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Altered Topological Properties 
of Brain Networks in Social 
Anxiety Disorder: A Resting-state 
Functional MRI Study
Hongru Zhu1,2,*, Changjian Qiu1,*, Yajing Meng1,2, Minlan Yuan1, Yan Zhang1, Zhengjia Ren1, 
Yuchen Li1, Xiaoqi Huang3, Qiyong Gong3, Su Lui3,4 & Wei Zhang1,2

Recent studies involving connectome analysis including graph theory have yielded potential 
biomarkers for mental disorders. In this study, we aimed to investigate the differences of resting-state 
network between patients with social anxiety disorder (SAD) and healthy controls (HCs), as well as 
to distinguish between individual subjects using topological properties. In total, 42 SAD patients and 
the same number of HCs underwent resting functional MRI, and the topological organization of the 
whole-brain functional network was calculated using graph theory. Compared with the controls, the 
patients showed a decrease in 49 positive connections. In the topological analysis, the patients showed 
an increase in the area under the curve (AUC) of the global shortest path length of the network (Lp) 
and a decrease in the AUC of the global clustering coefficient of the network (Cp). Furthermore, the 
AUCs of Lp and Cp were used to effectively discriminate the individual SAD patients from the HCs with 
high accuracy. This study revealed that the neural networks of the SAD patients showed changes in 
topological characteristics, and these changes were prominent not only in both groups but also at the 
individual level. This study provides a new perspective for the identification of patients with SAD.

Social anxiety disorder (SAD) is the most common anxiety disorder, and it is characterized by fear and avoid-
ance of social situations associated with being observed or evaluated by others or a fear of embarrassing one-
self1. Recent evidence has suggested that abnormal cerebral functioning is involved in the pathogenesis of SAD. 
Neuroimaging studies have found an increase in the regional activity of the limbic and paralimbic regions includ-
ing the amygdala and anterior cingulate, as well as reduced activity in the striatal and parietal areas both in 
groups2 and at the individual level3. For example, using a linear support vector machine (SVM), we identified 
regional homogeneity (ReHo) in the default mode network, dorsal attention network, self-referential network, 
and sensory networks, thus distinguishing the patients with SAD from the healthy controls with a diagnostic 
accuracy of 76.25%3.

However, the findings from the regional analysis were inconsistent and distributed across the entire cerebral 
region of the patients with SAD, which may be due to the effects of medication or sample heterogeneity. These 
inconsistent findings can also be attributed to subtle and widespread white matter deficits across the brain, which 
are not perfectly integrated by traditional regional or voxel-based analyses. Therefore, connectomics has been 
used to evaluate the whole brain as an interconnected network4.

Graph theory provides powerful mathematical tools to study the behaviour of complex systems of interacting 
elements5. It has been widely used to characterize local and distributed interactions in the brain6, and altered top-
ological characteristics in functional brain networks have been observed in psychiatric disorders such as schizo-
phrenia7,8, major depressive disorder9,10, and obsessive-compulsive disorder11. In particular, we found significant 
correlations between functional connectivity and disease severity in specific regions of resting-state networks 
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(RSNs), including the medial and lateral prefrontal cortex, as well as the parietal and occipital regions, in SAD 
patients using independent component analysis12.

Previous studies of SAD have indicated that the human connectome can yield potential biomarkers for SAD. 
However, few studies have explored the topology of the functional network in SAD. Last year, we used functional 
connectivity strength (FCS) to examine the cortical hubs in SAD using the graph theory method and found that 
the patients with SAD had disrupted cortical hubs during resting states, a discovery that provides novel insights 
into the pathophysiological mechanisms of SAD13. In addition to cortical hubs, “small-world” parameters and 
network efficiency, which can indicate the organization of the global network, are also important in graph theory 
analysis. However, no studies have explored both the global and regional topological properties of SAD. Although 
there are many topological indexes in the graph theory method, it is unclear whether the topological characteris-
tics are altered and whether these indexes can be used to identify SAD patients individually.

The present study analysed the network topology of the brain in patients with SAD using intrinsic functional 
networks. The topological organization of the functional brain network based on resting-state functional connec-
tivity and the linkage between the characteristics of the brain networks and the patients’ clinical conditions were 
assessed in SAD patients, as well as healthy controls (HCs). We hypothesized that the global and regional topo-
logical properties could be used to distinguish SAD patients from HCs by multivariate pattern analysis (MVPA).

Materials and Methods
Subjects. We initially recruited 47 SAD patients and 45 healthy controls, all Han Chinese, for this study. Data 
from five patients and three controls were discarded because of excessive head movement during the MRI scan. 
Therefore, 42 SAD patients (26 males and 16 females with a mean age of 27.33 ±  7.159 years) and 42 controls 
(26 males and 16 females with a mean age of 29.83 ±  8.748 years) were finally included in the statistical analysis. 
The psychiatric diagnostic classification of the participants was based on the Structured Clinical Interview for 
DSM-IV Axis I Disorders (SCID)14 conducted by two attending psychiatrists and a trained interviewer.

All of the subjects in the SAD group were in accordance with the DSM-IV criteria for SAD. Four of the 
patients had been taking a stable dosage of a selective serotonin reuptake inhibitor for at least 4 weeks (two 
patients were treated with paroxetine (20 mg/day), one patient was treated with paroxetine (10 mg/day), and 
one patient was treated with paroxetine (20 mg/day), as well as tandospirone (20 mg/day)). However, some of 
the patients had discontinued their use of psychotropic medications due to poor responses at least 2 weeks prior 
to the baseline MRI scan. We also recruited 45 controls who had never been diagnosed with SAD or any other 
psychiatric disorders.

The exclusion criteria included any history of neurological disease, bipolar disorder, alcohol and/or other 
substance abuse/dependence, major head injury involving loss of consciousness for more than 10 minutes, other 
DSM-IV axis I diagnoses, and mental retardation, as well as subjects with metal implants (e.g., surgical clips or 
pacemakers). According to the Structured Clinical Interview for DSM-IV14, the participants in the SAD group 
met the criteria for the following current comorbid diagnoses: major depression (N =  2) and generalized anxiety 
disorder (N =  1).

All of the participants were assessed using the Liebowitz Social Anxiety Scale Self-Report (LSAS), the 
Hamilton Rating Scale for Depression (HAMD-24), and the Hamilton Rating Scale for Anxiety (HAMA-14), 
and all of the patients provided informed consent. This study was approved by the Medical Ethics Committee 
of West China Hospital, Sichuan University, and all of the experiments were performed in accordance with the 
Declaration of Helsinki.

Image acquisition. We used a 3.0 T magnetic resonance scanner (Siemens 3.0 T Trio Tim, Germany) with 
a 12-channel phase array head coil. Each subject was positioned supine in the MRI scanner with foam pad-
ding to reduce head movements. The fMRI blood-oxygen-level-dependent (BOLD) images were acquired by a 
gradient-echo-planar imaging (EPI) sequence (TR/TE =  2,000/30 ms; flip angle =  90°). The slice thickness was 
5 mm with a matrix size of 64 ×  64, resulting in voxels of 3.75 ×  3.75 ×  5 mm3. The subjects were instructed to 
close their eyes, let their minds wander, and relax, but not to fall asleep during the scan, which lasted 6.8 min (205 
volume), as described in our previous study15.

Data preprocessing. Functional image preprocessing and statistical analyses were conducted using the Data 
Processing Assistant for Resting-State fMRI (DPARSF_V4.0) in DPABI (http://rfmri.org/dpabi)16, which is based 
on Statistical Parametric Mapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm) and the Matlab toolbox (http://www.
brain-connectivity-toolbox.net). The DPARSF includes powerful and updated preprocessing steps and has been 
used in hundreds of research projects17. The first five time points were discarded for scanner calibration and 
acclimation of the subjects to the scanning conditions. Thus, 200 time points from the rest condition time series 
were used for network analysis. For each participant, the images were corrected for differences in the intravolume 
acquisition time between slices using sinc interpolation and then corrected for intervolume geometric displace-
ment due to head movement using a six-parameter (rigid-body) spatial transformation10. Data from five patients 
and three healthy controls were discarded because their heads moved more than 3 mm of translation or 3 degrees 
of rotation in any direction. After these corrections, the realigned images were spatially normalized to the EPI 
template in SPM8, and each voxel was resampled to 3 ×  3 ×  3 mm3 without spatial filtering. For network metrics 
calculation, the images were smoothed using a 4-mm full-width half-maximum (FWHM) isotropic Gaussian 
filter18. For each run, the nuisance terms were regressed from the resting-state BOLD time series through multiple 
linear regressions. These nuisance regressors included the following: i) linear and quadratic trends, ii) a Friston 
24-parameter autoregressive model that included current and past position parameters and adequately addressed 
head motion effects18, iii) white matter and CSF signals, which were masked based on SPM apriori, and iv) white 
matter and cerebrospinal fluid time series. The summary scalars of both the gross (maximum and root mean 

http://rfmri.org/dpabi
http://www.fil.ion.ucl.ac.uk/spm
http://www.brain-connectivity-toolbox.net
http://www.brain-connectivity-toolbox.net


www.nature.com/scientificreports/

3Scientific RepoRts | 7:43089 | DOI: 10.1038/srep43089

square) and micro (mean frame-wise displacement) head movements were matched between the two groups (all 
p >  0.15). Finally, the corrected BOLD time series were low-pass filtered using a cut-off frequency of 0.01–0.1 Hz 
to reduce the low frequency drift and high frequency noise.

Network construction. Node definition. A network is composed of nodes and edges between nodes. In 
the brain, the nodes represent the brain regions, and the edges represent the statistical relationships of BOLD 
signals across different regions. Since the atlas of Automated Anatomical Labeling19 (AAL) has been most com-
monly used in previous studies and is widely accepted in neuroimaging studies, we used the AAL, which includes 
90 areas in the whole brain that represent 90 nodes of the brain network. The names and indexes of the 90 areas  
(45 for each hemisphere) are listed in Table S1 in the Supplementary Material.

Edge definition. To define the network edges, the interregional resting-state functional connectivity (RSFC) was 
calculated using Pearson correlations between the regional mean time series of all possible pairs of brain regions. 
The correlation coefficients were transformed to z-scores via Fisher’s transformation to improve normality20. We 
constructed a 90 ×  90 correlation matrix for each subject.

Network analysis. Threshold Selection. Based on the 90 ×  90 correlation matrix for each subject, we con-
structed a binary undirected graph, and a sparsity threshold was used to measure all of the correlation matrices. 
Due to the difficulty involved in selecting a single threshold, empirical studies9,21 were used with a wide range of 
0.10 ≤  sparsity ≤  0.34 (interval =  0.01), in which the “small-world” parameters could be properly estimated22 and 
the number of spurious edges was minimized23–25. According to the previous study, there were two criteria con-
sidered when the threshold was generated: 1) the average degree (see Supplementary Material for the definition) 
over all of the nodes of each thresholded network was larger than 2 ×  log(N), with N =  90 denoting the number 
of nodes; and 2) the small-worldness (see Supplementary Material for definition) of the thresholded networks 
was larger than 1.1 for all participants9. To make sure all/most of the nodes were connected for each subject after 
thresholding, we also used the largest component size (that is, the number of nodes in the largest connected com-
ponent divided by the number of all of the available network nodes N26).

Due to the ambiguous biological explanation for negative correlations27,28, we restricted our analyses to posi-
tive correlations. We calculated both the global and node network metrics at each sparsity, and the area under the 
curve (AUC) for each network metric, which provides a summarized scalar for the topological characterization 
of brain networks (Fig. 1), was calculated.

Network Metrics. We analysed the global metrics in this study using the following parameters: (1) The 
“small-world” parameter clustering coefficients included the shortest path length, normalized characteristic path 
length (λ ), normalized clustering coefficient (γ ), and small-worldness (σ ). The shortest path length is defined as 
the shortest mean distance from a particular vertex to all other vertices22,29. Thus, a smaller path length represents 
greater integration. The clustering coefficient is defined as the fraction of a vertex’s neighbours that are neigh-
bours themselves29, while a larger clustering coefficient represents greater segregation30. The path length and 
clustering coefficient were normalized by the related mean metrics of the 100 random networks. These random 
networks had the same number of nodes, edges, and degree distributions as the real brain networks. (2) Network 
efficiency included the local efficiency of the whole network (Eloc), the global efficiency of the network (Eglob), the 
nodal global efficiency of the node (nodalEglob), and the nodal local efficiency of the node (nodalEloc). (3) Nodal 
centrality (the degree number of nodes (nodalDeg)) was the final parameter. These definitions and descriptions 
of the metrics are listed in Supplementary Material and are provided in a reference 29.

All of the network metrics were calculated using the GRaph thEoreTical Network Analysis (GRETNA) tool-
box (https://www.nitrc.org/projects/gretna/)31, and this method of network construction and calculation has been 
used in previous studies of brain networks21,32,33. The brain networks were visualized using the BrainNet Viewer34.

Figure 1. Graph showing area under the curve (AUC) for a network. The shaded area represents AUC. 
Metric Y was calculated over the sparsity threshold range of S1 to Sn at an interval. In the current study, 
S1 =  0.10, Sn =  0.34, and the interval =  0.01.

https://www.nitrc.org/projects/gretna/


www.nature.com/scientificreports/

4Scientific RepoRts | 7:43089 | DOI: 10.1038/srep43089

Statistical analysis. Functional network connectivity analysis between the SAD patients and the HCs. We 
performed two-sample, two-tailed t-tests on all 7560 of the possible connections represented in the 90 ×  90 cor-
relation matrices between the patients and the controls35 using GRETNA, and the false discovery rate (FDR) 
procedure was applied to correct for multiple comparisons.

Group comparisons based on topological metrics. We used non-parametric permutation tests (10,000 permu-
tations) adopting the Matlab language to test the intragroup differences in the brain network metrics, and gen-
der and age were treated as the unconcerned covariates for comparisons. Furthermore, the problem of multiple 
comparisons was addressed by testing the graph-based metrics for survival using a Benjamini-Hochberg false 
discovery rate correction at the expected significance level of 0.0536. Spearman’s correlation coefficient was used 
to calculate the associations between the network metrics and the clinical variables in the SAD groups.

Multivariate pattern analysis. We used a multivariate pattern analysis (MVPA) to explore the role of these func-
tional connectivity and network parameters in distinguishing the SAD patients from the healthy controls. To 
reduce the data dimensions and improve the performance of the classifier37,38, we used feature selection based 
on two-sample, two-tailed t-tests. Thus, the functional connectivity (FC) and network metrics with significant 
differences between groups were treated as discriminant features (p <  0.05, uncorrected). Maximum uncertainty 
linear discriminate analysis (MLDA) employing a maximum entropy covariance selection method instead of the 
within-class scatter matrix was used as the classifier39–41. The performance of the classifier was estimated using a 
leave-one-out cross-validation (LOOCV) approach, and these steps were supported by multi-modal imaging and 
multi-level characterization with multi-classifier (M3), which has been made publicly available at: http://www.
nitrc.org/projects/pare/ 39. Finally, we used a permutation test to infer the significance of the classifier perfor-
mance by random disruption of the label in all of the SAD patients and healthy controls, and the class validation 
procedure was repeated 1000 times. Thus, we obtained a distribution of the classifier performance with random 
labels, which was used to calculate the z-score and p value.

Results
Demographic data and clinical comparisons. There were no significant differences between the SAD 
group and the control group in terms of age, sex, and, education (p >  0.05; Table 1).

Disrupted Functional Network Connectivity in SAD. Compared with the HCs, 49 connections showed 
a significant decrease in positive connections in the SAD patients (p <  0.05, FDR-corrected). The most altered 
connections involved the frontal, occipital, parietal–(pre)motor, and temporal regions, and all of the altered con-
nection pairs are listed in Fig. 2 and Supplement Table S2. Additionally, we used a stricter significance level of 
p <  0.01 (FDR-corrected) and found two decreased connections in the SAD patients, including the right superior 
frontal gyrus, medial–left posterior cingulate gyrus and the right superior frontal gyrus, medial–right precuneus. 
These results reveal that the abnormal correlations in the SAD patients are universal and more related to the 
default mode network.

Global parameters of brain networks. To make sure that all/most of the nodes were connected after the 
strongest thresholding, we examined the largest component size at all thresholds (see Fig. 3a) and found that most 
of the nodes (0.944) were connected even at the strongest threshold (sparsity =  0.10).

There were no significant differences between the SAD group and control group in local and global efficien-
cies, λ , γ , and σ  (Fig. 4A). In both groups, the values of λ  hovered at approximately 1, γ  significantly exceeded 1, 
and σ  exceeded 1, suggesting that both the patients with SAD and the controls showed “small-world” organization 
in resting states (Fig. 3b–d).

Compared with the HC group, an increased AUC of the shortest path length of the network (Lp) and a 
decreased clustering coefficient of the network (Cp) were observed in the patients with SAD (p <  0.01). A negative 
correlation was also found between the AUC of Cp (aCp) and the HAMD scores in the SAD group (r =  0.361, 
p =  0.026). (Fig. 4B). Nevertheless, the correlation was no longer significant after Bonferroni correction.

SAD Control T P

Age 27.33 ±  7.16 29.79 ±  8.78 1.40 0.16

Female to male ratio 16:26 16:26 — —

Educational years 12.57 ±  4.27 13.52 ±  14.04 1.05 0.30

LSAS (Mean ±  SD) 69.40 ±  26.84 20.29 ±  15.71 10.24 < 0.001

Fear of LSAS (Mean ±  SD) 34.12 ±  13.00 9.79 ±  7.85 10.38 < 0.001

Avoiding of LSAS (Mean ±  SD) 35.29 ±  15.05 10.50 ±  9.52 9.02 < 0.001

HAMD (Mean ±  SD) 12.60 ±  7.63 2.17 ±  2.57 8.40 < 0.001

HAMA (Mean ±  SD) 14.14 ±  7.67 1.79 ±  2.08 10.08 < 0.001

Course of disease 8.86 ±  6.78 — — —

Table 1.  Demographic information and psychological variables in SAD and control groups. SAD, social 
anxiety disorder; LSAS, the Liebowitz Social Anxiety Scale Self-Report; HAMD, the Hamilton Rating Scale for 
Depression; HAMA, the Hamilton Rating Scale for Anxiety; CGI-S, Clinical global impressions severity.

http://www.nitrc.org/projects/pare/
http://www.nitrc.org/projects/pare/
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Regional parameters of brain networks. After FDR correction, no significant differences in the AUC of 
nodal degree (anodalDeg) and the AUC of nodal global efficiency (anodalEglob) were observed between the SAD 
and control groups.

Regarding local efficiency, a decreased AUC of nodal local efficiency (anodalEloc) was observed in the left 
posterior cingulate gyrus (PCG) of the SAD patients compared with the controls, and the nodal local efficiency in 
the right putamen (PUT) was also increased (p <  0.05, FDR corrected) (see Fig. 5). The anodalEloc of the left PCG 
and the avoidance score on the LSAS showed a significant negative correlation in the SAD patients (r =  −0.326, 
p =  0.035), but the correlation was no longer significant after Bonferroni correction.

Discriminant analysis. Only the altered FC and network metrics including the 49 decreased FCs, the AUCs 
of Lp and Cp, and the anodalEloc in the left PCG and right PUT were investigated to separately distinguish the SAD 
patients from the HCs. Because of the stricter inclusion criteria of the features before M3, all of the features we 
chose were retained after the looser feature selection of M3. These network metrics were abstracted individually 
and are shown in Fig. 6.

Figure 2. Decreased functional connections in the SAD group compared with the control group. There 
are 49 decreased connections which were significantly (FDR corrected p =  0.05) abnormal in the patients. 
All of 32 brain regions are marked by using different colored spheres (different colors represent distinct brain 
classification) and further mapped onto the cortical surfaces at the lateral, medial and top views, respectively, by 
using the BrainNet Viewer package (www.nitrc.org/projects/bnv). The size of the spheres represents the number 
of altered connections they involved. The color of the edges represents the t value of the comparisons, and the 
color bar is on the left side. ACG, anterior cingulate and paracingulate gyri; ANG, angular gyrus; CAL, calcarine 
fissure and surrounding cortex; CUN, cuneus; FFG, fusiform gyrus; IOG, inferior occipital gyrus; ITG, inferior 
temporal gyrus; MOG, middle occipital gyrus; MTG, middle temporal gyrus; ORBsuped, superior frontal 
gyrus, medial orbital; PCG, posterior cingulate gyrus; PCUN, precuneus; REC, gyrus rectus; SFGdor, superior 
frontal gyrus, dorsolateral; SFGmed, superior frontal gyrus, medial; TPOmid, temporal pole: middle temporal 
gyrus.

http://www.nitrc.org/projects/bnv
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Based on the 49 altered FC analysis findings, we found that the discrimination ability (accuracy =  0.667, sen-
sitivity =  0.738, specificity =  0.595) was not significant after the nonparametric permutation test (z =  1.728). We 
also calculated the feature weights of all of the features, which represent the contribution to the classification39. 
The feature weights of all of the pairs in the M3 analysis are listed in Supplement Table S2, and the feature weights 
of the topological parameters are listed in the Table 2.

We found that the AUC of Lp and the AUC of Cp effectively discriminated between the two groups separately 
(aLp: accuracy =  0.988, sensitivity =  0.976, specificity =  1; aCp: accuracy =  0.964, sensitivity =  0.929, specific-
ity =  1), which was significantly above the random level (aLp:z =  12.554; aCp: z =  12.783). Only a single patient was 
miscategorised as a control among the 84 subjects. Combining the AUC of Lp and the AUC of Cp yielded an accu-
racy rate that was similar to the AUC of Lp alone (accuracy =  0.988, sensitivity =  0.976, specificity =  1, z =  12.514). 
The classification performance and feature weights of the topological parameters are listed in the Table 2.

We used the anodalEloc in the left PCG and right PUT to distinguish the SAD patients from the HCs, and we 
also found that the local nodal efficiency of the left PCG and right PUT in the resting-state network significantly 
distinguished the two groups (accuracy =  0. 714, sensitivity =  0. 738, specificity =  0.691, z =  5.237).

Discussion
The present study used resting-state fMRI to explore changes in the brain topology of SAD patients. To our 
knowledge, this is the first study to investigate the “small-world” brain network in SAD patients. Compared with 
controls, the SAD patients had 49 decreased connections, which involved the frontal, occipital, parietal–(pre)
motor, and temporal regions. In the global topological analysis, an increased AUC of Lp and a decreased AUC 
of Cpwere found in the patients with SAD. In the local regions, an increased anodalEloc of the right PUT was 
observed in the patients with SAD, while the anodalEloc of the left PCG was reduced. These findings reveal a 
shifting of the “small-world” properties in SAD patients during resting states and the critical role of the PUT and 
PCG in the pathogenesis of SAD. These altered topological metrics may be caused by a disruption of functional 

Figure 3. Largest component size and “Small-world” parameters in the defined threshold range. Graphs 
show that in the defined threshold range, both the SAD and control groups exhibited (a) the number of nodes in 
the largest connected component divided by all the available nodes N, (b) the normalized clustering coefficient, 
(c) the normalized characteristic path length, and (d) small-world measure.



www.nature.com/scientificreports/

7Scientific RepoRts | 7:43089 | DOI: 10.1038/srep43089

connectivity in SAD. Furthermore, these differences were used to effectively discriminate between the individual 
patients with SAD and the HCs with an accuracy of 98.8%.

In the functional network connectivity analysis, the major altered connections involved the frontal, occip-
ital, parietal–(pre)motor, and temporal regions. Compared with the HCs, all of the changed connections were 
decreased, which may indicate that network efficiency is disrupted in patients with SAD. The attenuation of the 
FC between the frontal and occipital lobes was consistent with the results of our previous study of SAD, which 
had a small sample size42. The frontal, occipital, parietal–(pre)motor, and temporal regions are related to the func-
tions of cognition, emotion, and memory, and these regions were examined in previous functional MRI studies of 
SAD43. Moreover, the areas in the default mode network (DMN)44–46 including the precuneus, posterior cingulate 
gyrus, angular gyrus, middle temporal gyrus, medial frontal gyrus, and superior frontal gyrus were obviously 
involved. The DMN is thought to be involved in episodic memory47, self-projection48, and social cognition49. 
Impairment of the DMN network in SAD might be relevant to the development of feelings of wariness concern-
ing the judgement of others and may be related to the self-focused attention49. The cuneus and calcarine fissure in 
the occipital lobe are involved in converging facial expressions50,51 and contextual self-descriptions52. Therefore, 
the decreased correlations between the median prefrontal cortex and occipital lobe might indicate that SAD is 
related to abnormal processing of the nonverbal information relayed by human facial expressions42.

According to the currently fashionable idea, the brain network can be divided into the regular network, the 
random network, and the “small-world” network. The regular network is characterized by a higher clustering 
coefficient and a longer shortest path length. The random network has a lower clustering coefficient and a shorter 
shortest path length. The “small-world” network has a higher clustering coefficient similar to the regular net-
work and a shortest path length that is similar to the random network22. In the current study, we found that 
both the patients with SAD and the controls had a λ  ≈  1, a γ  ≫  1, and a σ  that was > 1, indicating the presence 
of “small-world” brain networks in both groups. The functional connection was correlated with the structural 
connections in the brain, and “small-world” functional and structural networks occur in the human brain, as well 
as at the cellular level in other animals5. Numerous studies using electroencephalography (EEG)53, magnetoen-
cephalography (MEG)54, and fMRI55 have reported “small-world” properties of whole-brain functional networks 
in humans. In the “small-world” brain network, functional integration and segregation are the two major organ-
izational principles. An optimal brain requires a balance between global integration and local specialization of 
brain functional activity56 and achieves a maximal communication speed with minimal energy consumption57. 
Among these topological indices, Cp and Lp represent segregation and integration, respectively. Cp is equivalent 
to the fraction of nodal neighbours that are also neighbours to each other22, which reflects the local efficiency or 
fault tolerance of a network58. Thus, a decrease in Cp indicates local efficiency or fault tolerance, which decreases 

Figure 4. Global topology of functional connectivity networks in the SAD and control groups. Part A: 
Topological properties of functional connectivity networks in SAD and controls are shown in different colors. 
The error bars represent standard deviation. ** Group difference is significant at the 0.01 level (FDR corrected) 
based on non-parametric permutation tests. Part B: Scatter plots in part B show significant correlation between 
the global topological characteristics and HAMD scores in the SAD group (p <  0.05). SAD, social anxiety 
disorder; HCs, health controls; AUC, area under the curve; Lp, shortest path length; Cp, clustering coefficient; 
γ, the normalized clustering coefficient; λ, the normalized characteristic path length; σ, small-world measure; 
Eglob, global efficiency; Eloc, local efficiency; aLp AUC of shortest path length; aCp, AUC of clustering coefficient; 
HAMD, Hamilton Rating Scale for Depression.
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functional segregation when disrupted in the brains of patients with SAD. Lp is a global feature that indicates the 
information-carrying capacity of the brain. A lower Lp value ensures global information transmission capacity 
and provides a reliable base of functional integration in the brain59,60. The increase in the AUC of Lp in our study 
suggests a disruption of global information transmission in the brains of patients with SAD. Although the brain 
networks of the SAD patients and controls showed “small-world” characteristics, the increased AUC of Cp and 
decreased AUC of Lp represent disruption in the brain networks in terms of functional integration and separation 
in the SAD patients, which may reflect an imbalance of global integration and local specialization. This imbalance 
suggested a disruption in the energy cost of spontaneous brain activity and was associated with the severity of 
depression in SAD patients, which was compatible with major depressive disorder61.

Among these exploratory correlation analyses with clinical measurements, we found that the AUC of Cp was 
significantly associated with depression but not social (or general) anxiety. Since patients with depression also 
suffer from an imbalance of global integration and local specialization61, it is not clear if this abnormality is more 
a function of subclinical depressive symptoms rather than the chosen diagnosis. As the correlation with clinical 

Figure 5. Altered regional brain topological parameters in the SAD. The colored areas show the location of 
left posterior cingulate gyrus and the right putamen in the Automated Anatomical Labeling atlas. Scatter plots 
show significant correlation between the nodal local efficiency in left posterior cingulate gyrus and avoidance 
score of LSAS in the SAD group (p <  0.05). PUT.R, right putamen; PCG.L, left posterior cingulate gyrus; 
anodalEloc, area under the curve of nodal local efficiency; LSAS_avoid, avoidance score of Liebowitz Social 
Anxiety Scale.
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measures involved exploratory analyses, which did not show significance after multiple comparison corrections, 
the reproducibility of the correlation between the AUC of Cp and HAMD needs to be verified in future studies. 
Furthermore, it is common for patients with SAD to suffer from more depressive symptoms. Thus, it was hard 
to disengage anxiety from depression in this study due to the small sample size. Even though the recruitment of 
SAD patients with few or no depressive symptoms may solve this problem, the application of the results would be 
restricted in the real world.

In terms of the regional parameters of the brain networks, the SAD group showed alterations of the anod-
alEloc in the left posterior cingulate gyrus (PCG) and right putamen (PUT) compared with the HCs, and the 
reduction in the anodalEloc of the left PCG was negatively associated with the avoidance score of the LSAS in the 
exploratory analysis. The nodalEloc is a summarized scalar reflecting the transmission efficiency of the network 
at the local level, and the posterior cingulate has been associated with self-referential functions62,63, self-focused 
attention (awareness of self-referent information)64, evaluation of self-emotional states65, and social behaviour66. 
Neuroimaging studies have suggested that the PCG is attenuated during task conditions49,64. Furthermore, 
functional imaging has revealed a reduction in rCBF in the PCG of SAD patients during resting states67, and a 
resting-state fMRI study that used functional connectivity suggested that attenuated functional connectivity in 

Figure 6. The individual network features in both SAD and control groups. The network features which can 
discriminate SAD from healthy controls effectively were abstracted. (a) the AUC of Lp, (b) the AUC of Cp,  
(c) the anodalEloc of PCG.L and (d) the anodalEloc of PUT.R. SAD, social anxiety disorder; HCs, health controls; 
AUC, area under the curve; Lp, shortest path length; Cp, clustering coefficient; anodalEloc, area under the curve 
of nodal local efficiency; PCG.L, left posterior cingulate gyrus; PUT.R, right putamen.

Number of features in classifier Features Weight Accuracy Sensitivity Specificity z

1 aLp 1 0.988 0.976 1 12.554

1 aCp 1 0.964 0.929 1 12.783

2 aLp 0.478
0.988 0.976 1 12.514

2 aCp 0.988

2 anodalEloc in left PCG 0.228
0. 714 0. 738 0.691 5.237

2 anodalEloc in right PUT 0.719

Table 2. Classification performance of the single topological parameters and multi-level combinations. 
PCG.L, left posterior cingulate gyrus; PUT.R, right putamen.
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the amygdala and the PCG/precuneus is correlated with higher anxiety68. The altered nodal efficiency of the left 
PCG in our study demonstrated low efficiency of local information transfer and processing around the left PCG, 
which might be related to avoidance behaviour in SAD patients. The putamen is regarded as one of the sectors of 
the striatum that is the “emotion guarder”, and it is an important terminal for receiving sensory and emotional 
information from the prefrontal areas69. Striatal dysfunction in SAD patients has been observed in previous neu-
roimaging studies, and it may be linked to the information processing biases found in SAD patients, including 
negative interpretation of social events, detection of and obsession with negative responses from other people, 
and selective recall of negative aspects of social interactions70,71. The higher AUC of the local nodal efficiency of 
the PUT in the SAD patients reflects a reduction in regional integration of information in the right PUT, which 
may represent an information processing bias in SAD patients. Although the power of the nodal local efficiency 
in the left PCG and right PUT was lower than the AUC of Lp and Cp, it indicates an important role for these two 
brain areas in SAD, especially in avoidance symptoms.

In this study, we used discriminant analysis to distinguish SAD patients from controls, and we found that SAD 
patients were accurately identified using the AUC of Lp and the AUC of Cp. The remarkable accuracy of the dis-
criminant analysis may be attributed to the huge disparity in the AUCs of Lp and Cp between the two groups and 
at the individual level. Thus, these attributes may facilitate diagnosis, suggesting the need for additional studies.

The study limitations were as follows. First, only the leave-one-out cross-validation (LOOCV) approach was 
supported in the M3 code. Even though this method has been widely used in research39,72–74, it is sub-optimal and 
has been shown to result in inaccurate estimates of the prediction error75. It is more appropriate to apply n-fold 
validation when running the primary analyses on a portion of the patients and healthy controls and then apply 
the primary results to classify the rest of the subjects. Because the sample size in this study was relatively small 
and because of the huge disparity in the AUCs of Lp and Cp between the two groups and at the individual level (see 
Fig. 6), we believe that these results should be independently verified in more samples. Second, compared with 
other studies, we only explored the network based on the AAL brain atlas, which was the most commonly used 
in previous studies. Although this is widely accepted in neuroimaging studies, new brain atlases have frequently 
been used in graph theory, for example, the Power 264-region atlas72,76, the Harvard-Oxford Structural atlas77, and 
the Dosenbach’s 160 functional atlas78,79. Future studies should verify our results using these atlases in the analyses 
of different brain networks. Third, several patients with comorbid conditions were included in the current study. 
Although SAD was their main diagnosis, comorbid conditions such as depression and generalized anxiety may 
have affected the results. Therefore, separate analyses of SAD patients with and without comorbid conditions are 
desirable.

Conclusion
In summary, using graph theory, the current study found that both the global and regional topological char-
acteristics of the neural networks of SAD patients were less effective. This is the first study to investigate the 
“small-world” properties of SAD, and the changes were prominent at the group and individual levels, providing a 
new perspective for distinguishing patients from healthy individuals. However, future studies that focus on these 
topological attributes and brain areas in different samples are needed.
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