommunity level, and the metacommunity

distribution can be modeled with a stick breaking process, i.e.,

b ; Stickðu Þ (2)

Since both local community and metacommunity follow Dirichlet processes, the problem can be for-
mulated as a hierarchical Dirichlet process (HDP) in the field of machine learning (14, 42).

Furthermore, the Dirichlet process (DP) is equivalent to the so-termed Chinese restaurant process,
from which the Antoniak equation can be inferred (43). The Antoniak equation for the number of types
(or species) (S) observed following N draws from a Dirichlet process with concentration parameter u has
the form

PðSju;NÞ ¼ sðN; SÞu S Cðu Þ
Cðu 1NÞ (3)

where s(N, S) is the unsigned Stirling number of the first kind and C(.) is the gamma function.
The full HDP-MSN model (hierarchical Dirichlet process—multisite neutral) is obtained by integrating

equations 1, 2, and 3 and the previously mentioned multinominal (MN) distribution of the community
samples. To actually fit the MSN model to the data samples from multiple local communities, Harris
et al. further developed an efficient Gibbs sampler for the UNTB-HDP approximation (14), a type of
Bayesian Markov chain Monte Carlo (MCMC) algorithm. For further information on fitting the MSN
model, refer to Harris et al. (14), in which C code was provided and is used in this study for testing the
goodness of fitting of the HDP-MSN model with the AGM/HGM data sets.

Neutrality tests with the UNTB-HDP multisite neutral model. To determine whether an observed
species abundance distribution (SAD) data set fits to the UNTB-HDP multisite neutral (MSN) model (i.e.,
the MSN model for short), Harris et al. proposed a Monte Carlo significance test similar to Etienne’s para-
metric bootstrap procedure that is supported by a maximum likelihood approach (14, 44). Furthermore,
Harris et al. also developed a procedure for testing the neutrality of local community assembly under a
fitted possibly nonneutral metacommunity because of the hierarchical nature of the MSN model (14).
That is, the MSN model can be used to test the neutrality at both local and metacommunity levels simul-
taneously, which is an advantage over many other neutral theory models.

For the dual-level tests, samples were generated from an N of 2,500 sets of fitted MSN parameters,
which were selected from every 10th iteration of the last 25,000 Gibbs samples (50,000 samples in total
were simulated and the first 25,000 samples were discarded as burn-in). An Nof 2,500 is set to compute
pseudo P values for performing the neutrality test (14). For each observed community sample, there is a
corresponding actual log-likelihood L0. The two additional parameters u and M are particular important;
u is the median of the fundamental biodiversity numbers computed from 25,000 times of simulations
and M is the average of the medians of the migration rates (a function of fundamental migration num-
bers) of local communities in each metacommunity, which is also computed from 25,000 simulations.

To perform a neutrality test at the metacommunity level, PM is used, which is “the proportion of the
simulated neutral samples with their likelihoods not exceeding the observed data likelihood” (14). The
computation of PM is defined as follows: assume LM is the median of the log-likelihoods of the simulated
neutral metacommunity samples, NM is the number of simulated neutral metacommunity samples hav-
ing their log-likelihoods meeting L # L0 (where L is the simulated likelihood and L0 is the actual likeli-
hood as mentioned previously), and then the PM = NM/N is a pseudo P value for testing the neutrality at
the metacommunity level. If PM is #0.05, then the chance (probability) that the actual (observed) likeli-
hood exceeding the simulated likelihoods is rather small (#0.05) and the neutrality null hypothesis
should be rejected. Oppositely, if PM is .0.05, the metacommunity is considered following the MSN
model, or the neutral metacommunity null hypothesis could not be rejected (14).

To conduct the neutrality test at the local community level, PL is used, which is the proportion of the
simulated locally neutral samples exceeding the observed data likelihood (14). It is computed similarly
to previous step for computing PM. Assume LL is the median of the log-likelihoods of the simulated local
community samples, NL is the number of simulated local community samples with their likelihoods not
exceeding the L0, and then PL = NL/N is a pseudo P value for testing the neutrality at the local community
level. If PL is .0.05, the local community is considered following the MSN model, or the neutrality null
hypothesis could not be rejected (14).

Checking type I and type II errors in MSN neutrality tests. Type I error, FDR control, and P value
thresholds. The previous neutrality test procedures of Harris et al. used a significance level a of 0.05
that may lead to a type I error, namely, incorrectly reject the true neutrality null hypothesis with a 5%
probability (14). When many tests are performed simultaneously (so-termed multiple testing problem),
the chance for committing a type I error may be inadvertently raised. The false discovery rate (FDR) con-
trol is frequently used to adjust the potential bias. However, the slightly “unorthodox” convention used
for testing the neutral theory with the previously mentioned MSN tests made FDR adjustment inapplica-
ble. This is because FDR control can only raise the P value for each test and, hence, will lead to higher
“passing rates” (strictly speaking, “failure rates” to reject neutrality) of neutrality in terms of the conven-
tion (e.g., reference 14). In other words, the application of FDR will actually relax the criterion for passing
neutrality tests or make the inference less strict (conservative), an undesirable consequence in testing
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neutral theory. We believe this somewhat unorthodox convention used to test neutral theory in the
existing literature, which makes FDR control impossible, is an issue that should be fixed but is rarely
raised in our observation. Another consequence (issue) from this “loose” convention is that it often
equates the “failure to reject the neutrality null hypothesis” with “passing the neutrality test” or its syno-
nyms that are frequently loosely used in the literature of neutral theory tests.

In the present study, we stick to the traditional convention (e.g., reference 14) to be consistent with
existing literature (14), but we introduce an alternative strategy to deal with the issue associated with
the type I error by comparing the “passing rates” under different P value thresholds. Formally, the term
passing rate should actually be considered the failure rate to reject the neutrality null hypothesis. By set-
ting the P value for neutrality tests to different thresholds, we can estimate the probability to incorrectly
reject the true neutrality null hypothesis under different levels (thresholds) of uncertainty. The higher
the P value threshold is set, the probability to incorrectly reject the true neutrality null hypothesis
becomes higher and the detection of neutral communities becomes more strict (conservative), which
is obviously desirable in testing the neutral theory. In the present study, we examine the dynamic
changes of the passing rates of MSN neutrality tests when the P value threshold was set to 0.05 to
0.95. This allows us to obtain a range of neutrality rates from the least conservative to most conserva-
tive in terms of the reliability (conservative level) for detecting the neutrality. With our alterative
strategy, although the FDR control is still not applicable, the potential confusion from the loose
usage of passing rates become an moot issue since the passing rates are now associated with differ-
ent levels of reliability (conservative levels). For example, by setting the P value threshold to 0.95, we
can claim that the passing rate of neutrality tests (or failure rate to reject neutrality null hypothesis) is
estimated with extreme caution (being extremely reliable).

Type II error and Hammal et al. framework for detecting alternative nonneutral processes.
Like any statistical hypothesis tests, testing the neutral theory model, such as the MSN model, also
involves a type II error—incorrectly not rejecting a false null hypothesis (i.e., obtaining a false-negative
finding). This corresponds to a well-known criticism that apparent satisfaction to the neutral theory pat-
terns may not be due to the neutral processes; instead, nonneutral processes may generate the similar
or same patterns indistinguishable statistically from what are predicted by the neutral theory model. If
this objection to neutral theory is true, then neutral theory and, to a larger extent, the SAD data sets, are
of little or no value in discerning the underlying mechanisms of community structures (specifically com-
munity assembly and diversity maintenance). To resolve this issue, Hammal et al. developed a frame-
work to determine when SAD data sets and what neutral models can indeed detect nonneutrality (13).
They formulated the problem as a power analysis problem for controlling type II error, and their
approach is of critical importance for neutral-theoretic studies like ours.

The power of a statistical test refers to the probability that a false null hypothesis (the alternative hy-
pothesis is true) is correctly rejected, which is equal to 1 2 b , where b is type II error rate. In general, the
power of a statistical test will depend on three factors, namely, the sample size, statistical significance as
measured by the threshold P value (hence influenced by type I error), and the effect size that is quantified
by the deviation from the null hypothesis. In the Hammal et al. framework (13), they controlled the effect
size with the parameter value of the nonneutral models they developed to simulate possible nonneutral
processes in the SAD data to be analyzed. They introduced three nonneutral local community models and
two nonneutral metacommunity models, of which all are stochastic and similar to the standard neutral
model (SNM) but driven by explicit nonneutral forces, such as competitions and unequal species fitness.
They demonstrated that the presence of nonneutral processes in SADs that also satisfy the SNM is detecta-
ble as long as the sample size is sufficiently large and/or the effect size (amplitude of nonneutral process
effect) is sufficiently strong. They concluded that, although the power analysis (calculation) can indeed be
rather complex and computationally exceedingly expensive in particular, resolving the issues related to
type II error in analyzing SAD patterns with neutral theory models is possible. In other words, by applying
their framework to cross-verifying the tests results from SNM, it is possible to cast convincing evidence to ei-
ther support or reject the findings from a neutral theory model. In the present study, we adapt their frame-
work to check the validity of our findings from applying the MSN model to analyze the AGM data sets.

The power of a statistical test depends on which alternative hypothesis is assumed. The Hammal et al.
framework focused on two classes of nonneutral processes, namely, interspecific competition and intrinsic
(density independent) fitness differences between species (13). The former promotes species coexistence
and the latter represent the niche differentiations—the mean environmental factors in a particular habitat
should favor one species over another. They represent opposite ends of a spectrum of possible nonneutral
processes (which could potentially be of infinite varieties). On the one end, the symmetric interspecific com-
petition is likely to generate equal abundances among species (hardly discernible from neutrally generated
equal abundances); on the other end, the intrinsic fitness differences tend to generate heterogeneous
abundances. Specifically, they introduced two competition models, namely, HL (a multispecies stochastic
Lotka-Volterra model similar to one studied by Haegeman and Loreau) and PC (density-dependent dynam-
ics model similar to one studied by Pigolotti and Cencini) (45, 46), and one intrinsic fitness (IF) model that
assumes the fecundity of each species is a random variable following a gamma distribution. Furthermore,
they introduced two nonneutral metacommunity models, namely, a LOGS model described by a log-series
distribution and EVEN model in which all species have equal abundances. Specific forms of these 3 nonneu-
tral local and 2 metacommunity models are referred to in Hammal et al. (13). When linked to the LOGS
metacommunity model, each of the three local community models should be equivalent to the SNM model
when the local dynamics are neutral (the control parameter is set to zero). When the dynamics turns to be
more nonneutral (by increasing the control parameter) and the deviations from the SNM (the effect size)
become stronger, it is expected that the power of the test for the neutral null hypothesis will rise.
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We slightly revised the Hammal et al. procedure for calculating the power of neutrality tests to
achieve our objective to cross-verify the findings from the MSN-based neutrality tests (13). Our steps are
detailed as follows:

(i) We randomly chose certain numbers of metacommunities from each of the 3 investigation scales
(microbial metacommunity or animal species, microbial landscape or animal class, and microbial global
landscape or animal kingdom), namely, 10 metacommunity samples from 10 selected animal species (1
from each species), 10 metacommunities from 10 animal classes (1 from each class), 1 metacommunity
sample from animal kingdom (the whole data sets we collected), and 1 metacommunity sample from AGM
data sets representing the humans.

(ii) Each metacommunity consists of some local communities. We simulated local community dy-
namics with PC and IF models using the same parameter values as observed local communities of
AGM samples (described by the actual OTU tables) (13, 45, 46). The parameters used to drive simula-
tions include the total number of individuals (J), species richness (S), immigration rate (M), and fun-
damental biodiversity number (u ), which are estimated by the MSN model. The generated local com-
munities are assembled as metacommunity.

(iii) Fitting the MSN model with the simulated metacommunity samples from the previous step.
(iv) Repeat the steps ii and iii 60 times and obtain 60 P values. If a P value is ,0.05, the neutral null hy-

pothesis is rejected, i.e., the alternative nonneutral process is significant. We consider 50 repetitions as a big
sample and 60 (. 50) should be sufficient for calculating P value.

(v) Compute the power value with the 60 P values from step iv. The power of the test is the proportion
of nonneutral data sets (generated by PC or IF model simulations) for which the test of nonneutral effect
was significant (i.e., the neutral null hypothesis is rejected and the alternative nonneutral process simulated
by PC or IF models is accepted).

In summary, the small power value indicates that there is no no-neutral process or the nonneutral
process is not sufficiently strong in the metacommunity. Alternatively, the large power indicates that
there is a sufficiently strong nonneutral process in the community. Finally, we compare the power test
finding (conclusion) with the finding from MSN testing. If both findings are consistent, we conclude that
the MSN testing results are reasonably reliable and that the risk of incurring a type II error is tolerable; if
not, we conclude that MSN testing results should be questioned. As mentioned previously, the compu-
tational load of the Hammal et al. framework is excessive (13); the 60 repetitions (simulations) men-
tioned previously for calculating the power value means that fitting the MSN model has to be repeated
60 times, i.e., 60 times increase of computational load for each selected sample. It may take us years to
complete the computation had we applied the procedure to all 4,903 samples of the AGM data sets. We
believe that the randomly chosen metacommunity samples are sufficient to cross-verify the findings
from the MSN testing, which is still the primary methodology of this study.

Computational codes.We used the computational codes originally provided by Harris et al. for fitting
the HDP-MSN model (14). For practical computational limitations, we excluded very small number of insect
or mammal samples, with over 30,000 reads from the computation. Even with this sampling scheme, the
computation work took nearly 3 months in our server with 512 gigabites of memory space and dual central
processing units (CPUs). Nevertheless, we believe that the limitation of extremely large sample sizes should
have little influence on the results. We used the computational codes originally developed by Hammal
et al. for power analysis (13). Coincidently, Hammal et al. also found that the power calculation would be
computationally infeasible for samples with individuals (16S rRNA reads in our case) exceeding approxi-
mately 30,000. In fact, completely checking each SAD-MSN data set with the Hammal et al. approach will
be hundreds (thousands) of times of computational load increases because each of the hundreds (thou-
sands) of simulations must be tested with the MSN model again (13). With our current computational facil-
ity, complete checking of the 4,903 AGM samples would take years finish. For this practical reason, we per-
formed power analysis for selected samples as explained in the previous subsection.

Data availability. Table S1 (an Excel table) presents detailed sample information including the data
accession numbers. The data were already available in the public domain and no ethic or administrative
approval is applicable. The computational codes are available from Harris et al. (14).
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