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The role of inflammation in the pathogenesis of type 2 diabetes mellitus (T2DM) and
its associated complications is increasingly recognized. The resolution of inflammation is
actively regulated by endogenously produced lipid mediators such as lipoxins, resolvins,
protectins, and maresins. Here we review the potential role of these lipid mediators in
diabetes-associated pathologies, specifically focusing on adipose inflammation and dia-
betic kidney disease, i.e., diabetic nephropathy (DN). DN is one of the major complications
ofT2DM and we propose that pro-resolving lipid mediators may have therapeutic potential
in this context. Adipose inflammation is also an important component ofT2DM-associated
insulin resistance and altered adipokine secretion. Promoting the resolution of adipose
inflammation would therefore likely be a beneficial therapeutic approach in T2DM.
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INFLAMMATION AND COUNTER-REGULATORY LIPID
MEDIATORS
The inflammatory response is necessary for effective host defense,
although it must eventually dissipate to ensure tissue homeostasis
and avoid pathologic conditions such as abscess formation, scar-
ring, fibrosis, and eventual organ failure (Lawrence and Gilroy,
2007). Indeed, compromised resolution has been proposed as
an underlying mechanism in many prevalent chronic diseases
such as arthritis, diabetes, and atherosclerosis (Serhan et al.,
2008; Maderna and Godson, 2009). It is now recognized that
the resolution of inflammation is a dynamically regulated process
orchestrated by mediators that play important counter-regulatory
roles including cytokines, chemokines, and lipid mediators such as
the lipoxins (LXs), resolvins, and protectins (Serhan, 2009). These
mediators reduce vascular permeability and inhibit polymor-
phonuclear cell (PMN) recruitment, while promoting recruitment
of monocytes and stimulating efferocytosis (Serhan et al., 2008).
It has also been proposed that pro-resolving lipids stimulate
lymphatic drainage of leukocytes (Arita et al., 2005b). Interest-
ingly, the signaling pathways initially inducing prostaglandin
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umbilical vein endothelial cells; IL, interleukin; LO, lipoxygenase; LXA4, lipoxin A4
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diabetes mellitus; UUO, unilateral ureteric obstruction.

(PG)E2 and PGD2 formation and thus the onset of inflamma-
tion, may actively switch the production of lipid mediators from
pro-inflammatory to pro-resolving by inducing 5-lipoxygenases
(LO) necessary for production of LXs, protectins, and resolvins
(Serhan and Savill, 2005). In this way physiological inflamma-
tion programs its own resolution and promotes tissue homeostasis
(Levy et al., 2001).

LIPOXINS
The LXs are produced endogenously at sites of inflammation
as counter-regulatory lipid mediators with anti-inflammatory,
pro-resolving, and anti-fibrotic bioactions (Serhan et al., 2008;
Maderna and Godson, 2009). LXs are typically generated by tran-
scellular metabolism between neutrophils, platelets, and resident
tissue cells, such as epithelial cells (Lefer et al., 1988; Serhan, 2007),
through the sequential action of 5-LO and either 12-LO or 15-LO
(Serhan, 2005; Parkinson, 2006). LXs limit leukocyte chemotaxis
(Lee et al., 1989) and activation of neutrophils and eosinophils
(Bandeira-Melo et al., 2000), while stimulating Mφ efferocyto-
sis of apoptotic cells (Godson et al., 2000; Mitchell et al., 2002;
Reville et al., 2006). Lipoxin A4 (LXA4) and its positional iso-
mer lipoxin B4 (LXB4) are the principal LX species found in
mammals. Although the LXB4 receptor remains to be identi-
fied, the LXA4 receptor FPR2/ALX is expressed on cells of diverse
lineage, including fibroblasts (Wu et al., 2006a), renal mesangial
cells (McMahon et al., 2002; Mitchell et al., 2004), and epithelial
cells (Nascimento-Silva et al., 2007). LXs are protective in several
experimental models of disease, e.g., inflammatory bowel diseases
(Fiorucci et al., 2004), periodontal disease (Serhan, 2004; Kantarci
and Van Dyke, 2005; Kantarci et al., 2006), and cardiovascular
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disease (Serhan, 2005). LXs have also been reported to act as
vasodilators (von der Weid et al., 2004) and may reprogram Mφs
from a classically activated (M1) phenotype to a spectrum of alter-
native activation (Mitchell et al., 2002). The bioactions of LXs are
summarized in Table 1. The impact of LXs in maintaining the
exquisite equilibrium between effective host defense and home-
ostasis is remarkably illustrated by the fact that over production
of LXs may compromise host defense to pathogens. In the case of
Mycobacterium tuberculosis (M.tb), increased LXA4 production is

associated with decreased TNF-α activity and results in an inad-
equate inflammatory response (Tobin et al., 2010). Conversely,
LXA4 increases survival rate in Toxoplasma gondii infection where
a compromised immune response due to diminished LO activity
and LX biosynthesis is detrimental (Aliberti, 2005).

LIPOXIN RECEPTORS AND SYNTHETIC LIPOXIN ANALOGS
The principal LXA4 receptor is FPR2/ALX, which has been iden-
tified and cloned in numerous cell types, including monocytes

Table 1 | Lipoxin induced bioactions.

Cell type Bioactions in vitro

LXA4, LXA4-analogs and aspirin-triggered lipoxins (ATLs)

Monocytes Stimulate chemotaxis and adhesion without causing ROS production (Maddox and Serhan, 1996)

Macrophages Stimulate efferocytosis while reducing inflammatory cytokine secretion (IFN-γ and IL-6) and increasing pro-resolving cytokine

secretion (IL-10) (Mitchell et al., 2002; Schwab et al., 2007)

Switch Mφ phenotype from inflammatory to pro-resolving

PMN Inhibit chemotaxis, adhesion, and transmigration (Chiang et al., 2006).

Inhibit pro-inflammatory cytokine secretion (Jozsef et al., 2002)

Inhibit ROS production (Levy et al., 1999; Börgeson et al., 2010)

Enhance CCR5 expression on apoptotic PMN (Ariel et al., 2006)

Attenuate P-selectin-mediated PMN–endothelial cell interactions (Papayianni et al., 1996)

DCs Regulated as monocytes differentiate into DCs (Yang et al., 2001)

Trigger SOCS-2 expression (Machado et al., 2006)

Eosinophils Inhibit chemotaxis, IL-5, and eotaxin secretion (Soyombo et al., 1994; Bandeira-Melo et al., 2000; Levy et al., 2002)

Platelet Inhibit Porphyromonas gingivalis-induced aggregation (Börgeson et al., 2010)

T cells Inhibit anti-CD3 Ab induced TNF-α (Ariel et al., 2003)

NK-cells Block cytotoxicity (Ramstedt et al., 1985, 1987)

PBMC Inhibit anti-CD3 Ab induced TNF-α (Ariel et al., 2003)

Endothelium Inhibit P-selectin mobilization (Scalia et al., 1997)

Upregulate IL-10 while inhibiting LTD4 and VEGF stimulated proliferation and angiogenesis (Baker et al., 2009)

Epithelium Inhibit TNF-α induced IL-8 (Bonnans et al., 2007)

Inhibit epithelial to mesenchymal transition (Wu et al., 2010)

Fibroblasts Inhibit proliferation (Wu et al., 2006a)

Inhibit IL-1β induced IL-6, IL-8, and MMP-3 (Sodin-Semrl et al., 2000)

Mesangial cells Inhibit inflammatory cytokine production (Wu et al., 2006b), proliferation and cell cycle progression (Badr et al., 1989;

Mitchell et al., 2004, 2007; Wu et al., 2005, 2006b) as well as ROS production (Mitchell et al., 2007)

GI epitlelium (enterocytes) AntagonizeTNF-α stimulated neutrophil-enterocyte interactions in vitro and attenuateTNF-α chemokine release and colonocyte

apoptosis in human intestinal mucosa ex vivo (Goh et al., 2001)

Inhibit TNF-α induced IL-8 (Gewirtz et al., 2002)

Hepatocytes Reduce PPARα and CINC-1 expression (Planaguma et al., 2002)

Astrocytoma cells Inhibit IL-1β induced IL-8 and ICAM-1 expression (Decker et al., 2009)

LXB4 and LXB4-analogs

Monocytes Stimulate monocytes recruitment, chemotaxis and adherence without causing ROS production (Maddox and Serhan, 1996)

Increase adherence of undifferentiated THP-1 to laminin (Maddox et al., 1998)

PBMC Inhibit anti-CD3 Ab induced TNF-α (Ariel et al., 2003)

PMN Inhibit PMN migration across endothelium (HUVEC monolayer; Maddox et al., 1998)

Attenuate P-selectin-mediated PMN–endothelial cell interactions (Papayianni et al., 1996)

NK cells Inhibit cytotoxicity (Ramstedt et al., 1985)
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and Mφs (Maddox et al., 1997), T cells (Ariel et al., 2003), syn-
ovial fibroblasts (Sodin-Semrl et al., 2000), renal mesangial cells
(McMahon et al., 2002), and enterocytes (Gronert et al., 1998).
In contrast to conventional GPCRs, which typically show very
specific ligand binding, the FPR2/ALX receptor binds pleiotropic
ligands, both lipids and small peptides, such as acute phase
proteins (Chiang et al., 2000), and may elicit ligand-dependent
pro-inflammatory or anti-inflammatory responses (Chiang et al.,
2006; Maderna and Godson, 2009). Krishnamoorthy et al. (2010)
recently found that LXA4 also interacts with another G-protein
coupled receptor, namely GPR32.

LXA4 undergoes rapid inactivation in vivo, primarily by PG
dehydrogenase-mediated oxidation and reduction (Serhan et al.,
1995) and efforts have been made to design chemically stable LX
analogs. Because the three-dimensional molecular structure of
the FPR2/ALX receptor is as of yet unknown, designing LXA4

analogs is based on experimentally discovered structure/function
relationship of LXA4. The LXA4 molecule can be considered in
three regions; the lower chain, the upper chain, and the tetraene
side chain (Duffy and Guiry, 2010). The first generation LXA4

analogs carry modifications in the lower alkyl chain, to increase
metabolic stability and prevent oxidation (Clish et al., 1999). The
second generation analogs are collectively referred to as 3-oxa-
LXA4 and were constructed carrying modifications in the upper
chain (Petasis et al., 2005), replacing the C3 methylene group
with an oxygen molecule (Guilford and Parkinson, 2005). The
third generation LXA4 analogs are characterized by replacement
of the triene structure with a benzene ring (O’Sullivan et al., 2007;
Petasis et al., 2008). Importantly, the o-[9, 12]-Benzo-15-epi-LXA4

has been shown to activate the FPR/ALX receptor in a similar
manner to native LXA4, using an engineered β-arrestin system
(Sun et al., 2009).

RESOLVINS, PROTECTINS, AND MARSEINS
Resolvins, protectins, and maresins are pro-resolving lipids dis-
covered by Serhan et al. (2000) through sophisticated lipidomic
analysis of resolution phase exudates in the murine dorsal air
pouch model. Resolvins may be divided into the E series (RvEs)
and D series (RvDs), which are generated from eicosapentaenoic
acid (EPA) and docosahexaenoic acid (DHA), respectively, the
most common forms of ω-3 PUFA. Similarly, protectins and
maresins are generated from DHA. Like the LXs, resolvins are
generated in a transcellular manner by the sequential action of
LO. Protectins and maresins on the other hand are generated by
single cells, but also through the action of LO. In neutrophils RvE1
has been shown to bind the GPCR LTB4 receptor BLT1 with a Kd

of 45 nM (Arita et al., 2007), whereas in Mφ and dendritic cells
RvE1 bind ChemR23 with a Kd of 11.3 ± 5.4 nM and Bmax indicat-
ing approximately 4,200 binding sites per cell (Arita et al., 2005b;
Kohli and Levy, 2009). RvD1 has also been reported to interact
both with FPR2/ALX and GPR32 in phagocytes (Krishnamoor-
thy et al., 2010). As of yet it is not entirely clear which receptor
the protectins and maresins act through, although PD1 has a high
affinity surface binding site on human PMN and retinal pigment
epithelium cells (Bannenberg and Serhan, 2010). Resolvins, pro-
tectins, and maresins all display potent anti-inflammatory and
pro-resolving effects inhibiting production of pro-inflammatory

mediators, regulating neutrophil trafficking and promoting effe-
rocytosis (Schwab et al., 2007; Serhan, 2009). The effects of these
lipid mediators are summarized in Table 2.

INFLAMMATION AND TYPE 2 DIABETES MELLITUS
Diabetes mellitus (DM) is a serious metabolic disorder of glucose
homeostasis reflecting destruction of the β-cells of the pancreas
and subsequent lack of insulin production (type 1 DM, T1DM)
or decreased target organ sensitivity to insulin and β-cell dysfunc-
tion (type 2 DM, T2DM). T2DM is defined as having a fasting
plasma glucose ≥7.0 mmol/l and affects over 90% of diabet-
ics, or an estimated 285 million people globally (Cusi, 2010).
T2DM imposes significant socioeconomic burdens through its
many diabetes-associated complications. These can be divided
into microvascular complications [diabetic nephropathy (DN),
neuropathy, and retinopathy] and macrovascular complications
[atherosclerosis, ischemic heart disease, stroke, and peripheral vas-
cular disease often resulting in amputations] (Wild et al., 2004).
Risk factors of T2DM include genetic preposition, ethnicity, high
blood pressure, and high cholesterol, but obesity is frequently cited
as the primary cause.

The role of inflammation in diabetes is becoming more evident
and elevated circulating interleukin (IL)-1β, IL-6, and C-reactive
protein (CRP) are predictive of T2DM (Navarro and Mora, 2006;
de Luca and Olefsky, 2008; Donath and Shoelson, 2011). These
inflammatory markers are primarily derived from the adipose
tissue and the liver. The hypothesis that the pathogenesis of
T2DM reflects an inflammatory disorder is supported by pre-
clinical studies and clinical trials using anti-inflammatory agents
(Donath and Shoelson, 2011). Examples of these include IL-1β

receptor blockers, anti-TNF-α and IL-6 therapies, as well as the
use of salsalate. We will now briefly discuss current attempts to
use anti-inflammatory therapeutics to attenuate the pathology of
diabetes.

Interleukin-1β is a key regulator of inflammation both in
T1DM and T2DM and has been shown to induce pancreatic β-cell
apoptosis and exacerbate the systemic inflammation associated
with diabetes, for instance by augmenting adipocyte TNF-α and
IL-6 production (Akash et al., 2012). Patients with T2DM display
increased IL-1β levels (Boni-Schnetzler et al., 2008), while its nat-
urally occurring IL-1 receptor antagonist (IL-1Ra) is diminished
(Maedler et al., 2004). Interest has been directed toward using
IL-1Ra as a therapeutic in T2DM. Clinical trials show that the IL-
1Ra anakinra improves glycemia and β-cell secretory functions,
while attenuating systemic inflammation (Donath and Shoelson,
2011). For instance, anakinra administered over a 13-week period
in T2DM patients increased insulin production, while glycosy-
lated hemoglobin, i.e., HbA1c and the inflammatory marker CRP
were significantly reduced (Larsen et al., 2007). The limitation with
IL-1Ra lies in its short half-life, but successful attempts have been
made to increase its stability by fusing IL-1Ra with peptides such as
human serum albumin (HLA) or elastin-like polypeptides (ELPs),
although these compounds remain to be tested in diabetic models
(Akash et al., 2012).

TNF-α is also implicated in the pathogenesis of insulin resis-
tance (IR) and its expression correlates with reduced insulin-
stimulated glucose disposal (Kern et al., 2001). TNF-α is elevated
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Table 2 | Resolvin, protectin, and maresin induced bioactions.

Cell type Bioactions in vitro

Resolvin E1

Macrophages Stimulates efferocytosis while reducing IFN-γ and IL-6 (Schwab et al., 2007)

PMN Decreases transendothelial and epithelial migration (Campbell et al., 2007)

Stimulates L-selectin shedding, while reducing CD18 expression and inhibiting PMN rolling in vivo (Dona et al., 2008)

Attenuates BLT1 depended TNF-α and NF-κB activation (Arita et al., 2007)

Enhances CCR5 expression on apoptotic PMN (Ariel et al., 2006)

Dendritic cells Inhibits migration (Arita et al., 2005a)

Reduces IL-12 production from DCs stimulated with pathogen extract (Arita et al., 2005a)

Platelets Disruptes platelet aggregation (Dona et al., 2008; Fredman et al., 2010)

Resolvin D1

Microglia cells Inhibits IL-1β expression (Serhan et al., 2002)

Protectin D1

PMN Enhances CCR5 expression on apoptotic PMN (Ariel et al., 2006)

Mφ Stimulates efferocytosis while reducing IFN-γ (Schwab et al., 2007)

T cell Promotes apoptosis, inhibits TNF-α and IFN-γ (Ariel et al., 2005)

Glia cells Reduces IL-1β-induced NF-κB activation and COX2 expression (Marcheselli et al., 2003), reduces amyloid β-42-induced nerotoxicity,

promotes amyloid β-induced apoptosis (Lukiw et al., 2005)

Epithelium Protects from apoptosis induced by oxidative stress (Mukherjee et al., 2004)

Maresin 1

Macrophage Stimulates efferocytosis (Serhan et al., 2009)

both in obese rodents (Uysal et al., 1997) and obese humans
(Hotamisligil et al., 1995; Kern et al., 2001) and furthermore
decreases upon weight loss (Kern et al., 1995). TNF-α−/− ob/ob
mice have significantly improved insulin sensitivity (Uysal et al.,
1997) and obese mice lacking the TNF-α receptor are pro-
tected from high fat diet induced IR (Romanatto et al., 2009).
However, in humans TNF-α neutralizing antibodies does not
appear to improve insulin sensitivity in obese subjects (Ofei
et al., 1996; Rosenvinge et al., 2007). Nevertheless, TNF-α block-
ers are often used to treat rheumatoid arthritis (RA) and it was
recently reported that obese RA patients receiving TNF-α block-
ers displayed improved fasting glucose and increased circulating
adiponectin levels (Stanley et al., 2010), possibly warranting more
studies in the field. IL-6 is also an important inflammatory medi-
ator in diabetes and increased levels correlate with IR (Pradhan
et al., 2001), although it appears to have a dual role. Whereas
IL-6 causes IR in adipocytes (Rotter et al., 2003) and anti-IL-6
therapy over a 6 month period diminished HbA1c in diabetic
RA patients (Ogata et al., 2011), the IL-6 derived from skeletal
muscle during exercise appears beneficial (Pedersen et al., 2003).
The use of anti-IL-6 blockers as an anti-inflammatory therapeu-
tic in diabetes has therefore been debated. Salsalate on the other
hand is a very interesting drug in the context of diabetes and has
been shown to reduce CRP, FFA, and triglycerides while increas-
ing insulin sensitivity and adiponectin levels (Koska et al., 2009;
Goldfine et al., 2010). Salsalate may, however, cause gastric irri-
tation and should be used with caution in pregnancy (Torloni
et al., 2006; Chyka et al., 2007). Collectively these studies indicate

the potential of using anti-inflammatory therapeutics to attenuate
T2DM.

RESOLUTION OF ADIPOSE INFLAMMATION IN TYPE 2
DIABETES MELLITUS
There is a growing appreciation that adipose tissue is not merely
an insulating energy store but is actually an endocrine organ reg-
ulating appetite, glucose and lipid metabolism, blood pressure,
inflammation, and immune function (Kershaw and Flier, 2004).
Adipose tissue has been shown to play a particularly important
role in the systemic inflammation associated with obesity, IR,
and diabetes. Factors such as prolonged obesity or aging cause
a state of systemic low-grade inflammation, which induces mono-
cyte recruitment to the adipose tissue. Adipose tissue is a source
of pro-inflammatory cytokines and adipose tissue Mφ (ATM)
derived TNF-α, IL6, and IL-1β contribute to adipose IR and exac-
erbates systemic inflammation (Lumeng et al., 2007b). Promoting
resolution of adipose inflammation would likely be a beneficial
therapeutic approach, reducing the risk of developing obesity-
associated complications, such as IR and T2DM (Donath and
Shoelson, 2011).

Given the spectrum of anti-inflammatory and pro-resolution
bioactions of LXs and other counter-regulatory lipid mediators,
these may provide a potential intervention to attenuate adipose
inflammation (Gonzalez-Periz and Claria, 2010). We recently
reported a role of LXA4 in adipose inflammation, culturing adi-
pose explants of aging mice as an ex vivo model of adipose
inflammation (Börgeson et al., 2012). We confirmed that LXA4
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increased expression of critical components of insulin sensitivity,
including the glucose transporter GLUT-4 and IRS-1, consistent
with restoring insulin sensitivity in the tissue. Furthermore, LXA4

decreased IL-6 secretion while increasing production of the pro-
resolving IL-10, suggesting that LXA4 acted in a pro-resolving
manner (Börgeson et al., 2012). Indeed, IL-10 inversely corre-
lates with T2DM and has been shown to inhibit IL-6-induced
IR, attenuate MCP-1 secretion, and promote GLUT-4 and IRS-
1 expression (Lumeng et al., 2007a; Gonzalez-Periz and Claria,
2010). The study also demonstrated that LXA4 partially rescued
M�-inhibited adipose glucose uptake in vitro (Börgeson et al.,
2012). Inflammatory M�s are a key component of augmented
adipose IR (Lumeng et al., 2007b; Cusi, 2010; Spencer et al., 2010).
Importantly, LXA4-mediated reversal of insulin desensitization
correlated with restored adipose Akt activation, which is necessary
for translocation of the glucose sensitizing GLUT-4 receptor from
the cytosol to the plasma membrane (Börgeson et al., 2012). Inter-
estingly, RvD1 also increased insulin-stimulated pAkt in adipose
tissue of obese db/db mice (Hellmann et al., 2011). Furthermore,
LXA4 inhibited M� TNF-α production, which is an impor-
tant cytokine previously demonstrated to inhibit adipose glucose
uptake in vitro (Gao et al., 2003). LXA4 also inhibited MCP-1
secretion, though the importance of MCP-1 in adipose inflam-
mation has been debated (Chen et al., 2005; Inouye et al., 2007).
The reduction of inflammatory cytokines may suggest that LXA4

promoted restoration of insulin sensitivity by altering M� phe-
notype toward resolution. Finally, LXA4 also appeared to have a
direct impact on adipocytes as it rescued TNF-α-induced desensi-
tization to insulin-stimulated Akt activation, which also correlated
with increased GLUT-4 translocation.

The beneficial effects of ω-3 PUFA, RvE1, and PD1 have
also been shown in ob/ob mice (Gonzalez-Periz et al., 2009).
Both ω-3 PUFA enriched diet and intraperitoneal injections of
RvE1 increased expression of genes involved in glucose trans-
port (GLUT-4) and insulin signaling (IRS-1), as well as genes
involved in insulin sensitivity (PPARγ). Similar to ω-3 PUFA,
RvE1 increased adiponectin levels, as did PD1 when incubated
with adipose explants from ob/ob mice (Gonzalez-Periz et al.,
2009). Additional studies show that RvD1 decrease accumula-
tion of ATMs and improve insulin sensitivity while reducing
fasting blood glucose in db/db diabetic mice (Hellmann et al.,
2011). Interestingly, the total number of ATMs remained unal-
tered with RvD1 treatment, but the ratio of M2:M1 increased.
The number of adipose crown like structures (CLS) in obese ani-
mals was also reduced by 50–60% (Hellmann et al., 2011) and
RvD1 significantly increased circulating adiponectin and adipose
phosphorylation of AMPK. The study also reports diminished IL-
6 secretion (Hellmann et al., 2011), which has previously been
shown to suppress adiponectin in 3T3-L1 adipocytes (Fasshauer
et al., 2003) and may explain the restored adiponectin levels, which
in turn have been shown to increase insulin sensitivity (Kristiansen
and Mandrup-Poulsen, 2005; Kadowaki et al., 2006).

INFLAMMATION AND DIABETIC NEPHROPATHY
Diabetic nephropathy presents a particularly important problem
as it develops in 25–40% of diabetic patients and is the major
cause of end-stage kidney disease (Ritz et al., 1999). DN is a type

of chronic kidney disease (CKD) rising in prevalence in con-
cert with chronic DM in susceptible individuals. In addition to
being the leading cause of renal failure, T2DM is also an inde-
pendent risk factor in the development of cardiovascular disease
(Syed and Khan, 2011). DN reflects the convergence of inflamma-
tory, metabolic, and hemodynamic factors. Inflammation causes
glomerulosclerosis, tubular atrophy, damage to renal vasculature,
and fibrosis (Ferenbach et al., 2007). Renal matrix accumulation
arises in response to paracrine and autocrine mediators pro-
duced by resident and infiltrating cells, such as mesangial cells
and Mφs.

Promoting inflammatory resolution is likely an attractive
approach when trying to prevent renal fibrosis and CKD (Börge-
son and Godson, 2010). The mechanisms by which resolution
of renal inflammation occurs naturally and how they are sub-
verted in disease are only beginning to be understood. Impor-
tant components include efferocytosis of apoptotic cells and a
change of the cytokine milieu from pro-inflammatory to anti-
inflammatory/pro-resolving (Ferenbach et al., 2007; Börgeson and
Godson, 2010). Biphasic regulation of renal inflammation and
NF-κB also appears important, where the first peak mediated
through p65/p50 heterodimers induces inflammation through
pro-inflammatory mediators such as MCP-1 and RANTES. The
second peak on the other hand (p50/p50 homodimers) promotes
resolution by downregulating MCP-1/CCL1, RANTES/CCL5, and
TNF-α (Panzer et al., 2009), while inducing expression of pro-
resolving IL-10 (Cao et al., 2006). Similarly, to other pathologies
it also appears that the phenotype of Mφs is important in CKD
(Wada et al., 2004; Sung et al., 2007). Whereas M1 Mφs are detri-
mental, the M2a and perhaps even more so the M2c phenotype is
beneficial (Wang and Harris, 2011).

Mφs play an important role in DN as previously reported
by Tesch (2008, 2010). Mφs increase production of ROS, pro-
inflammatory cytokines, and pro-fibrotic growth factors that
contribute to the formation of myo-fibroblasts. Mφs also appear to
directly activate fibroblasts to a pro-fibrotic (myo-fibroblast) phe-
notype through secretion of galectin-3 (Henderson et al., 2008).
Inhibition of Mφ recruitment has been suggested to attenuate
disease in several models of renal fibrosis with varying efficacy
(Wada et al., 2004; Sung et al., 2007). For instance, MCP-1−/−
mice are protected against renal injury in a model of T1DM
(Chow et al., 2006) and furthermore urinary levels of MCP-1
are predictive of renal injury in humans and have been pro-
posed as a diagnostic marker of progressive diabetic kidney
disease (Tesch, 2008). There is a growing appreciation that the
plasticity of Mφs is an important factor in disease progression
(Duffield, 2011; Wang and Harris, 2011) and that Mφs also con-
tribute to the resolution of renal inflammation. For instance,
Mφ efferocytosis of apoptotic cells is coupled to the generation
of anti-inflammatory mediators such as IL-10 (Ricardo et al.,
2008). To this effect, re-programming Mφs ex vivo toward a
M2 phenotype (IL-4/IL-13 stimulation) provides protection in
models of renal disease, whereas the M1 phenotype (LPS stim-
ulation) is detrimental (Wang et al., 2007). Additional research
suggests that M2a and M2c phenotypes are both renoprotective,
but that the latter appears to be the more effective (Wang and
Harris, 2011).
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EXPERIMENTAL THERAPEUTICS AND DN
Diabetic nephropathy is a chronic disease and current therapeutics
primarily focus on glycemic and blood-pressure control through
drugs targeting the renin–angiotensin system (RAS), such as
angiotensin-converting-enzyme (ACE) inhibitors and angiotensin
receptor blockers (ARBs). However, these treatment regimes only
slow the progression of the disease, but do not halt or reverse it.
Furthermore, prolonged use of RAS inhibitors may induce hyper-
kalemia, reduction in systemic blood pressure and decreased renal
blood flow. Therefore, there is a profound need for novel thera-
peutic strategies in this field and the search is ongoing (Decleves
and Sharma, 2010; Shepler et al., 2012). Examples of experimen-
tal therapeutics that show potential include bardoxolone methyl,
which in clinical trials increases estimated glomerular filtration
rate (eGFR) and creatinine clearance, while inhibiting inflam-
mation in diabetic patients with stage 3b-4 CKD (Pergola et al.,
2011a,b; Thomas and Cooper, 2011). Pirfenidone is an oral anti-
fibrotic and anti-inflammatory agent which shows therapeutic
potential in DN, although it was initially developed for treat-
ment of idiopathic pulmonary fibrosis. In a randomized, double
blind study pirfenidone increased eGFR and decreased markers
of inflammation (TNF, INF-γ, and IL-1; Sharma et al., 2011)
and has also demonstrated anti-fibrotic potential in both in vitro
(Hewitson et al., 2001) and in vivo (RamachandraRao et al., 2009;
Takakuta et al., 2010) models of renal disease. Vitamin D analogs,
e.g., paricalcitol, may also be renoprotective agents through nega-
tively regulating the RAS system and attenuation of renal fibrosis
in rodent unilateral ureteric obstruction (UUO) models inhibit-
ing accumulation of ECM as well as TGF-β1 and MCP-1 gene
expression signaling (Li and Batuman, 2009; Li, 2010). Vitamin
D analogs have also been suggested to prevent podocyte injury
by promoting expression of slit diaphragm proteins (Li, 2011)
and shows promising potential in emerging clinical trials reducing
proteinuria in CKD patients (Li, 2010).

As inflammation is a common denominator in CKD and a
hallmark of DN, pro-resolving therapeutics may have poten-
tial benefit. We recently reported that LXs are protective in
CKD, as pre-treatment with LXA4 and benzo-LXA4 modulates
inflammation and fibrosis in early UUO-induced injury (Börge-
son et al., 2011a). UUO is an established model of progressive
tubulointerstitial fibrosis and inflammation, relevant to CKD
of diverse etiologies, including DN. UUO induces marked Mφ

infiltration, tubular cell death, fibroblast activation, and pos-
sible phenotypic transition of resident renal cells characteristic
of progressive renal fibrosis (Higgins et al., 2007; Chevalier et al.,
2009). Benzo-LXA4 and LXA4 attenuated UUO-induced fibrotic
responses such as collagen accumulation by inhibiting collagen-
1α2 gene expression, expression of collagen chaperone HSP47 and
TGF-β1 signaling pathways (Börgeson et al., 2011a). Interestingly,
RvD1 has also been demonstrated to attenuate collagen deposi-
tion in a murine model of renal ischemia reperfusion (Duffield
et al., 2006). Specifically, LXs inhibited UUO-induced TGF-β1
canonical (Smad2) and non-canonical (Akt, Erk, and p38MAPK)

signaling pathways, translating to reduced pro-fibrotic signaling
(Börgeson et al., 2011a). Although LXA4 did not alter the expres-
sion of TGF-β1, it did inhibit expression of MMP2 and CTGF.
This is indeed noteworthy since MMP2 activates latent TGF-β1
and is a major driver of TGF-β1-mediated fibrosis. The LXA4

mediated reduction of CTGF, both at mRNA and protein levels,
would likely result in reduced fibrotic responses. The anti-fibrotic
effect of LXs has been demonstrated in several in vitro systems,
inhibiting proliferation and cell cycle progression in mesangial
cells (Börgeson and Godson, 2010). Recent data also demonstrate
protection by RvE and RvD in murine UUO (Qu et al., 2012).
LXs also appeared to shift Mφ phenotype and displayed signif-
icant pro-resolving actions in UUO-induced CKD. Whereas the
total number of Mφ and MCP-1 remained unaltered, LX treated
animals displayed decreased pro-inflammatory IFN-γ and TNF-α
cytokines and increased pro-resolving IL-10 levels (Börgeson et al.,
2011a). Indeed, it appeared that the LXs induced a shift the Mφ

phenotype toward an early stage M2c reparative phenotype, based
on the high IL-10 expression induced by benzo-LXA4, although
TGF-β1 remained unaffected (Börgeson et al., 2011a).

Micro RNA (miRNA) may also prove an important therapeu-
tic target in DN, as they have demonstrated importance in CKD
pathogenesis (Kato et al., 2007; Wang et al., 2008; Long et al., 2010).
We recently reported that whereas TGF-β1 downregulates expres-
sion of the miRNA let-7c in renal epithelia, LXA4 enhances let-7c
expression, and attenuates TGF-β1 fibrotic responses as let-7c
targets expression of the TGF-βR1 (Brennan et al., in revision).
Importantly, LXs inhibit ROS production (Börgeson and God-
son, 2010; Börgeson et al., 2011b; Wu et al., 2012), which may be
analogous to the antioxidant effect of bardoxolone methyl (Rojas-
Rivera et al., 2012). Indeed, bardoxolone methyl is an antioxidant
inflammation modulator (AIM) compound, targeting Nrf2 which
is a master regulator of the antioxidant response. Interestingly,
LXA4 has been shown to inhibit LPS-mediated ROS production
and to downregulate Nrf2 protein levels in human umbilical vein
endothelial cells (HUVECs; Pang et al., 2011).

CONCLUSION
Increasing evidence supports the role of chronic inflammation in
the pathogenesis of T2DM and associated complications such as
DN. Pro-resolving mediators, such as LXs, resolvins, and pro-
tectins, attenuate diabetes-related pathologies, including kidney
disease and adipose inflammation. Thus promoting the resolu-
tion of inflammation through use of these lipids may provide
a novel therapeutic strategy in the fight against diabetes-related
pathologies.
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