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SUMMARY

Misfolded glycoprotein recognition and endoplasmic reticulum (ER) retention are mediated by the ER
glycoprotein folding quality control (ERQC) checkpoint enzyme, UDP-glucose glycoprotein glucosyltrans-
ferase (UGGT). UGGT modulation is a promising strategy for broad-spectrum antivirals, rescue-of-secre-
tion therapy in rare disease caused by responsive mutations in glycoprotein genes, and many cancers,
but to date no selective UGGT inhibitors are known. The small molecule 5-[(morpholin-4-yl)methyl]
quinolin-8-ol (5M-80H-Q) binds a CtUGGTgt24 “"WY" conserved surface motif conserved across UGGTs
but not present in other GT24 family glycosyltransferases. 5M-80H-Q has a 47 uM binding affinity for
CtUGGTgr24 in vitro as measured by ligand-enhanced fluorescence. In cellula, 5M-80H-Q inhibits both hu-
man UGGT isoforms at concentrations higher than 750 M. 5M-80H-Q binding to CtUGGTgr24 appears to
be mutually exclusive to M5-9 glycan binding in an in vitro competition experiment. A medicinal program
based on 5M-80H-Q will yield the next generation of UGGT inhibitors.

INTRODUCTION

In the endoplasmic reticulum (ER) of eukaryotic cells, the ER glycoprotein folding quality control (ERQC) system ensures ER retention of imma-
ture glycoproteins and assists their folding." Glycoprotein ERQC is central to glycoproteostasis, which in turn plays a major role in health and
disease.”” Glycoprotein ERQC is reliant on detection of glycoprotein misfolding, affected by its checkpoint enzyme, UDP-glucose glycopro-
tein glucosyltransferase (UGGT). UGGT is capable of detecting non-native and slightly misfolded glycoproteins and re-glucosylates its clients
to flag them for ER retention.””

While other components of ERQC have been studied as drug targets,”® cellular consequences of pharmacological modulation of UGGT
have been relatively understudied—partly because of the risks associated with targeting core cell housekeeping machineries, and partly
because there are no known UGGT selective inhibitors. UGGT is inhibited by its product uridine diphosphate (UDP)’ and squaryl derivatives
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of UDP'?; by the non-hydrolyzable UDP-Glucose (UDP-Glc) cofactor analog UDP-2-deoxy-2-fluoro-D-glucose (U2F); and by synthetic analogs
of the N-linked ManyGlcNAG, glycan substrate,’""'? but obviously none of these molecules are UGGT specific. Selective and potent UGGT
modulators would be important reagents for interrogating the cell biology of the secretory pathway, as well as having therapeutic potential in
several areas of medical science (such as virology,'*'® metabolic and rare genetic disease,’®'® immunology,” and cancer'”"), biotech-
nology, and agricultural science.*~?°

We set out to search for ligands of UGGT by fragment-based lead discovery (FBLD) using X-ray crystallography, an approach which re-
quires the growth of hundreds of well-diffracting crystals of the target.”>"*” No crystal structures of mammalian UGGTs have been obtained
so far, but atomic resolution structures of UGGTs from thermophilic fungi have been determined.’*** None of the crystals of full-length
UGGT we grew so far diffracted past 2.8 A,°* but 1.35 and 1.4 A crystal structures of the catalytic domain of Thermomyces dupontii
UGGT (TdUGGTgr24), in complex with UDP and UDP-Glc, respectively, have been described.”’ Although compounds binding the UGGT
N-terminal folding-sensor domains of the enzyme would also be potential UGGT inhibitors, we decided to target the UGGT C-terminal cat-
alytic domain (belonging to the GlycosylTransferase Family 24 (GT24) fold), given the high 70% similarity and 60% identity between human and
fungal sequences in this portion of the enzyme.

Toward the FBLD of ligands of the UGGT C-terminal catalytic domain, we cloned in the pHLsec vector for secreted mammalian expres-
sion™ the catalytic domain of Chaetomium thermophilum UGGT (CtUGGTr.4), without its C-terminal ER-retrieval motif, and expressed, pu-
rified, and crystallized the protein.* We then used those CtUGGTgr,4 crystals for our FBLD effort, in which each crystal was soaked with a
different chemical compound from a molecular fragment library.>* The study’s best hit was a 2.25 A crystal structure of CtUGGTg24 in com-
plex with the fragment ligand 5-[(morpholin-4-yl)methyllquinolin-8-ol, 5M-80H-Q for short in what follows.

Here, we describe the 1.65 A structure of a co-crystal of CtUGGTgr24 and 5M-80H-Q ((M=8CH-CCtUGGTg1,4), as well as the crystal struc-
tures of apo CtUGGTg124 and CtUGGTgr24 in complex with the U2F cofactor analog (VP CtUGGTgr24). We measure the 5M-80H-Q affinity for
CtUGGTgT124 and human UGGT1 in vitro and show that in human cells the molecule inhibits both human paralogs of UGGT, UGGT1, and
UGGT?2, at concentrations higher than 750 M. We present an in silico model of the GlcNac,Mang N-linked glycan in the catalytic site of
UGGT, suggesting that the ligand interferes with N-glycan binding, therefore likely acting as a competitive inhibitor. This hypothesis is sup-
ported by a competition assay in vitro, in which the N-linked glycan displaces the inhibitor from its binding site in the UGGT catalytic domain.
A medicinal chemistry program to generate more potent and selective UGGT inhibitors starting from 5M-80H-Q is in progress.

RESULTS

The active site of CtUGGTgr24 undergoes structural rearrangements upon binding the U2F cofactor analog

The crystal structures of CtUGGTgT24 in absence of the UDP-Glc cofactor and of the same protein in complex with the U2F cofactor analog
(VP CtUGGTgr24) were determined by X-ray crystallography. Tables S1and S2 list the X-ray data collection statistics and structure refinement
statistics, respectively. These structures constituted the basis for the FBLD effort that discovered 5M-80H-Q as a CtUGGTgr4 ligand.®

The CtUGGTgr24 active site undergoes structural changes binding the U2F cofactor analog. Half of the coordination sphere of the Ca®* ion
in the CtUGGTgT24 active site is common to both structures: the side chains of D1302 and D1304 (belonging to the UGGT conserved DAD
motif*) and the side chain of the conserved D1435 always take up three invariant coordination sites around the Ca®* ion (Figures 1A and 1B).
In the 1.8 A structure of apo CtUGGTgT24 (PDB ID 7ZKC), two water molecules occupy two of the three remaining coordination sites around
the Ca®" ion, with the main chain carbonyl oxygen of L1436 completing the ion’s octahedral coordination (Figure 1A). In the VP CtUGGToT24
structure (PDB ID 7ZLU) these two water molecules are replaced by an O atom from the B phosphate and by the F atom on the Glc ring of U2F
(Figure 2A); the main chain of L1436 moves away from the Ca®* ion, and a water molecule occupies its Ca’* coordination site (Figures 1B, 1C,
and 2A).

In the CtUGGTgr24 binding site, U2F adopts a conformation equivalent to that of UDP-Glc described in Caputo et al.** This conformation
likely represents the initial stage of the cofactor binding process: the ribose ring points toward the solvent (Figures 1B and 1C and 2A). The
uracyl ring O4 atom accepts a hydrogen bond from the main chain NH of $1207, and its N3 atom donates one hydrogen bond to the main
chain O of the same residue (Figures 1B and 1C); the uracyl ring also forms a 7-stacking interaction with the conserved CtUGGT Y1211, whose
side chain rotates slightly when compared to the apo structure, to accommodate the ligand. The molecule’s pose suggests that the UGGT
active site selects UDP-Glc over UDP-Gal®*~": in UDP-Glc the glucose O4’ atom forms hydrogen bonds to the side chains of conserved W1280
and D1396, but these interactions would be lost in UDP-Gal, because of the difference in stereochemistry between Glc and Gal in position 4
(Figure 1C).

UGGT binds 5M-80H-Q via a conserved patch on the surface of its catalytic domain

To confirm the 5M-80H-Q:CtUGGTgr24 binding pose observed in the FBLD soaked crystal,34 we grew a CtUGGTgr24:5M-80H-Q co-crystal
and obtained a 1.65 A crystal structure (PM—=8OH-QCJGGTgro4, PDB ID 7ZLL). The structure confirms that the compound binds to a conserved
patch on the surface of the CtUGGTg124 domain, about 15 A away from the UDP-Glc binding site (Fi%:;ures 1D, S1A, and S1B). The morpholine
ring is partially disordered in the crystal, but one of its ring placements is 4.2 A from the conserved *baD ¥ motif coordinating the Glcring
of UDP-Glc or U2F (Figures 1D and 2A); the ligand also causes a displacement of the side chain of CtUGGTg124 '>*Y.** Through this displace-
ment, the 80OH-quinoline ring inserts and is sandwiched between the aromatic side chains of the conserved residues Moyt
propose to call the "YW clamp”. The two aromatic side chains stabilize the quinoline ring forming an aromatic trimer*’; the 80OH group of the
quinoline also establishes a hydrogen bond to the side chain of "*°2H (Figures 1D and S1B).

—which we
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Figure 1. CtUGGTgr24 crystal structures

(A-C) The active sites of CtUGGT 124 and Y2 CtUGGT gr24. Protein atoms in sticks representation; C cyan (but U2F C magenta, and 5SM-80H-Q C atoms yellow),
O red, N blue, P orange, F light green. H-bonds and Ca?*-coordination bonds are in yellow dashed lines. The Ca" ion is a green sphere and its coordinating
water molecules are red spheres. The side chains of residues D1302, D1304, and D1435 coordinate the Ca?". (A) apo CtUGGTgr24 (PDB ID 7ZKC). The octahedral
coordination sphere of the Ca’*ionis completed by two water molecules and the main chain of L1436. (B) V2P CtUGGTgro4 (PDB ID 7ZLU). L1436 moves away from
the Ca?* ion, and two coordination sites are taken up by the U2F B phosphate and the F atom at position 2’ of the Glc ring. The uracyl O4 atom accepts an H-bond
from the $1207 main chain NH. Only one Ca2+—coordinating water molecule remains. (C) the UGGT active site selects UDP-Glc over UDP-Gal**=”: in UDP-Glc the
glucose O4’ atom forms hydrogen bonds to the side chains of conserved W1280 and D1396, but these interactions would be lost in UDP-Gal (because of the
difference in stereochemistry between Glc and Gal in position 4). The side chain of Y1211 and the main chain of $1207 coordinate the uracyl ring.

(D) The VP CtUGG TG4 structure (PDB ID 7ZLU) overlaid wi*%&ghe 5M-80H-Q ligand from the "M 8"~ QCtUGGT 5124 structure (PDB ID 7ZLL), in the enzyme active
site region. The CtUGGT 1346YW1347 clamp, the conserved DQD" motif, H1402, Y1211, and the main chain of $1207 are in stick representation. Only two of

the many poses of the 5M-80H-Q inhibitor are shown.

5M-80H-Q and M9 glycan-binding sites overlap
To gain insight into how 5M-80H-Q UGGT binding compares with UGGT substrate binding, we built an in silico model of the ManoGlcNAc,
glycan bound to CtUGGT using a combination of knowledge-based docking and molecular dynamics (see STAR Methods).

The surface of the UGGT catalytic domain on which the glycan docks according to our model is highly conserved across eukaryotic
UGGT1s and UGGT2s.*” The A branch of the MangGIcNAc, glycan stretches toward the UGGT active site, while B and C branches point to-
ward the solvent, fitting into shallower grooves, binding the protein with fewer interactions (Figure 2B). These observations are consistent with
previous work showing that UGGT is able to glucosylate misfolded glycoproteins bearing GIcNAc,Mang (Man “I” trimmed) and GlcNAc;Man;
(Man “I” and Man “K” trimmed) glycans (Figure 2B) albeit with lower efficiency than those bearing GlcNAc,Mang. ™

Importantly, the model suggests how UGGT recognizes the first GIcNAc: the glycan’s first N-acetamide group faces directly into the hy-
drophobic cavity formed by residues Y1346, W1347, and L1392, its acetyl oxygen hydrogen-bonded to the L1392 backbone nitrogen, and the
$1391 hydroxyl group (Figures 2C and 2D), in agreement with the published finding that the first GIcNAc is required for the ManyGlcNAC,
glycan to bind to UGGT.***

iScience 26, 107919, October 20, 2023 3
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Figure 2. Modeling of the GlcNAc;Man, glycan bound to the CtUGGTgr24 domain

(A) Man "G” placement next to the UDP-Glc binding site, in an orientation suitable for the nucleophilic attack of its O3 oxygen to the glucose anomeric center (red
dashed line), to yield the B(1-3) Glc-Man bond.

(B) GlcNAc,MangGles glycan nomenclature and final model of the GIcNAc,MangGlc; glycan docked onto the CtUGGTg124 domain. Saccharide moieties are
color-coded according to the scheme on the left hand side.*

(C and D) The docked GlcNAc, moiety of the MangGlcNAc, N-linked glycan and 8-OH-Q share a binding pocket.

To test the hypothesis that 5SM-80H-Q and the N-linked glycan of a client glycoprotein compete for overlapping sites, we set up assays
in vitro. Initially, the affinity of 5SM-80H-Q for full-length human UGGT1 (UGGT1) was measured by saturation transfer difference (STD) Nuclear
Magnetic Resonance (NMR) spectroscopy, but no signal was measurable below 100 pM 5M-80H-Q concentration, and a weak binding event
with a 613 uM Ky was measured—the significance of which remains unclear (Figure S3A). For the remaining binding assays, we decided to
exploit detection of fluorescence, from either of two kinds of fluorescently labeled molecules: 2-anthranylic acid-labeled N-linked glycans
(2AA-glycans, Figure 3A) or N-NHS-RED-labeled CtUGGTgr24 protein (Figure 3B).

Fluorescence from 2-anthranylic acid-labeled GlcNAc,Mang glycan (2AA-M9) was used as the basis of detection only in one experiment,
in which we followed its binding to the CtUGGTgt24 domain in vitro (Figure S4A) using fluorescence polarization anisotropy (FPA). The

4 iScience 26, 107919, October 20, 2023
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Figure 3. Fluorescence from 2AA-labeled glycans and N-NHS-RED-labeled CtUGGTgr24

(A) HPLC elution profiles for the purification of 2AA-labeled glycans obtained from recombinantly expressed HIV gp120. Top panel, black trace: 2AA-labeled glycans
purified from cells treated with 10 pM kifunensine (predominantly GIcNAc,Man, i.e., 2AA-M9 glycan). Bottom panel: 2AA-labeled glycans purified from cells not
treated with kifunensine: mostly 2AA-M9 glycan, but containing 2AA-M5, 2AA-M6, 2AA-M7 and 2AA-M8 glycans as well. We call this mixture 2AA-M5-9.

(B) Fluorescence spectra of 5M-80H-Q, unlabelled CtUGGTg124 and NT-RED-NHS-labeled CtUGGTg124. Aexcit = 600 nm. Solid and dashed lines refer to samples
with or without SM-80H-Q, respectively. Gray: 5M-80H-Q 2.5 mM; green dashed: unlabelled CtUGGTg124 1.7 uM; green: unlabelled CtUGGTg124 1.7 uM plus
5M-80H-Q 2.5 mM,; blue dashed: NT-RED-NHS-labeled CtUGGTgr24 1.7 pM; blue: NT-RED-NHS-labeled CtUGGTgr24 1.7 pM plus 5M-80H-Q 2.5 mM.

FPA-estimated dissociation constant for the binding of CtUGGTgr24 to the 2AA-M9 N-linked glycanis Kqy =117 + 32 uM. No measurement of
the affinity of UGGT for an N-linked glycan has been published before, although a Michaelis Menten K, = 18 pM was reported for misfolded
soybean agglutinin and bovine thyroglobulin in reglucosylation assays mediated by full-length rat UGGT.*

The remaining in vitro binding assays followed fluorescence from N-NHS-RED-labeled CtUGGTgr24 protein. This signal was preliminarly
characterized by acquisition of fluorescence spectra in the 620-700 nm range, using Aexcir = 600 nm ((Figure 3B)). Fluorescence spectra from
solutions containing either 5SM-80H-Q or CtUGGT g124 (with or without N-NHS-RED-labeling), or both, were measured. No fluorescence was
detected from 5M-80H-Q (gray fluorescence spectrum in Figure 3B), nor from unlabeled CtUGGTgt24 protein, with or without 5M-80H-Q
(green fluorescence spectra in Figure 3B). N-NHS-RED-labeled CtUGGTgr24 fluoresced at a low level (dashed blue spectrum in Figure 3B).
Addition of 5M-80H-Q to N-NHS-RED-labeled CtUGGTg124 appeared to enhance its fluorescence 5-fold (solid blue spectrum in Figure 3B).*°
Since no difference in fluorescence was observed from SDS/heat-denatured N-NHS-RED-labeled CtUGGTgr24 protein with or without 5M-
80OH-Q (data not shown), it appears that the observed 5M-80H-Q-induced enhancement of N-NHS-RED-labeled CtUGGT g4 fluorescence
depends on binding of 5SM-80H-Q to the labeled CtUGGTgr24 in its native structure/fold (ligand-enhanced fluorescence, LEF).*

Three in vitro experiments followed binding of ligands to N-NHS-RED-CtUGGTgr24, either by LEF or by microscale thermophoresis (MST).
Those are as follows.

1. Binding of N-NHS-RED-CtUGGTgT24 to 5M-80H-Q was assayed by measuring LEF of a fixed amount of NHS-RED-CtUGGTgro4 along a
dilution series of 5SM-80H-Q (Figure S3B). The equilibrium dissociation constant of the N-NHS-RED-CtUGGTgt24:5M-80H-Q complex
is estimated as KM 8OH"Q = 47 + 0.7 pM.

2. Binding of a mixture of 2AA-GlcNAc,;Mans o glycans (2AA-M5-9) to N-NHS-RED-labeled CtUGGTgt24 was measured using MST (Fig-
ure S4B). The average affinity of N-NHS-RED-labeled CtUGGTgr24 for the 2AA-M5-9 N-linked glycan mixture is K24 ~M>% = 250 +
39 uM, weaker than the Kg2**™M? = 117 + 32 uM we measured by FPA between CtUGGT g4 and the 2AA-M9 N-linked glycan (Figure S4).
These values are consistent with the loss of protein affinity expected for N-linked glycan species with fewer than 9 mannose residues.

3. Binding of the 2AA-M5-9 mixture to CtUGGTgT24 in presence of 40 uM 5M-80H-Q was assayed in an in vitro competition experiment.
The changes of fluorescence of the 5M-80H-Q:N-NHS-RED-labeled CtUGGTgr24 complex were followed along a 2AA-M5-9 dilution
series (black data points in Figure 4). The same changes in fluorescence were then computed with a model in which two simultaneous
equilibria are established, but no ternary complex can form; i.e., 5M-80H-Q and 2AA-M5-9 N-linked glycan binding to N-NHS-RED-
labeled CtUGGTgr4 are mutuallfy exclusive. The calculation used the two Kgs measured in the experiments described earlier:
KPM8OH=Q = 47 + 0.7 uM and K2 M5 = 250 4+ 39 uM. The main qualitative trend of the 2AA-M5-9-induced displacement of
5M-80H-Q from N-NHS-RED-labeled CtUGGTgT24 is well predicted by this model (red curve in Figure 4), suggesting that 5SM-80H-
Q and the 2AA-M5-9 glycans compete for overlapping sites. A fit to the same data using a model with a single equilibrium gives an
apparent dissociation constant of 2PPK 2 "M5% = 341 |M (blue dashed curve in Figure 4).

5M-80H-Q is a sub-millimolar inhibitor of human UGGTs in cellula

To ascertain if 5SM-80H-Q can be delivered to the ER and inhibit UGGT-mediated glucosylation in cellula, modified HEK293-6E cells
were treated with the inhibitor, monoglucosylated glycoproteins isolated by affinity precipitation (with a glutathione S-transferase

iScience 26, 107919, October 20, 2023 5
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Figure 4. 5M-80H-Q and the 2AA-M5-9 N-linked glycan mixture compete for N-NHS-RED-labeled CtUGGTgr24 in vitro

Black filled circles: 2AA-M5-9 N-linked glycan dilution series from 1.5 mM to 45.8 nM, displacing 40 uM 5M-80H-Q from 100 nM NT-RED-NHS-labeled
CtUGGTgT24, as measured by LEF. Agxeir = 650 nm Agmiss = 670 nm. Error bars are esds from four independent dilution series. Red dashed line: calculated
fluorescence from NT-RED-NHS-labeled CtUGGTgrz4 in the above conditions, using two mutually exclusive binding equilibria and the two measured
Kg"M~8OH=Q = 47 uM and K M5 = 250 uM. Blue line: a fit to the data using a model with a single equilibrium gives *PPK2AA"M59 = 341 M.

[GST]-calreticulin [GST-CRT] resin), and the eluate analyzed by immunoblotting.”*® To ensure the CRT interaction resulted from UGGT
glucosylation, and not from the initial glycan trimming that occurs during normal glycan maturation, CRISPR/Cas? was used to knock
out the alpha-1,3-glucosyltransferase 6 (ALG6) gene. ALG6 appends the first glucose to the ManyGlecNAc, carbohydrate during the syn-
thesis of the GlczManyGIcNACc, N-linked glycan precursor at the ER membrane. Once the ALG-mediated synthesis of its precursor is com-
plete, the GlcsManyGleNAc, glycan is then appended to nascent glycoproteins by Oligosaccharyl Transferase (OST) and trimmed by glu-
cosidases | and Il to a monoglucosylated state, which in turn can bind to the ER lectin chaperones calnexin and calreticulin.”’ Therefore,
during glycan maturation in wild-type cells, CRT-affinity pull-downs would select two types of glycoproteins: either those with a glycan
trimmed from Glcz MangGleNAc, to GlcMangGleNAc, or those which underwent glucosylation of a ManeGlcNAc, glycan by a UGGT.™
In our ALG6'~cells, the CRT-affinity pull-down can only select monoglucosylated glycoproteins that were glucosylated by UGGT and
not the ones produced by the ER glucosidases initial glycan trimming because in these cells the N-glycan precursors added to nascent
glycoproteins initially lack the three glucoses.

In order to decide on the maximum assay concentration of 5SM-80H-Q, toxicity assays were carried out. In a trypan blue assay, toxic effects
were observed around 1-2 mM 5M-80H-Q and above in modified HEK293-4E cells: after 5 h of treatment with 1 or 2 mM 5M-80H-Q the
viability was about 75%-80% (Figure S5).

The ALG6™'~ HEK293-6E cells were treated with increasing concentrations of 5SM-80H-Q, and—following incubation with the mole-
cule—glucosylation of known UGGT substrate glycoproteins was analyzed by isolating monoglucosylated glycoproteins from the cell
lysate. After GST-CRT precipitation, the eluate was probed for two known substrates of UGGT: the proprotein of human insulin like
growth factor 1 receptor (IGF1R) (ProlGF1R, a UGGT1 substrate®®) and the proprotein of hexosaminidase subunit beta (HexB)
(ProHexB, a UGGT2 substrate™®), and their glucosylation levels were quantified. The amount quantified in each GST-CRT pull-down was
divided by the total amount found within the sample’s whole-cell lysate (WCL), resulting in the percent glucosylation at that dose of
5M-80H-Q."

Levels of monoglucosylated IGF1R and HexB in the ALG6 ™'~ HEK293-6E cells decrease as the concentration of SM-80H-Q increases (Fig-
ure 5A, even-numbered lanes 2-18). In particular, a significant decrease in IGF1R and HexB glucosylation is observed at 500 and 750 pM 5M-
80H-Q, respectively. IGF1R and HexB glucosylation decreases from ~ 17% to ~ 4% and ~ 9% to ~ 2%, respectively, going from no treatment
to 2 mM 5M-80H-Q (Figures 5B-5D).

Interestingly, the overall levels of IGF1R and HexB glycoproteins also seem to decrease with increasing levels of 5SM-80H-Q (WCL lanes in
Figure 5A).

Next, we asked whether 5M-80H-Q inhibits both human paralogs of UGGT (UGGT1 and UGGT2).*%°"%? ALG6/UGGT1~'~ and ALGS/
UGGT2™'~ double knockout (KO) cells*® were exposed to 1 mM of the drug to measure glucosylation of IGF1R and HexB as described earlier
(Figure 6A). As expected, glucosylation of IGF1R (a UGGT1 substrate™) is significantly inhibited in both the ALG6™~ and ALG6/UGGT2~/~
cells, but notin the ALG6/UGGT1~/~ cell line (Figure 6B). Similarly, glucosylation of the UGGT2 substrate HexB is inhibited in the ALG6 ™/~ and
ALG6/UGGT1™/~ cells, but not in the ALG6/UGGT2™'~ cell line (Figure 6C). The levels of inhibition within each of these UGGT KO cell lines
agree well with the findings described earlier (Figure 5; Adams et al."®). In agreement to what is observed in Figure 5A, 5SM-80H-Q also de-
creases the levels of IGF1R and HexB in the WCL lanes (Figure 6A). Taken together these results suggest 5SM-80H-Q can reach the ER and
inhibit both paralogs of UGGT.
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Figure 5. 5M-80H-Q dose-dependent inhibition of UGGT in cellula

(A) ALG6™'~ HEK293-6E cells were cultured and treated with increasing concentrations of 5M-80H-Q. The “0 mM” group was treated with no drug or vehicle. The
vehicle control group was incubated with DMSO. The lysate was split between a whole-cell lysate sample (20%, "WCL") and a GST-CRT pull-down sample (60%,
“CRT"), and resolved by 9% SDS-PAGE gel electrophoresis, before transferring the protein bands to a PVDF membrane. Imaged are immunoblots probed for
IGF1R (whose proprotein HsProlGF1R is a UGGT1 substrate”®), HexB (whose proprotein HsProHexB is a UGGT2 substrate’®) and GAPDH (loading control). Each
data point comes from three independent biological replicates.

(B and C) Quantification of HsProlGF1R and HsProHexB glucosylation over increasing amounts of 5M-80H-Q from the experiments in A. Percent glucosylation
was calculated by dividing the normalized CRT value by the normalized value from the WCL and multiplying by 100.

(D) Anti-GAPDH blot control. Protein samples were loaded to match the protein in the “0 mM" group for each condition. Error bars represent the standard
deviation. Statistical significance levels: *: p < 0.05; **: p < 0.01; ***: p < 0.001.

DISCUSSION

Since its discovery in 1989,°° UGGT retains a central role in the standard model of glycoprotein ERQC.* As such, and considering the impor-
tance of glycoprotein folding to health and disease,” UGGT is a potential target for drugs to treat a variety of conditions.'®**>" As of today,
the only known UGGT inhibitors are its product, UDP,*® and some of its squaryl derivatives'?; the UDP-Glc analog U2F; and synthetic analogs
of its substrate (the N-linked ManyGlcNAc; glycan).""'? None of these molecules are good scaffolds for selective drug design, given that all
eukaryotic genomes encode a plethora of proteins carrying a UDP-, a UDP-Glc-, or a glycan-binding site. Until the molecular mechanisms
underpinning misfold recognition are elucidated, and the portions of UGGT involved in this process are discovered,* the catalytic domain
remains the most promising target for novel classes of compounds that inhibit UGGT-mediated glucosylation of misfolded glycoproteins in
the ER.

We grew crystals of CtUGGTg124 in order to hunt for novel ligands by FBLD and discovered 5M-80H-Q as a CtUGGTgrz4 ligand.®* The
molecule was originally synthesized as a component for soluble aluminum complex dyes™ or fluorescent Zinc sensors.” In the medical field,
8-hydroxyquinoline derivatives can be used as insecticides, antibacterial, fungicidal, neuroprotective, and anti-HIV agents.”®*” The 5M-
80H-Q Ky for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main viral protease was estimated as 28.6 X 107° M by a recent
in silico study.®”

The M-8OH-CQCtUGGTg14 crystal structure shows that 5M-80H-Q binds a conserved pocket on the surface of the protein, not far from the
UDP-Glc binding site (Figures 1 and 2). In vitro, 5M-80H-Q binds to CtUGGTgT24 with 47 uM Ky (Figure S3B). 5M-80H-Q and M5-9 glycan
binding appear to be mutually exclusive in an in vitro competition assay (Figure 4). These observations are consistent with the in silicomodel of
the ManyGlcNAc;, glycan bound to the catalytic domain of CtUGGT which shows the 5M-80H-Q binding site partially overlapping with the
putative ManyGlcNAc; glycan-binding site.

Our experiments in human cells show a concentration-dependent decrease in glucosylation of the HsProlGF1R and HsProHexB UGGT
substrates upon treatment of HEK293-6E cells with 5SM-80H-Q (Figure 5), indicating that the molecule inhibits ER lumenal UGGTs. Both
UGGT isoforms are inhibited (Figure 6), a result that agrees with the sequence and structure conservation of the 5SM-80H-Q binding site
in the catalytic domain of the two proteins.*
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Figure 6. 5M-80H-Q inhibits both UGGT1 and UGGT2 in cellula

(A) ALG6™'~, ALG6/UGGT1™/~ and ALG6/UGGT2 '~ HEK293-6E cells were cultured and either not treated or treated with 1 mM 5M-80H-Q to determine if the
drug inhibits one or both of UGGT1 and UGGT2. After the cells were incubated with the inhibitor, they were lysed and split between a whole-cell lysate sample
(20%, "WCL") and a GST-CRT pull-down sample (60%, “CRT"), and resolved by 9% SDS-PAGE gel electrophoresis, before transferring the protein bands to a
PVDF membrane. Imaged are immunoblots probed for IGF1R (UGGT1 substrate’®) and HexB (UGGT2 substrate™). Glucosylation of human ProlGF1R and
human ProHexB was observed in ALG6™/~, ALG6/UGGT2™'~, and ALG6™'~, ALG6/UGGT1~'~ cell lines, respectively. Each data point represents three
independent biological replicates. GAPDH was used as a loading control.

(B and C) Quantification of human ProlGF1R and human ProHexB glucosylation from (A) Percent glucosylation was calculated by dividing the normalized value
from the CRT lane by the normalized WCL. The resulting value was multiplied by 100 to obtain percent glucosylation. Error bars represent the standard deviation.
Statistical significance levels: *: p < 0.05; **: p < 0.01; ***: p < 0.001.

Besides HsUGGT1 and HsUGGT2, the human genome encodes 10 more genes containing a GlycosylTransferase-A (GT-A) or a
GlycosylTransferase-B (GT-B) domain. From sequence alignment, it appears that the YW clamp providing the 5M-80H-Q binding platform
is specific to UGGTs (GT24 family®'; Figure S2). Itis therefore unlikely that 5SM-80H-Q binds other GT-A and GT-B domains in human proteins
in the same way it binds UGGTs.

Rather, 80H-quinolines can chelate a great number of cations, including Cu®*, Bi%*, Mn?*, Mgz+, Fe3*, AI**, Zn?*, and Ni** %% and are
known to bind to a dozen mammalian metalloproteins (see Table S3), including human demethylases, 2-oxoglutarate/iron-dependent oxy-
genases, and a-ketoglutarate-dependent RNA demethylases.®* > Metalloproteins®®~’? are therefore more likely candidates for any 5M-
80H-Q off-target effects.

In summary, 5SM-80H-Q provides a useful starting point for the synthesis of UGGT modulators for the treatment of diseases caused by
“responsive mutants”, as persistent UGGT-mediated glucosylation may prevent trafficking of slightly misfolded, but otherwise functional, gly-
coproteins to their correct cellular locations.'® UGGT inhibition may one day also find application as an anti-cancer strategy, as some UGGT
substrate glycoproteins™® are selectively up-regulated in cancer cells.”” Replication of pathogenic enveloped viruses whose envelope glyco-
proteins fold under UGGT control may be impaired by UGGT inhibitors.”* Modulation of UGGT activity would also affect adaptive immune
responses triggered by antigenic peptides.” The strong conservation of UGGT sequence/function across eukaryotes” broadens the potential
impact of such molecules to many fields: examples are plants as in vivo models to study secretion’*”’>; stress-resistant genetically modified
crops”’; or expression systems for recombinant glycoproteins.’®

Limitations of the study

The low potency of 5SM-80H-Q in cells could be either related to low efficiency in crossing the plasma and ER membranes, or to low-spec-
ificity/off-target binding. The latter would be hardly surprising, given that the molecule was discovered as a UGGT binding fragment during an
FBLD effort® and it has not been chemically modified to improve its potency and selectivity yet. As it is, 5M-80H-Q is toxic in cellula at con-
centrations higher than 1 mM (Figure S5) and a dose-dependent reduction of the levels of the two UGGT substrates assayed (HsProlGF1R and
HsProHexB) was observed in ALG6 ™'~ HEK293-6E cells (“WCL" lanes in Figures 5 and é). At present, itis unclear if these side effects are due to
5M-80H-Q directly interacting with other cellular targets, or to indirect effects of UGGT inhibition on UGGT glycoprotein clients’ folding and
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levels: 5SM-80H-Q treatment, as well as inhibiting UGGT-mediated reglucosylation of HsProlGF1R and HsProHexB, may cause a decrease in
their levels because both client glycoproteins fold under UGGT control.

A medicinal chemistry program that will yield the next generation of 5M-80H-Q derivatives of improved potency and selectivity is in
progress. In silico screening, chemical synthesis, and in vitro assays will be used to modify the Mé-80H-Q molecule. Chemical modifications
are being introduced to the quinoline scaffold, the 5-morpholino-residue, or the 8-hydroxy group. Together with derivatives incorporating
polar/non-polar residues on the remaining positions of the scaffold, these daughter molecules will generate structure-activity-relationship
data toward drug-like compounds with improved UGGT inhibitory potency and selectivity.
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Anti-HexB Abcam Cat#ab140649;RRID:AB_3065101
Anti-GAPDH Millipore Sigma Cat#MAB374;RRID:AB_2107445

Bacterial and virus strains

E.coli DH5-a.

New England Bioscience

Cat# C2987I

Chemicals, peptides, and recombinant proteins

Agel-HF

Kpnl-HF
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QlAquick gel extraction kit
In-Fusion Cloning

Kifunensine

Anthranilic Acid

MORPHEUS Crystallisation Screen
HEPES
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Molecular Dimensions
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Cat# 109944-15-2

Cat# A89855

Cat# MD1-47

Cat# H3375

Cat# 56750

Deposited data

Python code
CtUGGTgT24

V2P CtUGGT G124
SM-8OH-QCHGGTerz

This paper
This paper
This paper
This paper

https://doi.org/10.5281/zenodo.8305097
PDB ID 7ZKC
PDB ID 7ZLU
PDB ID 7ZLL

Experimental models: Cell lines

HEK FreeStyleTM 293F cells
HEK293-EBNA1-6E ALG6™
HEK293-EBNA1-6E ALG4/UGGT17~
HEK293-EBNA1-6E ALG6/UGGT27"
HEK293-EBNA1-6E ALG4/UGGT1/27

ThermoFisher Scientific

Adams et al.*®

Adams et al.*®

Adams et al.*®

Adams et al.*®
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Oligonucleotides

OPPF UGGT1 Fwd gcgtagctgaaaccgge Eurofins Scientific NA
GACTCAAAAGCCATTACAACCTCTCT

OPPF UGGT1 Rev gtgatggtgatgttt Eurofins Scientific NA
TTTCTGAGGACCTTCTCGGCTTGG

Recombinant DNA

UGGT1-pUC57 Genscript NA
POPINTTGneo:hUGGT1 plasmid This paper NA

Software and algorithms

autoPROC Vonrhein et al.”’ Version 1.0.5
Coot Emsley et al.”® Version 0.9
BUSTER Blanc et al.”’ Version 2.10.3
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GLYCAM-web Singh et al.,®® Version 1.0
AutoDock-Bias Arcon et al.,”’ Version 1.0
AutoDock4 Morris et al.,®” Version 4.0
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Pietro Roversi
(pietro.roversi@cnr.it).

Materials availability

The pOPINTTGneo:hUGGT1 plasmid generated in this study is available for distribution. This study did not generate any other unique re-
agents. Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Pietro
Roversi (pietro.roversi@cnr.it).

Data and code availability
e Crystal structure coordinates and structure factor files (mmCIF format) were deposited and are publicly accessible in the protein data-
bank (PDB) as PDB IDs 7ZKC (CtUGGTgr24), 7ZLU (YT CtUGGTg124) and 7ZLL CMECHCCHUGGTgr04). Accession numbers are also listed
in the key resources table.
e All original code has been deposited at Zenodo (https://doi.org/10.5281/zenodo.8305097) and is publicly available as of the date of
publication. The DOI is listed in the key resources table.
e Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS
E. coli strains for protein production
DH5a chemically competent E. coli was used to make the pHLsec: CtUGGT, pHLsec:CtUGGTg124 and pOPINTTGneo:hUGGT1 plasmids.

METHOD DETAILS

UGGT1 cloning, protein expression and purification

The C-terminally His-tagged construct encoding human UGGT1 residues 43-1551 was PCR-amplified from the commercially sourced vector
UGGT1-pUC57 (GenScript) with primers: OPPF_UGGT1_Fwd: gcgtagctgaaaccggcGACTCAAAAGCCATTACAACCTCTCT OPPF_UGG
T1_Rev: gtgatggtgatgtttTTTCTGAGGACCTTCTCGGCTTGG. These primers were designed to surround the insert with an N-terminal
Agel restriction site and a C-terminal Kpnl site (after the C-terminal 6xHis tag and the stop codon). The amplified DNA was run on a 0.8%
agarose gel and the correctly-sized fragment excised and purified using the QlAquick Gel Extraction Kit (QlAgen). The pOPINTTGneo
plasmid was linearised with 20 units of both Agel-HF and Kpnl-HF restriction enzymes, incubated with 1x CutSmart Buffer (New England
BioLabs) and 500ng of pHLSec DNA and digested at 37°C overnight. Both the linearised pOPINTTGneo and the UGGT1 insert DNA were
run on a 0.8% agarose gel and the correctly-sized fragments excised and purified using the QlAquick Gel Extraction Kit (QlAgen). DNA liga-
tion of the linearised pOPINTTGneo vector and the human UGGT1 insert was achieved by In-fusion™ligation-independent cloning (Ta-
kara Ltd.)

Transfection of HEK293F cells with the pOPINTTGneo-hUGGT1 plasmid and expression of the recombinant human UGGT1 protein were
carried out a protocol equivalent to the one described for expression of CtUGGT,* using the FreeStyle 293 Expression System (Thermo Fisher
Scientific) and following the manufacturer’s protocol.

Immobilised Metal Affinity Chromatography (IMAC): after 5 days, the cells’ supernatant was applied onto a Ni-affinity column equilibrated
with PBS binding buffer. The protein was eluted with a 20 Column Volumes linear gradient elution at a flow rate of 1 ml/min increasing from 0%
to 100% elution buffer (PBS plus 500 mM Imidazole).

Size Exclusion Chromatography (SEC): the IMAC step eluate was pooled and concentrated to 0.5 mL using a 100kDa spin concentrator.
The sample was then loaded on a 0.5 mL loop and applied to a 10/300 Sephadex 200 column running at 1 mL/min. The SEC buffer was 20 mM
MES pH 6.5, 50 mM NaCl, 1 mM CaCl,, T mM UDP. The latter buffer was arrived at by Differential Scanning Fluorimetry (DSF): the stability of
UGGT1 is greatly increased through the addition of CaCly, with an increase in melting temperature Tm of 3.0°C and addition of UDP, with an
increase in Tm of 1.1 °C. The DSF experiment also showed a clear preference for lower salt concentrations and a slightly more acidic pH.
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CtUGGTgr24 cloning, protein expression and purification

CtUGGTgT24 wWas cloned, expressed and purified as described in.3

Crystal growth

Crystals were grown at 18°C in sitting drops by the vapour diffusion method, set up with a Mosquito liquid handling robot (TTP Labtech).
Crystallisation drops had an initial volume of 200 nL. The volume ratio of protein to precipitant was either 1:1 or 2:1.

CtUGGTgr24 crystallisation

A crystal of CtUGGTgr24 grew in one week in a 1:1 mixture of CtUGGTgr24 at 6 mg/mL and Morpheus screen condition 1-1 composed of
0.06 M Divalents, 0.1 M Buffer System 1 pH 6.5, 30% v/v Precipitant Mix 1.%%%

CtUGGTgr24:U2F co-crystallisation

U2F was synthesised as described in.%> A crystal of CtUGGTg124:U2F grew in one week in a 1:1 mixture of CtUGGTg124 at 12 mg/mL, 2 mM
CaCly, 1.25 mM U2F and Morpheus screen condition 2-17 composed of 0.12 M Monosaccharides, 0.1 M Buffer System 2 pH 7.5, 30% v/v Pre-
cipitant Mix 1.%%8

FBLD of UGGT ligands
Details of the study are available in.**

SM-80H-Q UGG T4 co-crystallisation

A crystal of SM-EOH-QCGGTgro4 grew in one week in a 1:1 mixture of CtUGGTgr24 at 6.5 mg/mL, 10 mM 5M-80H-Q in DMSO and Morpheus
screen condition 1-1 composed of 0.06M Divalents, 0.1 M Buffer System 1 pH 6.5, 30% v/v Precipitant Mix 19384

X-ray data collection, processing, and model refinement

X-ray data collection beamlines and data collection parameters are listed in Table S1. Data processing was carried out in autoPROC.”” The
model refinement and ligand fitting were carried out with BUSTER”"®¢ and Coot.”®®” Refinement statistics are listed in Table S2.

In silico modeling of the CtUGGTgr24:ManyGlcNAc, complex

Due to the limitations of conventional docking methods in dealing with oligosaccharides larger than five units,”® we used a hierarchical
approach that combined biased docking and Molecular Dynamics (MD) in order to build a model of the MangGlcNAc; glycan (M9) bound
to CtUGGTgT2s-

As arule, carbohydrate ligands bind to proteins in a conformation close to one of the gas-phase energy minima. The latter mainly depend
on the values of the dihedral angles of each glycosidic bond.?” Although each of these can only assume a few possible conformations, the M9
glycan has 70 torsional degrees of freedom overall (including OH and CH3 groups, glycosidic linkages, etc.). This number is such that docking
algorithms cannot handle full torsional optimisation.”

We therefore generated nine initial MangGlcNAc, conformations using the GLYCAM-web server at https://glycam.org/lib/load/hmlib/.*° Each
of these structures was then optimized using MD in explicit solvent,”' thus broadening the M9 conformational space spanned by the structures.

The results were clustered using only the poses of furanose rings with a 1.4 A of tolerance” and 250 representative ManeGlcNAc, confor-
mations were selected and underwent the analysis described here below:

1. we first aligned the acceptor Man residue of the ManyGlcNAc, N-linked glycan (i.e. the terminal Man residue of its A-branch, Man "G”
(Figure 2B) such that its C1 atom pointed towards the O3 atom of the UDP-Glc molecule in our Y2FCtUGGTgr24 structure (see also the
structure of TAUGGTgro4 in complex with UDP-Gle, PDB 1D 5H18,%"). This assumes that this Man “G” residue docks in the active site
such that upon Glc transfer, a B(1-3) linkage will form;

2. then, using that Man "G" residue orientation as a constraint, we performed multiple docking simulations of the MangGlcNAc; ligand,
using the AutoDock-Bias protocol ', modified as described in®®), and keeping all torsional degrees of freedom fixed;

3. the results were clustered and the three best ranking poses selected for further refinement using MD simulations. Starting from each
complex, Molecular Dynamics was used to relax the MangGlcNAc; structure onto the CtUGGTgr24 domain, using the protocol
described in”%;

4. since the final pose for each of the three best MD refinements was almost identical (RMSD < 2 A), we performed a final single-point
energy calculation with AutoDock4® to select the best complex.

Estimation of 5M-80H-Q: human UGGT1 Ky by STD NMR in vitro

For each 5M-80H-Q concentration, a 1 uM solution of human UGGT1 was incubated with 5M-80H-Q in PBS prepared in D, O. Briefly, 100 pL
of ahuman UGGT1 stock solution at 2 uM and 100 pL of the dilution series of molecule at twice the desired final concentration were mixed and
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left to equilibrate for at least one hour. High and low concentrations were measured alternately to remove any time effects. As a further control
the first sample was remeasured after the last one to confirm that the STD had not changed. The signal/noise was not high enough at 5M-
80H-Q concentrations below 100 uM. No STD was observed with the maximum tested dose (2 mM 5M-80H-Q) in absence of human UGGT1.

Measurements of N-NHS-RED-CtUGGTgr24 by LEF in vitro

Fluorescence spectra were measured in a quartz cuvette on a Cary Eclipse fluorescence spectrophotometer. Aeyiz=600 NmM, Aemiss=620-700(5)
nm. 5M-80H-Q fluorescence: 1 pL of 5M-80H-Q 250 mM in DMSO was added to 99 pL of a buffer 100 mM NaCl and 20 mM HEPES pH 7.4.
CtUGGT g4 fluorescence: 27.6 ul of a 6.15 uM solution of CtUGGT G124 were diluted to 1.7 uM with the addition of 71.4 L of the same buffer.
After the spectrum was measured, 1 pL of 5SM-80H-Q 250 mM in DMSO was added and the spectrum measured again. N-NHS-RED-
CtUGGTgT24 fluorescence: a spectrum was first measured from 99 pl of a 1.7 uM solution of N-NHS-RED-CtUGGTgro4; a second spectrum
was measured after addition of 1 pL of 5SM-80OH-Q 250 mM in DMSO.

Purification of the 2AA-M9 and 2AA-M5-9 N-glycans

N-glycans were cleaved from HIV gp120 protein expressed in HEK293F cells in the presence of 5 uM kifunensine,”* labelled with 2-anthranylic
acid (2AA) and purified by HPLC following the protocol in.”” A 2AA calibration curve was obtained by measuring 2AA fluorescence on a BMG
Labtech ClarioSTAR spec, with Aexcit=320(15) nm, Aemiss=420(20) nm, for a dilution curve of 2AA in a Greiner 384 wells plate between 730 uM to
273 nM. Using this calibration curve, the concentration of the purified 2AA-ManyGlcNAc, glycan was estimated as 2 mM and the one of the
2AA-Mans 9GlcNAC, glycan was estimated as 3 mM.

Estimation of 2AA-Man5-9:CtUGGTgr24 Ky by MST and LEF in vitro

Measurements were carried out in quartz capillaries on a NanoTemper Monolith X. Initial fluorescence and thermophoresis were measured
With Aexcit=650 NM, Agmiss=670 nm. Each of three independent 16-point dilution series of 2AA-Mans ¢GlcNAc; glycan from 1.5 mM to 45.8 nM
was mixed with NT-RED-NHS-labelled CtUGGTg124 100 nM and a buffer containing NaCl 100 mM, HEPES 20 mM pH 7.4 and 0.05% Tween.

The 2AA-M5-9 glycan : CtUGGT g4 binding was characterised by microscale thermophoresis (MST). The data were fitted with one equi-
librium model using the instrument’s data analysis software.

The same measurements were repeated with samples made 40 uM 5M-80H-Q and the binding characterised by LEF (the enhanced NT-
RED-NHS-labelled CtUGGTgT24 fluorescence once 5SM-80H-Q binds to the labelled protein precludes the use of MST to follow glycan bind-
ing in presence of 5M-80H-Q). The data were analysed by custom-written Python code. A single equilibrium model was used to obtain an
apparent dissociation constant, by solving a system of 4x16=64 equations in 3x16+3=51 unknowns. For the ith data pointin the 16-points 2AA-
M5-9 dilution series, the four equations read:

app o _ [Pli* [L];
Ka = [P L],
(Plior = [Pli+[P: L;

(Ui = [LI+ [P L]

Fluo([P]) = a* Pl b, (1 _ 1A )
[P]tot [P}tot
where P=NT-RED-NHS-labelled CtUGGTg7,4 and L=2AA-M5-9.

The 51 variables are the 16x3 values of [P];, [L]; and [PL]; for i=1 to 16, plus a, b and *PPK24"M>9 The solution gave *PPK & M>9=341 uM;
a= 605.1 counts; b= 205.6 counts. These values were used in the last equation of the system (1) to compute the fluorescence in the desired
interval of [2AA-M5-9].. (blue curve in Figure 4).

The calculated fluorescence curve expected by the two simultaneous and competing equilibria was computed by first solving one system
of 5 equations in 5 unknowns for each i-th data point in the dilution series, i=1 to 16:

(Equation 1)

KSM—80H—Q — [P]’[SM — SOH — QL
d [P:5M — 80H — Q]
K2AA-M5 -9 _ [Pi[2AA — MS — 9];
d [P:2AA — M5 — 9,
[Plio: = [Pl +[P:5M — 80H — QJ;+[P: 2AA — M5 — 9],
[5M — 80H — Q],, = [SM — 80H — Q],+[P: 5M — 80OH — Q]
[2AA — M5 — 9], = [2AA — M5 — 9], +[P: 2AA — M5 — 9],

(Equation 2)
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Once the values of [P];, [SM-80H-QJ;, [P:5M-80H-QJ;, [2AA-M5-9); and [P:2AA-M5-9]; were obtained for each of the 16 values of [2AA-M5-
9ltor, i @ least-squares fit was carried out to obtain the coefficients A and B from a fit to the experimental data, using the 16 equations in the
dilution series, i=1,16:

Fluo([2AA — M5 — 9],,.) = (Equation 3)
Ax ([P, +[P: 2AA = M5 — 9],) +B[P:5M — 80H — QJ,

The solution gave A = 1,621 counts/uM and B = 11,105 counts/uM. Using these values, the calculated fluorescence curve was computed
using Equation 3 for the values of [2AA-M5-9],.. in the desired interval (red dashed line in Figure 4).

Estimation of 5M-80H-Q:CtUGGTgr24 Ky by LEF in vitro

Measurements were carried out in quartz capillaries on a NanoTemper Monolith X. Fluorescence was measured with Ag,;;=650 nm at
Aemiss=670 nm. Each of three independent 16-point dilution series of 5M-80H-Q from 2.5 mM to 76.3 nM was mixed with NT-RED-NHS-
labelled CtUGGTgT24 100 nM and a buffer containing NaCl 100 mM, HEPES 20 mM pH 7.4 and 0.05% Tween. The data were fitted by solving
the following system of 4 equations:

_[PI=[L]
=T
[P]tot = [P] + [PL] .
(U, = [L]+[PL] (Equation 4)

_ [P (P]
FIUO([PD -ar [P]tot+b* (1 - [P}tot)

in the four unknowns [P], [L], [PL] and Ky, depending on the two parameters a (the maximum observed fluorescence, when all the labelled
protein is saturated with inhibitor) and b (the minimum observed fluorescence, when all the labelled protein is free).
The first three equations give the fraction of free protein fp as a function of the total concentrations of ligand and protein:

— (KetLge = [Plioe)y/ (KetUr — [Plog) +4KelPlyo

o =
and the fourth equation of the system (4) is re-written as: 2[P]

(Equation 5)

tot

Fluo(fp) = a*fe+b(1 — fp) (Equation 6)

The fit to the data was effected by least-squares estimation of the a and b parameters.

Estimation of 2AA-M9:CtUGGTgr24 Ky by FPA in vitro

Four dilutions series of CtUGGTgT24 to in 120 mM NaCl, 20 mM HEPES pH 7.2 (from 247 to 2.47 uM) in a Greiner 384 wells plate were mixed
with 2.5 plL of a 2uM solution of 2AA-ManyGIlcNAC, glycan in water, and protein buffer added to a total volume of 25 pL. The final concen-
tration of 2AA-ManeGlcNACc, glycan was 200 nM.

The anisotropy of the 2AA-fluorescence polarisation was measured on a BMG Labtech ClarioSTAR spectrophotometer, with Aexcir=360(15)
M, Aemiss=490(20) nm, and the dichroic mirror set to 410 nm. Both instrument gain coefficients were set to 1,000. The curve was fitted with a
single equilibrium constant, and a parameter for minimum value of the anisotropy (the maximum value of the anisotropy was set to 110 mA
and kept fixed).

In cellula UGGT-mediated glucosylation assays
The in cellula UGGT-mediated glucosylation assays were carried out”’**® in presence of increasing amounts of 5SM-80OH-Q.

Briefly, HEK293-6E cells were plated and grown for 24 hr before replacing with fresh media containing the drug, from a stock solution of
250 mM in 100% DMSO, diluted to the desired/tested concentration (no more than 1% final DMSQO in the media).

After a 5 hr incubation time, the media was collected and the adhered cells were removed from the plate with lysis buffer. The media frac-
tion was gently spun down (250 g for 5 min) to collect the dissociated cells and combined with the cells scraped off the plate. The combined
samples were then shaken for 10 min at 4°C before being spun at 14,000 g for 10 min at 4°C prior to analyzing the soluble fraction.*’**®

Fifty uL bed volume of glutathione beads was added to each sample and incubated for 1 hr at 4°C under gentle rotation to remove non-
specific protein binding to the resin. The samples were then spun at 1,000 g for 5 min at 4°C to pellet the beads and the supernatant was
collected. 20% of the supernatant was used for WCL and 60% was added to the GST-CRT conjugated glutathione beads,”**® and incubated
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for 16 hr at 4°C under gentle rotation. The beads were collected by centrifuging at 1,000 g for 5 min at 4°C. The supernatant was aspirated and
beads were washed twice with lysis buffer without protease inhibitors.

Beads were treated with reducing sample buffer (30 mM Tris-HCl pH 6.8, 9% SDS, 15% glycerol, 0.05% bromophenol blue). WCLs were
trichloroacetic acid (TCA) precipitated by adding TCA to cell lysate to a final concentration of 10%. Cell lysate was then briefly rotated
and allowed to incubate on ice for 15 min before centrifugation at 17,000 g for 10 min at 4°C. Supernatants were aspirated and washed twice
with cold acetone and centrifuged at 17,000 g for 10 min at 4°C. Supernatants were aspirated and the remaining precipitant was allowed to dry
for 5 min at room temperature and briefly at 65°C. Precipitated protein was resuspended in sample buffer. Samples were resolved on a 9%
reducing SDS-PAGE and imaged by immunoblotting.

Viability assay for treated HEK293-6E cells

The viability of cells after drug treatment was determined using a LUNA II™ Automated Cell Counter. Briefly, untreated and treated cells were
incubated with the drug 5 hr. After incubation cells were collected and washed twice with PBS and resuspended in 1 mL of culture media. Cells
were mixed with trypan blue (50:50 mix) and viability was measured.

QUANTIFICATION AND STATISTICAL ANALYSIS

The percentage glucosylation was calculated by dividing the normalized amount of protein detected in the GST-calreticulin lane by the
normalized total amount of protein in the WCL. This value was then divided by the amount of protein found in the WCL multiplied by 5 to
account for the dilution factor and then multiplied by 100. The resulting value yielded the percent reglucosylation in each cell type.

The band intensities were determined using ImageJ v1.53i for pixel quantification. All statistics, biological replicates, and significance in-
formation are reported in the figure legends. Prism v8 was used for all quantifications and the error bars were calculated using the standard
deviation of three independent biological replicates. Statistical significance was determined by using an unpaired t test with a confidence
interval of 95%.
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