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Label-free detection of cellular 
drug responses by high-throughput 
bright-field imaging and machine 
learning
Hirofumi Kobayashi   1, Cheng Lei1, Yi Wu2, Ailin Mao1, Yiyue Jiang1, Baoshan Guo1, Yasuyuki 
Ozeki3 & Keisuke Goda1,4,5

In the last decade, high-content screening based on multivariate single-cell imaging has been proven 
effective in drug discovery to evaluate drug-induced phenotypic variations. Unfortunately, this method 
inherently requires fluorescent labeling which has several drawbacks. Here we present a label-free 
method for evaluating cellular drug responses only by high-throughput bright-field imaging with the 
aid of machine learning algorithms. Specifically, we performed high-throughput bright-field imaging of 
numerous drug-treated and -untreated cells (N = ~240,000) by optofluidic time-stretch microscopy with 
high throughput up to 10,000 cells/s and applied machine learning to the cell images to identify their 
morphological variations which are too subtle for human eyes to detect. Consequently, we achieved a 
high accuracy of 92% in distinguishing drug-treated and -untreated cells without the need for labeling. 
Furthermore, we also demonstrated that dose-dependent, drug-induced morphological change from 
different experiments can be inferred from the classification accuracy of a single classification model. 
Our work lays the groundwork for label-free drug screening in pharmaceutical science and industry.

In the last decade, high-content screening based on multivariate single-cell imaging has been proven effective 
in drug discovery to evaluate drug-induced phenotypic variations in gene expression, protein localization, and 
cytoskeletal structure1,2. A number of studies have shown that cellular responses to drugs or even the mechanism 
of action for unknown compounds can be correctly predicted with such variations3–5. The primary advantage of 
image-based screening over conventional univariate screening is its capability of multivariate profiling with a 
large number of variables by which leading compounds can be identified with high sensitivity6. Moreover, with 
advances in molecular biology, image-based screening has been coupled with RNA interference or gene-modified 
cell lines to provide further information on cellular responses to drugs7. In a recent study, for instance, a library of 
fluorescently tagged reporter cell lines has been produced to find an optimal cell line for image-based screening8.

Unfortunately, conventional multivariate single-cell imaging for high-content screening falls short in address-
ing the full needs of the drug discovery community as it inherently requires fluorescent labeling which has several 
drawbacks. First of all, fluorescent probes are not available for all target molecules and may interfere with natural 
cellular functions9. While a wide range of immunofluorescent probes are commonly used in single-cell imaging 
for multivariate profiling, they are costly and require time-consuming labeling processes, including cell fixation 
which kills the cells, hindering large-scale assays10. Fluorescently tagged cell lines can offer live-cell assays with-
out the labeling process, but the development of such cell lines requires more effort than immunofluorescent 
labeling8. Therefore, an alternative for image-based high-content screening without the need for fluorophores is 
clearly needed for easy manipulation and economical assays.

In this paper, to avoid the above limitations, we present a method for evaluating cellular drug responses only 
by high-throughput bright-field imaging with the aid of machine learning. This was made possible by acquiring 
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a large number of bright-field images of numerous drug-treated and -untreated cells (N = ~240,000) by opto-
fluidic time-stretch microscopy with high throughput up to 10,000 cells/s and using the label-free cell images 
and machine learning to identify their morphological variations which are too subtle for human eyes to detect. 
Consequently, we successfully identified drug-treated and -untreated cells with a high accuracy of 92% with-
out the need for any labeling techniques. Specifically, we used MCF-7 as a model cell line and paclitaxel, an 
anti-cancer drug, as a model drug to induce morphological change to the cells. We quantitatively analyzed the 
morphological change of paclitaxel-treated MCF-7 cells compared with a negative control, or untreated cells. The 
degree of the morphological change, inferred from classification accuracy, increased with the drug concentration 
and treatment time, suggesting that the morphological change observed from bright-field images can be utilized 
as an indicator for drug discovery. Our work lays the groundwork for label-free drug screening in pharmaceutical 
science and industry.

Results
Workflow for detection.  As schematically shown in Fig. 1, the procedure of our method can be divided 
into three parts: (i) cell culturing and treatment, (ii) optofluidic time-stretch imaging, and (iii) machine-learning-
aided image analysis. In the first part, cells of interest are cultured and treated by a drug. In the second part, the 
treated cells are subject to high-throughput bright-field imaging. In the last part, machine learning algorithm is 
applied to the images for the identification of their morphological variations induced by drug treatment. While 
the morphological change in a single cell is miniscule, the large number of bright-field single-cell images can 
render the morphological change discovered by machine learning statistically significant and robust.

Optofluidic time-stretch microscope.  To highlight the advantages of our optofluidic time-stretch 
microscopy in acquiring high-quality bright-field images of cells in a high-speed flow, we show two image librar-
ies including drug-treated and -untreated MCF-7 cells under a conventional microscope and our optofluidic 
time-stretch microscope in Fig. 2a and b, respectively. The optofluidic time-stretch images clearly show the fine 
structures in the cells with sufficient contrast, at an equivalent level of which a conventional light microscope can 
achieve. In addition, both static and optofluidic time-stretch images demonstrate consistent cellular morphology. 
Note that each blur-free optofluidic time-stretch image was obtained in 4 µs (corresponding to the frame rate of 
250,000 frames/s), while maintaining the same pixel resolution as those taken by a CMOS camera on a conven-
tional microscope. The high pixel resolution of our optofluidic time-stretch microscope retains the rich cellular 
information in the acquired images. Furthermore, the high frame rate of our system enables high-throughput 
imaging, which favours the application of machine learning techniques for mining the cellular information in the 

Figure 1.  Workflow of the label-free detection of drug-induced morphological variations in cancer cells with 
optofluidic time-stretch microscopy. The insets show the schematics of optofluidic time-stretch microscopy and 
machine-learning-aided image analysis. As schematically shown in the figure, the procedure of our method 
can be divided into three parts: (i) cell culturing and treatment, (ii) optofluidic time-stretch imaging, and (iii) 
machine-learning-aided image analysis. In the first part, cells of interest are cultured and treated by a drug. In 
the second part, the treated cells are subject to high-throughput bright-field imaging. In the last part, machine 
learning algorithm is applied to the images for the identification of their morphological variations induced by 
drug treatment. While the morphological change in a single cell is miniscule, the large number of bright-field 
single-cell images can render the morphological change discovered by machine learning statistically significant 
and robust.
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images as these techniques typically require a large volume of training data for obtaining an accurate prediction 
model. With the advantages of our optofluidic time-stretch microscope, we overcame the challenges of evaluating 
cellular drug responses only by bright-field imaging.

Classification of drug-treated and -untreated cells.  To quantitatively evaluate the impact of an 
anti-cancer drug concentration on the morphological change of cancer cells, we treated MCF-7 cells with various 
concentrations of paclitaxel for 24 hours. We used a support vector machine (SVM)11 aimed to find a hyper-
plane that separates with a large margin between two classes of data and to classify the negative control and each 
drug-treated population. Figure 3a shows the distribution of classification scores between the two populations. 
As we use a linear kernel for the SVM classification, the classification score is given by

= ⋅ +w xY b, (1)

where w is the normal vector to the hyperplane, representing the weight assigned to each feature, x is the test 
data, and b is the bias. The values of w and b are provided in the Supplementary Data. The separation between 
the two populations becomes larger as the drug concentration increases up to 1 µM, indicating that features cor-
responding to each class (drug-treated or negative control) become more distinct. Given that extracted features 
correspond to morphological change, the SVM classification suggests a dose-dependent drug-induced morpho-
logical change. This dose-dependent change was further supported by four trials of SVM classification as shown 
in Fig. 3b, where higher classification accuracy equates to larger separation between the two populations. The 
classification accuracy here is defined by A = (X1 + X2)/N, where X1 and X2 are the numbers of correctly assigned 
incidences and N is the total number of test data points. The accuracy range is from 50% (random) to 100% 
(perfect). We note that classification accuracy reaches its maximum at 1 µM for 24-hour drug-treated cells and 
then drops at 10 µM. The drop at 10 µM is possibly due to the presence of the high concentration of DMSO (1% 
v/v). Next, we evaluated the impact of drug-treatment time on morphological change. We performed the same 
dose-ranging experiment with a 12-hour drug treatment whose classification accuracy evolution is shown in 
Fig. 3b. The classification accuracy curve shows a relatively monotonic increase, but lower accuracy at each drug 
concentration than that of the cells treated for 24 hours. This result illustrates that shorter treatment time induces 

Figure 2.  Image libraries of drug-treated and -untreated MCF-7 cells under our optofluidic time-stretch 
microscope (flowing at a speed of 10 m/s). Compared with the static images obtained by a conventional 
microscope, despite the high flow speed, the optofluidic time-stretch microscope can acquire blur-free images 
of cells with decent image quality. Scale bars: 10 µm.
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less discrepancy in the features of each class, hence making it more difficult to identify drug-induced morpho-
logical change. Accordingly, we use the data acquired from the 24-hour treatment on the quantitative analysis 
shown below.

Dose-dependent change in feature space.  In order to analyze the amount and type of morphological 
changes in the feature space, we calculated the maximum mean discrepancy (MMD)12 between the populations 
of drug-treated and -untreated cells at each drug concentration. Here the MMD represents the distance between 
the mean embeddings of distributions in a reproducing kernel Hilbert space (RKHS), in our case, defined by a 
Gaussian kernel12 (Fig. 4a). If the extent of morphological change is reflected in the extracted numerical features, 
then one would expect a larger MMD score at concentrations with greater change in morphology, since the two 
classes should be more distinguishable. Figure 4b shows the change in the MMD against drug concentration for 
two experimental trials (see Methods), in which the pillars for both experimental results are similar. The trend of 
the MMD shown in Fig. 4b is also consistent with the trend of classification accuracy in Fig. 3b, demonstrating 
that the measured dose dependence in the SVM results is supported by the MMD score of the feature space. Note 
that in contrast to the histograms shown in Fig. 3a, in which the separation of two classes is made possible by 
supervised learning with respect to class labels, the MMD (the distance between the distributions of two classes) 
is computed in a closed form and therefore does not require supervised learning. As a larger MMD indicates a 
larger morphological change present in the distribution, it is more likely that the SVM model at the drug con-
centration giving the largest MMD assigns large weights to features that reflect this drug-induced morphological 
change. Accordingly, we also quantitatively analyzed the MMD for each feature at the drug concentrations in 
which the overall MMD between the two class distributions is largest (1 µM of the first experiment and 100 nM 
of the second experiment as shown in Fig. 4b). We computed the MMD of each feature to examine the variation 
between the two experiments. Figure 4c shows that the features giving larger MMD scores are highly correlated 
between the two experiments, indicating that the significant features are consistent in both experiments. It is also 
observed in Fig. 4c that features with large MMD score represent various types of information of cell images, 
such as geometry, granularity, intensity, and texture, indicating that the multivariate data provided by single-cell 
images is effective for identifying the cellular response to the drug.

We further investigated how the number of features contributes to the classification accuracy. We iteratively 
performed SVM classification between negative control and the data at 1 µM in the first experiment by removing 
the features with lower MMD (Fig. 4d). Consequently, we found that an accuracy of 90% (dotted line in Fig. 4d) 
was maintained when more than 400 features were removed, suggesting that with approximately 100 features, 
the performance of our label-free method is comparable to that obtained with fluorescence imaging techniques4. 
This property is noteworthy because fluorescence imaging requires fluorescent labeling with several inherent 
drawbacks as mentioned above. In other words, the high specificity of fluorescence imaging can also be provided 
by the combination of high-throughput bright-field imaging and machine learning, which is highly beneficial for 
pharmaceutical industry in which the cost of drug discovery is one of the major limiting factors.

Dose-dependent classification accuracy with a single model.  We tested whether a single SVM 
model with a linear kernel can represent the dose dependence through the classification accuracy at all concen-
trations. We applied the SVM model trained at one specific concentration to all the other concentrations, and 
show the result in Fig. 5a and Fig. 5b. The result shows that the SVM models of those concentrations with larger 
MMD between two class distributions (such as 100 nM and 1 µM) can better preserve the tendency in classifi-
cation accuracy as shown in Fig. 3b, whereas the SVM models of those concentrations with lower MMD (such 

Figure 3.  Classification of drug-treated and -untreated cancer cells. (a) Histograms of SVM classification scores 
for MCF-7 cells treated with various concentrations of paclitaxel for 24 hours. Each population consists of up 
to 10,000 cells. (b) Classification accuracy at various drug concentrations and incubation times. The error bars 
represent standard errors of the cross-validation estimation of average classification accuracy (n = 4).
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as 1 nM) fail to demonstrate such trend. Therefore, it is reasonable to conclude that our approach can provide a 
single classification model exhibiting the dose dependence of drug-induced morphological change. In addition, 
we further tested whether the single SVM models can be applied to different experimental trials. Specifically, we 
applied the model trained at the concentration with the largest MMD in the first experiment to the dataset of the 
second experiment, and vice versa (Fig. 5c). For the sake of comparison, the classifications in which both training 
and testing data are from the same trial of experiment are also included in the Fig. 5c. The result shows a con-
sistent tendency in classification accuracy regardless of whether the training and testing data are from different 
trials of experiment, suggesting that the SVM models trained at the concentration giving the largest MMD can 
demonstrate the dose dependence across multiple experiments. This is a significant property in comparison with 
most of the previous work where a new training is required for a new dataset of images13.

Figure 4.  Calculating maximum mean discrepancy (MMD) between the negative control and drug-treated 
cell population. (a) Illustration of the maximum mean discrepancy (MMD). (b) MMD between the negative 
control and drug-treated cell population at each drug concentration. Trial 1: data from the first experiment. 
Trial 2: data from the second experiment. (c) MMD of each feature in trial 1 at 1 µM and trial 2 at 100 nM. At 
these concentrations, the MMD in the whole feature space is the largest in each experiment. Features with 
a higher score of the MMD in both trials are highly correlated, indicating that the significant features were 
consistent in both experiments. The color scale represents feature index, showing types of morphological 
changes that undergo larger scores of the MMD. (d) Classification accuracy with a reduced number of features. 
Lower MMD features were removed based on the ranking of the MMD for each feature in the classification 
between the negative control and the dataset at 1 µM in the first experiment (top). The classification accuracy 
was maintained over 90% with more than 100 features (bottom). The color scale is consistent with that in 
Fig. 4c. Feature ranking and the number of remaining features are illustrated in logarithmic scale. The error bars 
represent standard errors of the cross-validation estimation of average classification accuracy (n = 10).
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Discussion
In this paper, we proposed and experimentally demonstrated a method to detect cellular drug responses via 
drug-induced morphological change which are inarguably too subtle for the human eye to identify, but are iden-
tifiable with the combination of numerous bright-field cell images and machine learning. By leveraging machine 
learning techniques, we captured these subtle changes and successfully distinguished drug-treated and -untreated 
cells only by the use of bright-field images at a high classification accuracy of 92% without the need for any labe-
ling techniques. Furthermore, we also verified that our approach is capable of robustly capturing invariant and 
distinctive features in drug-induced morphological change, such that a one-time trained classifier model can be 
used for different datasets. This is a significant property for screening applications.

In this study, our optofluidic time-stretch microscope achieved a frame rate up to 250,000 frames/s, corre-
sponding to an unprecedented throughput of 250,000 cells/s, which is 50 times higher than that of commercial 
imaging flow cytometers14. Despite its high throughput, the spatial resolution of our microscope remained at 
the diffraction limit of 780 nm15, which is comparable to that of conventional optical microscopes. To the best 
of our knowledge, this is the first experimental demonstration of an imaging flow cytometer capable of taking 
diffraction-limited images at a theoretical throughput of more than 100,000 cells/s, which is challenging even for 
conventional non-imaging flow cytometry16–18. The combination of such high-throughput and high-resolution 
capabilities allows us to use only bright-field images and simple machine learning algorithms to identify the 
miniscule drug-induced morphological change of cells with high accuracy.

Figure 5.  Classification accuracy using single SVM models. Classification accuracy produced by the SVM 
models in the first experiment (a) and the second experiment (b). Each row demonstrates the classification 
accuracy at each drug concentration produced by a single SVM model. (c) Evaluation of single SVM models 
across different experiments. Each row demonstrates the classification accuracy at each drug concentration 
produced by a single SVM model trained with the data from 1 µM in the first experiment (upper) and 100 nM in 
the second experiment (lower). Each column demonstrates the testing data from different trial of experiments.
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While our method was demonstrated on MCF-7 cells as a proof-of-principle application, it is also applicable to 
other types of cells and drugs in various settings. Although MCF-7 cells are adhesive cells whose morphological 
change is typically observed when they are adhered on a surface19,20, we chose to observe their morphological 
change in suspension despite the risk of losing their morphological change during the process of trypsinization, 
because higher throughput can be achieved in the flow-cytometric manner. Nonetheless, we demonstrated that 
morphological change can also be investigated for the adhesive cells in a suspended condition with our approach, 
suggesting that it can be applied in distinguishing dissociated tissue samples via their morphological variations. 
As for the choice of the classifier, the SVM has been widely used in the field of bioinformatics for various appli-
cations including promoter determination21, protein remote homology detection22, and DNA bind protein pre-
diction23. We chose a linear SVM classifier in this study for the proof-of-concept demonstration because it is a 
simple machine-learning algorithm and is unlikely to overfit. The simplicity of using the SVM allows one to easily 
perform classification without the support of a web server compared to other bioinformatic methods24. More 
advanced machine-learning algorithms can also be applied to achieve higher accuracy; for instance, ensemble 
methods10 or deep architectures25,26 can be used for classification. In addition, instead of hand-coding features, 
convolutional networks can be used to extract features that are problem-specific and therefore further improve 
classification accuracy.

Materials and Methods
Cell culturing and treatment.  As a proof-of-principle demonstration of our method, we used a human 
breast adenocarcinoma cell line, MCF-7 (DS Pharma Biomedical) as model cells. The cells were maintained in 
Dulbecco’s Modified Eagle Medium (DMEM) (Wako Chemicals) supplemented with 10% fetal bovine serum 
(MP Biomedicals) and 1% penicillin streptomycin (Wako Chemicals), at 37 °C and 5% CO2. Paclitaxel, an FDA-
approved anti-cancer drug, in a powder form (Cayman Chemical) was dissolved in dimethyl sulfoxide (DMSO, 
Wako Chemicals) to a stock concentration of 1 mM. One day after seeding, the cells were incubated with 10-fold 
serial dilutions (ranging from 1 nM to 10 µM) of paclitaxel, harvested at two intervals (12, 24 hours), and sus-
pended in the culture medium by trypsinization for imaging with the time-stretch optofluidic microscope. A low 
cell concentration of approximately 105–106 cells/mL was used for the sample to ensure reliable single-cell image 
acquisition in each image frame.

Optofluidic time-stretch microscope.  The optofluidic time-stretch microscope is schematically shown in 
the left inset of Fig. 1 (analogous to the setups previously reported by us and others25,27–33). We used a Ti:Sapphire 
femtosecond pulse laser with a centre wavelength, bandwidth, and pulse repetition rate of 780 nm, 40 nm, and 
75 MHz, respectively, as the optical source. Each laser pulse emitted from the laser was first temporally dispersed 
in a single-mode fibre spool with a total dispersion of -240 ps/nm, followed by spatial dispersion via a diffrac-
tion grating with a groove density of 1200 lines/mm. Next, the dispersed laser pulses were focused to the cells 
flowing in a microfluidic device via an objective lens with a numerical aperture (NA) of 0.6. The laser pulses 
bearing 1D cellular information were collected by another objective lens with the identical NA, spatially recom-
bined by another diffraction grating identical to the first one, and detected by a high-speed photodetector (New 
Focus 1580-B with a bandwidth of 12 GHz). The photodetector signal was digitized by a high-speed oscilloscope 
(Tektronix DPO71604B with a bandwidth of 16 GHz and a sampling rate of 50 GS/s) to obtain 1D transmission 
images contained in the pulses. At last, the 2D images of the cells were obtained by digitally stacking the 1D 
images. To align the flowing cells in both the lateral and axial directions and avoid out-of-focus blurring, we 
employed hydrodynamic focusing in the microfluidic device to order and focus the cells during the measure-
ment34,35. The dimensions of the microchannel were 100 μm in width and 44 μm in height. The total flow rate 
including the sheath flow and sample flow is 2.75 mL/min, resulting in a flow speed of approximately 10 m/s. 
Although the maximum possible throughput of the optofluidic time-stretch microscope is 250,000 cells/s (mean-
ing that it acquires one cell image for every frame, given by the frame rate of 250,000 frames/s), the practical 
throughput lies between 10,000 and 100,000 cells/s, taking into account the cell concentration and the stability 
and durability of the microfluidic device in the microscope.

Image processing and machine learning.  Single-cell images were reconstructed and segmented on 
MATLAB (R2017a). A total number of 548 features, which consist of 43 geometry features (No. 1-43), 10 gran-
ularity features (No. 44-53), 43 intensity features (No. 54-96), and 452 texture features (No. 97-548), for each 
single-cell image were extracted with CellProfiler (ver. 2.2.0)36,37 and exported to our support vector machine 
(SVM) for cell classification on MATLAB. All classifications were performed by only using the unmodified func-
tions provided in the Statistics and Machine Learning Toolbox on MATLAB. Approximately 10,000 single-cell 
images of MCF-7 cells were acquired for each concentration of drug treatment (including untreated negative 
control) during a single experiment. We repeated the experiment twice for two treatment durations of time (12, 
24 hours), resulting in four groups of datasets including two groups of negative controls and two groups of treated 
cells in each treatment duration of time, which were used to implement four trials of SVM classification between 
negative control and drug-treated cells for each concentration. The total number of images acquired for this study 
is 240,000. All SVM classifications were performed with a linear kernel. The classification accuracies were esti-
mated using 10-fold cross-validation.

Maximum mean discrepancy (MMD) and feature selection.  Maximum mean discrepancy (MMD) 
is used to measure the distance between two high-dimensional distributions12. Let H be the unit ball in a repro-
ducing kernel Hilbert space (RKHS) and k be the corresponding characteristic kernel, the unbiased empirical 
estimate of squared MMD between distribution X of size m and distribution Y of size n is given by
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Given that X and Y correspond to two classes we try to distinguish, a large MMD score indicates a large separation 
between the two distributions, and vice versa. In this work, k is selected to be the Gaussian kernel, which is known 
to be characteristic on real-valued distributions.
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