
RESEARCH Open Access

Decoding the evolutionary response to
prostate cancer therapy by plasma genome
sequencing
Naveen Ramesh1,2, Emi Sei1, Pei Ching Tsai3, Shanshan Bai3, Yuehui Zhao1, Patricia Troncoso4, Paul G. Corn3,5,
Christopher Logothetis3,5, Amado J. Zurita3,5*† and Nicholas E. Navin1,2,5,6*†

* Correspondence: azurita@
mdanderson.org; nnavin@
mdanderson.org
†Amado J. Zurita and Nicholas E.
Navin contributed equally to this
work.
3Department of Genitourinary
Medical Oncology, The University of
Texas MD Anderson Cancer Center,
Houston, TX, USA
1Department of Genetics, The
University of Texas MD Anderson
Cancer Center, Houston, TX, USA
Full list of author information is
available at the end of the article

Abstract

Background: Investigating genome evolution in response to therapy is difficult in
human tissue samples. To address this challenge, we develop an unbiased whole-
genome plasma DNA sequencing approach that concurrently measures genomic
copy number and exome mutations from archival cryostored plasma samples. This
approach is applied to study longitudinal blood plasma samples from prostate
cancer patients, where longitudinal tissue biopsies from the bone and other
metastatic sites have been challenging to collect.

Results: A molecular characterization of archival plasma DNA from 233 patients and
genomic profiling of 101 patients identifies clinical correlations of aneuploid plasma
DNA profiles with poor survival, increased plasma DNA concentrations, and lower
plasma DNA size distributions. Deep-exome sequencing and genomic copy number
profiling are performed on 23 patients, including 9 patients with matched metastatic
tissues and 12 patients with serial plasma samples. These data show a high
concordance in genomic alterations between the plasma DNA and metastatic tissue
samples, suggesting the plasma DNA is highly representative of the tissue alterations.
Longitudinal sequencing of 12 patients with 2–5 serial plasma samples reveals clonal
dynamics and genome evolution in response to hormonal and chemotherapy. By
performing an integrated evolutionary analysis, minor subclones are identified in 9
patients that expanded in response to therapy and harbored mutations associated
with resistance.

Conclusions: This study provides an unbiased evolutionary approach to non-
invasively delineate clonal dynamics and identify clones with mutations associated
with resistance in prostate cancer.
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Background
Clonal evolution has been challenging to study in tumor tissue obtained from can-

cer patients, particularly in specimens collected from a single point in time [1–3].

While a small number of studies were able to collect serial core biopsies for

genomic profiling [4], those studies still suffered from small amounts of tumor tis-

sue availability and spatial sampling bias. Moreover, tumor biopsies are invasive

clinical procedures with potential for complications and have significant costs [5,

6]. An alternative non-invasive approach involves using liquid biopsies, including

circulating tumor cells [7–9] and cell-free DNA (cfDNA) [10–13]. Blood samples

collected over time during the course of treatment provide a unique opportunity to

infer tumor evolution [14]. cfDNA is particularly useful for clinical applications

due to the logistical advantage of straightforward processing and the ability to

cryostore materials for future analysis [15–17]. However, a major limitation has

been that most cfDNA assays were developed to analyze targeted cancer gene

panels and have therefore measured a limited number of CNAs and mutations

[18–21]. Resolving intratumor heterogeneity and inferring clonal evolution requires

measuring a large number of unbiased genomic markers, which targeted panels

cannot provide.

A few studies have made initial progress towards performing unbiased exome se-

quencing of cfDNA in gastrointestinal cancers [22] and prostate cancer (PC) [10],

or whole-genome copy number profiling of triple-negative breast cancer patients

[23]. Building on those early studies, we have developed a method called PEGASUS

(Plasma Exome and Genome Analysis by Size-selection Unbiased sequencing) to

profile both genome-wide CNA and exome-wide mutations (~ 25,000 genes) simul-

taneously from archival cryostored plasma or serum DNA samples. In contrast to

targeted methods [24–26], PEGASUS involves selection of small DNA fragments

that contain higher tumor content relative to high molecular weight DNA from

WBCs present in cryostored blood fractions. These characteristics make PEGASUS

ideally suited for unbiased discovery of genomic markers and for the investigation

of clonal evolution in response to therapy, when applied to longitudinal blood

collections.

Comprehensive genomic studies have identified multiple recurrently altered genes (AR,

TP53, RB, SPOP, PTEN, and others) and signaling pathways in metastatic prostate cancer

(mPC) [27], but have also revealed the existence of many low-frequency variants and

significant inter-patient heterogeneity. Moreover, PC is unique among solid tumors due

to its dependence on androgen receptor-regulated pathways for progression and its high

propensity to metastasize to the bone (often the only site of progression). The vast major-

ity of previously untreated or castration-sensitive prostate cancer (CSPC) respond to

initial androgen deprivation therapy (ADT), but the disease invariably adapts and pro-

gresses to lethal castration-resistance prostate cancer (CRPC) [28]. Treatment strategies

for CRPC patients are limited and include advanced hormonal therapies and taxane-based

chemotherapy, but no molecular markers have yet been established to guide their applica-

tion and timing of treatment. Because of the bone dominance of metastatic prostate

cancer (mPC), bone biopsies are most frequently needed for pathological and molecular

characterization, but these are uncomfortable and difficult to perform procedures that

often result in minute amounts of tumor tissue that is not suitable for genomic analysis.
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As a result, mPC presents a unique opportunity for liquid biopsy genomics to investigate

heterogeneity and clonal evolution over time in the context of therapy.

Results
PEGASUS method

While prospective studies typically use Streck tubes to collect plasma, most archival

plasma samples have historically been collected in EDTA tubes or subjected to a gradi-

ent treatment such as Ficoll prior to cryostorage. In contrast to Streck tubes (which in-

clude a fixative), the usage of EDTA/Ficoll medium often leads to contamination by

high molecular weight DNA fragments that are released from the WBC during sample

processing. To address this problem, PEGASUS was designed to isolate low molecular

weight DNA fragments (< 1000 bp), which is done prior to the construction of low-

input libraries for whole-genome sequencing (WGS) of copy number alterations

(CNAs) and exome mutation profiling (Fig. 1a, the “Methods” section). After three

rounds of high-speed centrifugation to remove residual WBC, the archival plasma sam-

ples are subjected to size selection by column purification. The remaining low molecu-

lar weight DNA is used for quality control (QC) to determine the plasma DNA

concentration and molecular size of the DNA fragments. Samples that pass QC are

used to construct low-input NGS libraries, which are split into two parallel reactions:

Fig. 1 PEGASUS whole-genome plasma sequencing approach and molecular properties of cfDNA. a
Workflow for the PEGASUS whole-genome plasma DNA sequencing approach. b Distribution of total cfDNA
concentrations (nanograms) in the prostate cancer patients, with the dotted line showing the QC threshold
(< 2 ng). c Comparison of cfDNA concentrations (ng/mL) between diploid and aneuploid genomic cfDNA
profiles. d Distribution of cfDNA fragment sizes (bp). e Comparison of the distribution of cfDNA fragment
sizes in basepairs between diploid and aneuploid genomic cfDNA profiles. f Distribution of the somatic
mutation allele frequencies (MAFs) among the 23 plasma and 9 metastatic tissue samples. Significance in c
and e was calculated using the Wilcoxon rank sum test. Red dots in c and e represent mean values
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(1) copy number profiling by WGS at sparse (0.1X) coverage depth and (2) exome se-

quencing at high coverage depth (150X tumor, 60X normal) to detect somatic muta-

tions and indels (the “Methods” section). NGS libraries are generated in parallel from

WBCs for exome capture to serve as a matched normal reference of germline variants

to distinguish somatic mutations. This protocol can also be performed on fresh blood

samples collected in Streck tubes.

Molecular properties of cfDNA and clinical correlations

We performed QC of cfDNA in 233 cryostored archival plasma samples collected from

PC patients at MD Anderson by measuring the size and concentration, including 79 pa-

tients with CSPC and 154 patients with CRPC (Fig. 1b). QC indicated that 130 of the

233 patients (55.8%) had sufficient cfDNA (≥ 2 ng total) for construction of NGS librar-

ies using PEGASUS. The QC data showed a wide range in the total amounts of low

molecular weight cfDNA (0–5280 ng) across the patients, including a subset of 29 pa-

tients (12.4% of the total) with very high amounts of total cfDNA (≥ 20 ng) (left side,

Fig. 1b). The median cfDNA concentrations in CSPC (1.25 ng/mL) and CRPC patients

(0.84 ng/mL) were not significantly different (p = 0.29, Wilcoxon test). However, 24

CSPC patients (30.4%) had < 0.5 ng of detectable plasma DNA compared to only 5

(3.2%) of the CRPC patients (Fig. 1b and Additional file 1: Fig. S2a), suggesting that a

larger proportion of CRPC patients could potentially be used for genomic profiling

using PEGASUS. We performed low-pass WGS of 101 plasma samples to understand

how diploid and aneuploid genomic copy number profiles correlate with cfDNA prop-

erties. This data showed that cfDNA concentrations were significantly higher in pa-

tients with aneuploid genomes compared to patients with diploid plasma copy number

(p = 0.00014, Wilcoxon rank sum test) (Fig. 1c).

Analysis of the cfDNA fragment sizes showed a mean molecular size of 146.6 ± 1.29

bp (SEM) across the patients, with a bimodal cfDNA size distribution (Fig. 1d,

Additional file 1: Fig. S1). PC patients with diploid copy number had significantly (p =

0.0013, Wilcoxon rank sum test) larger cfDNA fragment sizes (mean 154 ± 1.66 bp)

compared to patients with aneuploid profiles (mean 142 ± 2.91 bp) (Fig. 1d, e). These

numbers are consistent with previous reports on plasma DNA fragment size distribu-

tions for circulating tumor DNA (ctDNA) compared to cfDNA that was isolated from

normal cells [29, 30], suggesting that the tumor cells are not shedding large amounts of

DNA into the plasma. Notably, a subset of patients had additional peaks at double and

triple the mean cfDNA fragment size, possibly indicating that the DNA was protected

by multiple nucleosomes, rather than a single nucleosome detected in most PC patients

(Additional file 1: Fig. S1a-d).

While most of the 233 patient samples used for QC were from single-timepoint blood

samples, there were 9 patients with matched metastatic tissues and 12 patients with

longitudinal blood samples collected during therapy that were selected for genomic

CNA profiling and exome sequencing by PEGASUS. To test the variability in ctDNA

concentration after isolation, we performed 4 experimental replicates from 4 test

plasma samples, which showed only minor variations in the final concentrations of

ctDNA (Additional file 1: Fig. S1e). Analysis of the somatic exome mutation allele fre-

quency (MAF) showed a median MAF of 0.17 for the aneuploid cfDNA samples, which
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was slightly lower than the MAF detected in matched metastatic tumor tissues (median

0.3) (Fig. 1f). Notably, plasma DNA with diploid genomic copy number profiles showed

the lowest MAF (median 0.08), suggesting that the contribution of cfDNA from normal

cells was high in these patients, with limited ctDNA.

Clinical correlations with plasma DNA properties

Survival analysis revealed that CRPC patients with total cfDNA < 2 ng had significantly

longer overall survival (OS) than patients with total cfDNA ≥ 2 ng (median 22.2 vs 13.3

months, p = 0.0022, log-rank test) (Fig. 2a, Additional file 1: Fig. S2). Furthermore, pa-

tients with diploid cfDNA CNA profiles had longer OS than patients with aneuploid

cfDNA CNA profiles (median 21.05 vs 12.6 months, p = 0.031, log-rank test) (Fig. 2b,

Additional file 1: Fig. S2). We next investigated associations between cfDNA concentra-

tions and clinical parameters. Patients with accelerated PC growth had higher cfDNA

levels (n = 94) compared to those with protracted kinetics of progression (n = 139; p =

0.00024, Wilcoxon rank sum test) (Fig. 2c). Furthermore, PC patients with high disease

volume (n = 128) had significantly higher cfDNA levels compared to patients with low

disease volume (n = 65; p = 0.018, Wilcoxon rank sum test) (Fig. 2d). Notably, cfDNA

Fig. 2 Survival analysis and correlation of cfDNA concentration with clinical features. a Kaplan-Meier overall
survival plot for prostate cancer patients with total plasma DNA < 2 ng and total plasma DNA≥ 2 ng. b
Kaplan-Meier overall survival plot for patients with aneuploid and diploid cfDNA CNA profiles. c Comparison
of the distribution of cfDNA concentration between accelerated and protracted progressors. d Distribution
of cfDNA concentrations (ng/mL) between patients with low, intermediate, and high volume of disease.
Significance for the survival analysis in a and b was calculated with the log-rank test, while the significance
of the box plots in c and d was calculated using the Wilcoxon rank sum test. Red dots in c and d represent
mean values
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concentrations were not significantly different (p = 0.4642, Wilcoxon rank sum test) in

patients with histologic low grade groups 1–2 (n = 54) compared to high grade

groups 3–5 (n = 164) on diagnosis (Additional file 1: Fig. S2d). By comparing local and

distant metastases, PC patients with bone (n = 132) or visceral metastasis (n = 41) had

respectively higher cfDNA concentrations than patients with lymph node metastasis

only (n = 30; p = 0.042 and p = 0.0099 for bone and visceral metastasis, respectively, vs

lymph node) (Additional file 1: Fig. S2e). Similarly, PSA levels had a low correlation

with cfDNA concentrations (R = 0.12, p = 0.073) (Additional file 1: Fig. S2f). Finally, we

utilized all the clinical and genomic factors as predictors for the OS and progression-

free survival (PFS) using the univariate and multivariate Cox regression model in a sub-

set of 70 patients that had consistent clinical variables available for all of the parameters

we tested. Based on the survival analysis, we found that ploidy has significant independ-

ent and joint predictive power for OS, with significant joint predictive power for PFS

(Additional file 1: Table S1). Collectively, these data suggest that higher cfDNA in the

plasma and genomic aneuploidy associate with faster mPC progression and a shorter

survival of PC patients.

Whole-genome profiling of single-timepoint samples

We applied PEGASUS to obtain integrated genomic CNA and exome mutation profil-

ing of single-timepoint plasma samples from 8 CRPC patients (Fig. 3, Additional file 1:

Fig. S3). These patients had a mean 34.8 ± 6.49 (SEM) CNAs and 55.6 ± 14.99 (SEM)

point mutations and 16 ± 3.15 (SEM) insertion-deletions (indels). However, two of the

patients (P1, P4) had a much higher mutation burden (106 and 139 mutations, respect-

ively) (Fig. 3a). Recurrent CNAs identified included amplifications in MYC (8q) in all 8

patients and in AR (Xq) in 4 patients, as well as losses in RB1 (13q) in 7 patients, TP53

(17p) in 4 patients, and APC (5q) in 3 patients (Fig. 3c, Additional file 1: Fig. S3a). Point

mutations were identified in GNAS, NCOA5, EVL, and BIRC6, while indels were found

in BRCA2, APC, TP53, and FOXA1 among other cancer genes. Our unbiased analysis

also identified CNAs and mutations in genes that have not previously been associated

with mPC progression (Fig. 3c, Additional file 1: Fig. S3b). The overall distribution of

the CNAs among the 8 single-timepoint samples shows a negative binomial distribu-

tion, with a majority of the CNA genomic sizes < 50,000 kb (Additional file 1: Fig. S3c).

On a per-patient basis, the chromosome length of the CNAs are generally < 50,000 kb

while a subset of CNAs have larger size distributions (Additional file 1: Fig. S3d). This

data demonstrates the technical feasibility of using PEGASUS to perform unbiased gen-

omic profiling and detect both recurrent and infrequent PC aberrations in cfDNA.

Tumor DNA concordance in plasma and metastatic tissue

To investigate the concordance of genomic events between the cfDNA and metastatic

tumor tissues, we applied PEGASUS to 9 CRPC patients with matched tissue speci-

mens obtained from different metastatic organ sites (Fig. 4a). Global genomic analysis

showed that the CNA burden in plasma and metastatic tumor tissue was highly corre-

lated (mean r = 0.9) in most patients (P8–P12) (Fig. 4b). However, in 4 patients (P5, P6,

P7, P13), the CNA burden in the plasma was lower than the corresponding tumor tis-

sue (mean r = 0.6), suggesting that some tumor clones in the metastatic sites did not
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Fig. 3 cfDNA sequencing of single-timepoint samples. a Global number of CNAs detected in each of 8 patients. b
Mutation burden quantified from exome data of 8 patients, including all exonic mutations. c Genomic copy number
ratio and segmentation plots of plasma DNA from 4 prostate cancer patients, with annotations of prostate cancer
genes amplified shown in red boxes and lost shown in blue boxes. d Circos plots of CNAs, indels, and point
mutations for the plasma DNA of the 4 patients, with prostate cancer genes annotated in the outer ring
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shed sufficient DNA into the blood for detection (Fig. 4b). Similarly, the total mutation

burden was highly concordant between the matched cfDNA and metastatic tissues

(51–96%), including two patients (P5 and P10) who had a very large number of somatic

mutations (> 200) in both the blood and tissue, consistent with a hypermutator geno-

type [31, 32] (Fig. 4c). In P10, deletions in both MSH2 and MSH6 were detected, while

in P5, an MLH1 deletion was identified, which may have contributed to the high muta-

tion burden in these patients (Additional file 1: Fig. S4a; Additional file 1: Fig. S4d).

Further analysis showed that most CNAs, including amplification in AR and deletion

in PTEN in P8, amplifications in ELF2 and MYC in P9, and amplifications in MYC and

CCND1 in P11, were concordant in the plasma and tumor tissues (Fig. 4d–f). However,

we also found a small number of discordant CNAs that were exclusive to the metastatic

Fig. 4 Concordance of plasma DNA and metastatic tissue samples. a Metastatic organ site location of the
matched tissue samples. b Total number of CNAs identified across the 9 metastatic patients. c Mutation
burden quantified from exome data of 9 patients, including both non-synonymous and synonymous exonic
mutations. d–f Genomic copy number data and exome mutations for 3 patients with matched metastatic
tissue samples, with prostate cancer genes labeled
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tumor tissue (P6) or the cfDNA (P8, P9, P12, and P13). P6 had a focal amplification in

12p21 (3.72 mb, including KRAS) in a bone metastasis site that was not detected in the

cfDNA. In P8, a focal amplification in 19p (1.52 mb) was not detected in the matched

seminal vesicle metastasis, while in P9, a focal amplification in 11p (6.7 mb) was not

detected in the corresponding adrenal gland metastasis. Similarly, P12 had amplifica-

tions in 8q (MYC) and Xp (AR), while P13 had two focal amplifications in Xp (AR and

ELK1), which were not detected in the matched metastatic tissues (Additional file 1:

Fig. S4f).

Analysis of the MAFs showed a linear correlation for most somatic mutations, but

also identified mutations that were exclusive to either the plasma DNA or the meta-

static sites (Fig. 4d–f, Additional file 1: Fig. S4a-S4f). However, most driver mutations

including TP53, AR, ATM, SPOP, FLI1, and OR5A1 were detected in both the plasma

DNA and tissues. Overall, the matched tissue data showed a high concordance in

CNAs and point mutations between cfDNA and metastatic tissues, suggesting that the

ctDNA is highly representative of many of the genomic aberrations detected in tumor

tissues.

Genomic response to therapy in plasma DNA

We next applied PEGASUS to plasma DNA samples collected serially (2–6 timepoints)

from 12 patients, including 9 CRPC patients (P8, P9, P10, P14, P15, P16, P17, P21) and

3 CSPC patients (P6, P19, P20), to study genomic response to therapy (Additional file

1: Table S2). The 3 CSPC patients were treated with ADT and a tyrosine kinase inhibi-

tor (cabozantinib), while the CRPC patients received different chemotherapeutic and

androgen-targeted agents (Fig. 5, Additional file 1: Table S2). From each timepoint,

genomic CNA profiling and exome sequencing (mean depth 125X) were performed on

the cfDNA, as well as matched normal PBMC samples (mean depth 77X) to detect

germline variants.

On average, 126 somatic mutations (Fig. 5a) and 21 CNAs (Fig. 5b) were detected

per patient, consistent with previously reported values in advanced prostate tumors [20,

31, 33, 34]. Integrated analysis revealed that the CNA burden (Fig. 5a) and point

mutation burden (Fig. 5b) did not change substantially between the pre-treatment and

post-treatment timepoints for most CRPC patients. However, in the mid-treatment

timepoints, the CNA burden and mutation burden decreased substantially in several

patients (P15, P16, P21), suggesting a transient genomic response to therapy. Notably,

two CRPC patients (P10, P18) had high levels of somatic mutations (mean 601.5 SNVs),

consistent with a hypermutator genotype [31, 32].

To investigate genomic response to therapy, we compared the plasma CNA profiles

and exome MAF with the PSA levels for each patient (Fig. 5c–h, Additional file 1: Fig.

S5a-S5f). In 2 CSPC patients (P19 and P20), we found increasing numbers of CNAs

and mutations during treatment that corresponded to increasing PSA levels. In P6, who

was hormone-naïve at the time of his first blood collection, an aneuploid profile was

detected at both timepoints and accumulated CNAs at T2 as the disease progressed to

CRPC. A comparable increase in mutation burden over time was found in one CRPC

patient (P18) receiving chemotherapy (Additional file 1: Fig. S5d). In these patients, the

increase in genomic aberrations over time was likely due to increasing tumor purity
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due to increasing tumor volume and/or increasing tumor DNA shedding, rather than

acquisition of new CNAs in response to treatment, since the total number of chromo-

some breakpoints did not change over timepoints.

In the 9 CRPC patients, complex aneuploid rearrangements and high MAF were de-

tected at the baseline plasma sample (prior to treatment) and at the mid- or post-

treatment timepoints. In P9, P10, P14, and P17, the complex aneuploid rearrangements

and MAF were pre-existing before therapy and persisted through all of the timepoints

analyzed, suggesting the tumors were intrinsically resistant to the therapies adminis-

tered (Fig. 5e–f, Additional file 1: Fig. S5c-S5d). In contrast, P15, P16, and P21 showed

transient genomic responses to therapy in the mid-treatment timepoints, in which the

genomic CNA profiles approached a near-diploid state and the MAF decreased

Fig. 5 Genomic response in longitudinal cfDNA samples. a Total number of CNAs detected in longitudinal
timepoints from 12 patients. b Mutation burden quantified from exome data of 12 patients, using all exonic
mutations. c–h Plots of treatment schedules and therapeutic agents against changes in PSA levels (ng/mL)
in 6 patients, with genomic copy number heatmaps and exome MAF plotted below for each timepoint. c,
d CSPC patients with increasing mutations and CNAs. e, f CRPC patients with minor changes in mutations
in CNAs during treatment. g, h CRPC patients with transient genomic response. Colors in mutation line
plots represent different clones inferred by CITUP (the “Methods” section), while blue colors in PSA plots
represent timepoints that were sampled for sequencing analysis
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substantially (Fig. 5g, h, Additional file 1: Fig. S5e). However, these responses were tem-

porary, and the complex CNA profiles and high MAF returned in the later timepoints

which is consistent with the change in PSA values.

In most patients, all of the CNAs were detected at the pre-treatment timepoint and

did not change during treatment, suggesting the CNA had been acquired at earlier

stages of tumor progression, prior to treatment (Fig. 6). This included amplifications in

AR (10/12 patients), MYC (7/12 patients), and NCOA2 (7/12 patients) and deletions in

PTEN (5/12 patients), RB1 (3/12), and BRCA2 (3/12) (Fig. 5, Additional file 1: Fig. S5).

The only exception was in P6 who acquired an AR amplification in response to ADT

(Additional file 1: Fig. S5a).

In contrast to the CNAs, many mutations underwent dynamic changes in MAFs

in response to therapy and the rise or drop of MAFs was fairly consistent with the

rise or drop in PSA levels. In the CSPC patients, the MAFs increased (P19, P20)

or remained stable (P6) during treatment timepoints. In the CRPC patients, the

MAFs persisted with only minor frequency changes in patients with intrinsically re-

sistant disease (e.g., P14, P17) or showed transient decreases in patients that were

responding to therapy (e.g., P15, P16). This included point mutations in known PC

driver genes, including TP53 (P6, P9, P10), AR (P10), SCN11A (P16), NCOA2

(P19), and other genes (Fig. 5, Additional file 1: Fig. S5). We also identified subclo-

nal mutations that emerged during treatment, including mutations in PTEN (P21),

RNF43, PIK3R1 and ZNRF3 (P15), SPOP, RUNX1 and AR (P10), and CTNBB1

(P17). Many other somatic mutations were detected in genes not associated with

PC, and increased or decreased in MAFs during treatment, suggesting a potential

association with sensitivity or response to the therapeutic agents.

Clonal evolution in response to therapy

To infer clonal evolution and identify subclones associated with resistance, we inte-

grated the genomic CNA and exome mutation data from the serially collected plasma

samples of the 12 patients. The confounding effects of tumor purity on CNA and MAF

were normalized, and subclones were inferred across multiple timepoint samples using

PyClone2 [35] and CITUP [36] (the “Methods” section, Additional file 1: Fig. S6). We

identified multiple subclones (range 2–8) in the 12 patients and identified dynamic

changes in clonal frequencies in response to therapy (Fig. 6). In 9 patients, minor sub-

clones (1–21%) were identified that expanded in response to therapy (Fig. 6a), while in

3 patients (P6, P21, and P17), the most prevalent clone retained a similar frequency

during treatment, suggesting that the dominant clone was intrinsically resistant to the

treatment (Fig. 6b).

The clonal frequency data identified rare subclones that dynamically expanded during

therapy and were therefore associated with resistance (Fig. 6a). For example, in P20, a

minor subclone (clone G) with 7–11% clonal frequency in the initial timepoints (T1–

T3) expanded to 75% at the final treatment timepoint (T4). This subclone harbored sig-

nificant damaging mutations (SIFT< 0.05, POLYPHEN > 0.85) in two genes: CAPN2

and MRPL47. In P18, a rare subclone (clone G) expanded from 6% at T3 to 53% at T4

and harbored three significant mutations: SLC18A3, TNIK, and OR2AE1. In P16, a rare

subclone (clone G) expanded from 3 to 4% at the initial timepoints (T1–T2) to 41–57%
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at the final timepoints (T4–T5) and harbored significant mutations in EIF3G and

MRPL2. In total, 9 patients were identified in which a minor subclone expanded during

treatment, suggesting association with resistance.

The resistant subclones harbored a total of 36 mutations with significant SIFT

(< 0.05) and POLYPHEN (> 0.85) functional impact scores (Additional file 1: Table

S3). Notably, this data did not identify any recurrent genes associated with resist-

ance; however, several recurrent gene families were identified, such as the solute

carrier transporters (SLC12A3, SLC38A7, SLC18A3, and SLC26A2) and the mito-

chondrial ribosomal protein genes (MRPL2 and MRPL47). Despite the lack of re-

currence, many of the genes identified in the resistant clones have been previously

implicated in PC progression or therapeutic resistance. For example, NCAPG de-

tected in P15 is part of the condensin complex and has been related to CRPC

pathogenesis [37, 38]. LGALS3 detected in P8 is a member of the galectin proteins

involved in apoptosis, immunity, and adhesion, and was linked to treatment resist-

ance in PC [39, 40]. CAPN2 detected in P20 is an intracellular cysteine protease

and has been shown to promote cell proliferation and invasion in CRPC cell lines

[41]. Furthermore, WWC1, which was identified in P14, was found to be upregu-

lated in antiandrogen-resistant PC cell lines [42].

Fig. 6 Clonal evolution in response to treatment inferred from cfDNA. Plots of clonal lineages and
frequency changes over time and in response to treatment for 12 patients. CNAs and mutations are labeled
in the inferred lineages, as well as significant mutations identified in the resistant clones (blue, asterisk) on
the right-hand side. a Patients in which subclones were identified that expanded in response to therapy. b
Patients in which clonal frequencies were persistent and remained stable during treatment
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We further investigated if the resistance-associated mutations identified in this

study were correlated with poor survival in the TCGA datasets (N = 3811 patients),

and found significant associations with poor survival for CAPN2, CDHR2, LGALS3,

L1CAM, MORC1, EIF3G, OR8A1, TNIK, and SMYD3 (adjusted p value < 0.05,

Benjamini-Hochberg correction) (Additional file 1: Table S3, the “Methods”

section). Collectively, these data suggest that the evolutionary analysis of clonal

dynamics in cfDNA may be useful for delineating intratumor heterogeneity and

identifying resistant clones and mutations associated with therapy response and

resistance in prostate cancer patients.

Discussion
Here, we report the development of an unbiased whole-genome sequencing approach

for cryostored plasma DNA and its application to study clonal diversity and evolution

in response to therapy in PC patients. In contrast to targeted cfDNA methods [21, 43],

PEGASUS was designed to perform unbiased genome-wide profiling of CNAs and mu-

tations, which are necessary to infer evolutionary dynamics over time and identify

clones associated with response to therapy.

In several patients, we compared plasma DNA directly to matched tissue samples

from metastatic organ sites. Our findings suggest that the genomic aberrations

identified in cfDNA are highly representative of the metastatic tissue sites, but also

that the cfDNA also contains mutations that are not present in the matched meta-

static tissues. These additional mutations in the plasma may originate from other

metastatic foci or micrometastases that were not profiled in this study. Based on

this data, we speculate that cfDNA provides a more holistic representation of a pa-

tient’s cancer genomic aberrations, across many of the primary and metastatic

tumor sites, compared to core biopsy samples that reflect a limited spatial area in

a single tissue site.

We further applied PEGASUS to analyze serial plasma samples collected from

PC patients that received different combinations of hormonal and chemotherapy

treatments. Our data showed that complex aneuploid rearrangements remained

highly stable during treatment, with few or no new CNA acquired during this time.

This data suggest that CNAs are likely to have occurred early in tumor evolution

and may be related to intrinsic (rather than acquired) resistance of the tumor cells.

In contrast, the MAF in the cfDNA underwent dynamic changes in response to

treatments. In most patients, clones present in low frequency in the pre-treatment

timepoints expanded during therapy and harbored mutations associated with resist-

ance. Many of the genomic aberrations in the genes identified (N = 9) in the resist-

ance clones were correlated with poor survival in larger cohorts of PC patients in

TCGA. However, most mutations identified in the resistant clones were not recur-

rent across patients, a possible reflection of the heterogeneous nature of the treat-

ments or alternatively of diverse mechanisms of resistance. An exception was

several recurrent mutations in solute carrier transporter genes (SLC) and mito-

chondrial ribosomal protein (MRP) gene families. The SLC genes are of consider-

able interest from a therapeutic standpoint, since they are involved in the uptake

and transport of drugs into cells and therapeutic resistance [44]. Future studies will
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be needed to functionally validate these mutations and understand their potential

role in therapy resistance in PC patients.

Several clinical parameters identified correlated with increased plasma cfDNA

concentrations, including the presence of aneuploid genomes, increased disease

volume, accelerated progression, and poor OS. For cancers progressing in sites that

are difficult to biopsy and/or that are unlikely to yield enough tumor cells to allow

for genomic analysis (e.g., bone), PEGASUS may provide an invaluable profiling

tool to discover genomic biomarkers associated with disease behavior and drug

sensitivity. Global genomic features such mutation burden measured in the cfDNA

may have clinical utility for identifying patients with increased neoantigens that are

ideal for treatment with immune checkpoint inhibitors. Furthermore, the CNA bur-

den or aneuploid aberrations detected in cfDNA may be used to detect tumors

with homologous recombination deficiency (HRD) in patients who may benefit

from agents targeting DNA damage repair defects such as PARP inhibitors [45,

46]. Indeed, our data suggest that the detection of aneuploid copy number profiles

in plasma DNA is an indicator of poor survival in PC patients, as are higher con-

centrations of cfDNA in the blood.

The use of PEGASUS to study genomic aberrations in plasma DNA has a few limita-

tions. Foremost, because the genomic profiling is unbiased and broad by the assay de-

sign, it requires significant sequencing coverage (e.g., 150X) and higher cost, compared

to targeted panels, which also have a higher sensitivity for detection of rare mutations.

Another limitation is that the approach is more suitable for patients with advanced and

metastatic disease and is unlikely to have utility in the detection of early disease, where

the concentration of ctDNA in the plasma is very low. This was an issue in the initial

timepoints analyzed in the CSPC patients, where only diploid genomes were detected

prior to progression to CRPC disease. In such cases, the use of targeted plasma DNA

sequencing panels (e.g., Guardant360, Oncomine) would be more appropriate to in-

crease detection sensitivity.

In closing, we expect that PEGASUS will have a myriad of applications in cancer re-

search, particularly in the discovery and identification of genomic mechanisms of re-

sponse and resistance to anticancer therapy in large patient cohorts, where longitudinal

plasma samples have previously been collected and cryostored for achieving purposes

and long-term clinical outcome data is available. Our approach will be particularly use-

ful in the non-invasive genomic profiling of solid tumor tissues that are challenging to

biopsy (e.g., kidney, brain, lung, bone). We expect that these longitudinal genomic

analyses will reveal basic mechanisms of response and disease resistance and may lead

to new clinical assays that can monitor response to therapeutic agents and guide

treatment decisions in cancer patients.

Conclusions
This study shows that unbiased whole-genome sequencing of plasma DNA from pros-

tate cancer patients can detect mutations and copy number alterations that can be used

to infer clonal dynamics and genome evolution longitudinally in response to treatment.

By computationally integrating this data over multiple timepoints, we use an evolution-

ary approach to identify clones that harbor mutations associated with therapeutic

resistance.
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Methods
Patient clinical data and sample information

All patients in this study were treated for prostate cancer at the University of Texas

MD Anderson Cancer Center (Houston, TX) and provided informed consent per an

Institutional Review Board-approved prospective protocol. Two patient cohorts were

included: (i) newly diagnosed metastatic and hormone-naïve (CSPC) (including patients

participating in clinical trials NCT01409200 or NCT01630590) and (ii) CRPC (includ-

ing patients participating in clinical trial NCT01505868). All blood plasma and tissue

samples were collected before initiation of systemic treatment, while progressing on

therapy by PSA or radiologic criteria, or while on systemic treatment as indicated. Pa-

tients were prospectively followed from the time of inclusion until the last visit or

death. Matched metastatic tissue samples were obtained as FFPE blocks from the

respective patients. Patients were classified as aneuploid or diploid based on the whole-

genome copy number data from the plasma. Patients with worsening performance sta-

tus, pain, or other symptoms related to tumor growth in the 6 weeks prior to the blood

specimen collection, and/or with development of > 2 new metastatic lesions in a single

site or new non-nodal organ site extension in the previous 3 months, were classified as

“accelerated progressors”; all other patients were defined as “protracted progressors.”

Patients were classified as “high disease volume” if they had > 10 focal bone metastases

or equivalent and/or tumor mass > 4 cm at any site, and/or extension to at least three

organ sites with one lesion at least 2 cm in diameter; “low disease volume” if patients

had ≤ 4 bone metastases with or without extension to lymph nodes up to 2 cm in diam-

eter; all others were categorized as “intermediate disease volume” patients. A sample

was classified as aneuploid if the CNA profile contained a large number of segments (>

45) and had a deviation from the median segmentation value (> 0.03) that was not

explained by technical noise. If the sample had an intermediate number of segments

(between 25 and 45), it was considered aneuploid if it had a deviation from the median

segmentation value (> 0.03) and a large segment size or high segmentation value. All

other samples were classified as diploid.

Isolation of plasma DNA from blood plasma and quality control

Blood (approximately 7.5 mL) from the prostate cancer patients was collected in Ficoll

tubes (catalog no. 362753). After gentle inversion, tubes were centrifuged at 1800g for

15 min at room temperature. The plasma layer was separated from the nucleated

PBMC cell layer and centrifuged three times at 1500g for 10 min to remove contamin-

ating cells. The PBMC layer was used to isolate genomic DNA, which was sequenced

separately to identify germline variants (see genomic DNA isolation and quality control

section). In cases where fresh blood samples were not available, frozen plasma stocks

stored at − 80 C were thawed and centrifuged at 16,000g three times to remove all

cryoprecipitates. Low molecular weight plasma DNA was purified by size selection (<

1000 bp) from high molecular weight DNA using the QIAamp® Circulating Nucleic

Acid Kit (QIAGEN Cat. no. 55114) according to the manufacturer’s instructions. Final

carrier RNA concentration of 1.3 ng/μL was used to improve yields. For quality control,

plasma DNA fragment size and concentrations were measured using high sensitivity

(HS) Bioanalyzer chips or TapeStation HS D1000 tape cartridges. The plasma DNA
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concentration and size range that was measured for QC was gated on fragments within

the 100–700-bp range to exclude contaminating high molecular weight genomic DNA

when present.

DNA isolation and sequencing of tissue samples

PBMC layer or plasma pellets were utilized to extract the reference genomic DNA

using QIAGEN Kits (Cat. no. 51106 and 56304, respectively) according to the manufac-

turer’s instructions. FFPE DNA from metastatic tissues was isolated using the QIAamp

DNA FFPE Tissue Kit (QIAGEN Cat. no. 56404) following the manufacturer’s

instructions.

The isolated DNA quality was assayed through agarose gel electrophoresis or TapeS-

tation genomic DNA tapes to determine size and concentration. The resulting gDNA

was used to construct low-input DNA sequencing libraries with the Hyper Prep kit

(Kapa Biosciences cat. no. KK8504) according to the manufacturer’s instructions. Gen-

omic DNA from PBMCs was sonicated to 200 bp (Covaris Peak power 175, Duty Factor

10%, cycles/burst 200, time 180 s, temp 4–7 °C) prior to end repair and a-tailing steps.

Post-ligation cleanup was performed with 0.8X AMPure XP beads. PCR amplification

of plasma DNA samples was performed at 11 PCR cycles. Final sequencing libraries

were split into two pools for either copy number sparse WGS or exome capture. The

copy number libraries were sequenced at 36 or 76 cycles single-end on the Illumina

HiSeq4000 system. The exome libraries were further captured using the SeqCap EZ Ex-

ome V2 kit following the manufacturer’s instructions (Nimblegen-Roche Cat. no.

05860482001). The final exome libraries were sequenced at 76 or 100 paired-end reads

on the Illumina HiSeq4000 system.

Plasma DNA library construction and exome sequencing

The plasma DNA that passed QC by having ≥ 2 ng total DNA and size distributions <

1000 bp were used to construct low-input DNA sequencing libraries with the Hyper

Prep kit (Kapa Biosciences cat. no. KK8504) according to the manufacturer’s instruc-

tions. Post-ligation cleanup was performed with 0.8X AMPure XP beads. PCR amplifi-

cation of plasma DNA samples was performed at 11 PCR cycles. Final sequencing

libraries were split into two pools for either copy number sparse WGS or exome cap-

ture. The copy number libraries were sequenced directly at 36 or 76 cycles single-end

on the Illumina HiSeq 4000 system. The exome libraries were captured using the Seq-

Cap EZ Exome V2 kit following the manufacturer’s instructions (Nimblegen-Roche

Cat. no. 05860482001). The final exome libraries were sequenced at 76 or 100 paired-

end reads on the Illumina HiSeq4000 system.

Analysis of genomic copy number data using circular binary segmentation (CBS) from

plasma DNA and tissues

Reads sequenced were demultiplexed using the “bcltofastq” software (Illumina) and

split into individual FASTQ files, allowing a 1 basepair mismatch for barcode edit dis-

tance. Copy number profiles were detected from read depth counting of the sequencing

data using the “variable binning” pipeline as previously described [47]. This pipeline in-

volved mapping FASTQ files to the human genome assembly NCBI Build 37 (hg19/
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NCBI37) using Bowtie2 (2.1.0) alignment software [48]. The aligned reads in SAM files

were converted to BAM files and sorted using SAMtools (0.1.16) [49]. PCR duplicates

were marked and removed using Picard in GATK [50]. The reads were counted using

variable bin sizes at an average genomic resolution of 220 kb. Unique normalized read

counts were segmented using the CBS [51] method from R Bioconductor “DNAcopy”

package followed by MergeLevels [52] to join adjacent segments with non-significant

differences in segmented ratios. The parameters used for CBS segmentation were

alpha = 0.0001 and undo.prune = 0.05. Default parameters were used for MergeLevels,

which removed erroneous chromosome breakpoints. Finally, we used ggplot packages

in R to plot the segmentation and log2(ratio) values and annotate prostate cancer genes

in regions of amplification and deletion. The prostate cancer gene list of 100 genes was

compiled from two published papers [33, 53].

Calculation of CNA lengths and correlation between plasma and metastatic samples

The neutral copy number state was defined as the median segmentation ratio of all

genomic bins. Any group of consecutive bins with the same segmentation ratio not

equal to the copy neutral state within a chromosome was defined as a CNA. The CNA

length was defined as a difference between the bin start position and bin end position.

Every CNA contained a list of bins with the same segmentation ratio values. These seg-

mentation values from the plasma and metastatic samples were used to calculate the

correlation values using the Pearson correlation coefficient.

Detection of mutations in plasma exome sequencing data

The plasma DNA data from each patient was aligned to the human genome reference

assembly (hg19) using Bowtie2 (2.1.0) [48] and converted into a binary format (BAM)

with Samtools [49]. The SAM file was sorted using samtools, and PCR duplicates were

marked using Picard tools [54]. Genome Analysis Toolkit [50] (GATK)’s BaseRecalibra-

tor and PrintReads were used to obtain BAM files that have been recalibrated for base

quality scores. Somatic variants were identified using the plasma and matched PBMC

samples using GATK’s MuTect2 [55] to generate a variant call format (VCF) file. The

filtering functionality of the MuTect2 VCF file was enabled using GATK’s FilterMu-

tectCalls, and the somatic variants classified as “PASS” (high confidence) and “germline

risk” (borderline somatic) were retained. The filtered somatic variants were split into

single nucleotide variants (SNVs) and indels using GATK’s SelectVariants function.

The chromosome number and position of the variants were extracted, and samtools

was used to obtain the read counts across all the variant sites. Variants with less than

0.07 variant allele frequency in the plasma sample were removed from analysis. Add-

itionally, variants were removed from analysis if they had more than 2 variant reads in

the PBMC samples sequenced at less than 100X depth or more than 0.01 variant allele

frequency for samples sequenced at greater than 100X depth. These read depth filters

remove the mutect2 “germline risk” calls that are like to be germline mutations and are

not somatic mutations. The resulting data was annotated using ANNOVAR [56] by in-

tegrating multiple databases, including dbSNP, COSMIC [57], and the Cancer Gene

Census [58]. To identify mutations and copy number variations (CNV) in genes of

interest, an exon coordinate file was intersected with BedTools [59]. The functional
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significance of each SNV was predicted using SIFT [60] and POLYPHEN [61]. Muta-

tions with < 0.05 SIFT scores and > 0.85 POLYPHEN scores were considered significant

for impacting gene function.

Identification of concordant mutations in matched metastases

The total number of CNAs per sample was estimated above a baseline threshold for

amplifications and deletions in each patient. The CNA correlation between the two

sample sources was calculated using the Pearson correlation coefficient of the segmen-

tation means, while the mutational concordance was calculated as the percentage of

the ratio between the concordant mutations and the total number of mutations in the

plasma and tissue sample combined.

Survival analysis by plasma DNA concentration

We utilized survival data from 140 baseline CRPC plasma samples who were part of

trial NCT01505868 for survival analysis. The samples were categorized into 2 groups

based on total cfDNA (> 2 ng or < 2 ng) to prepare libraries. The overall and

progression-free survival months and the group information were used for survival ana-

lysis using the Kaplan-Meier estimator using the “survminer” library in R (3.5.0). The p

value of the log-rank test was calculated, and the two groups were considered signifi-

cantly different if the p value was p < 0.05.

Estimating clonal frequencies from mutation data

Non-synonymous and synonymous somatic mutations were identified in the plasma

samples for 12 PC patients with 2 to 6 longitudinal samples. The plasma DNA genomic

copy number profiles were estimated from the paired-end exome sequencing depth

using the R package “ExomeCNV” [62]. For ExomeCNV analysis, the minimum sensi-

tivity and specificity was set to 0.9999 while it was optimized using the AUC criteria.

Tumor purity was estimated with THetA2 [63] using the tumor and normal GATK

recalibrated bam files while the minimum fraction of the genome with a potential copy

number event for the sample was set to 0. The variant allele frequencies from each

point mutation were normalized with both exome-derived copy number profiles and

estimated tumor purities using PyClone2 (v0.12.9) [35]. The copy number and purity-

adjusted clonal frequencies were then used as input for CITUP [36] for the joint calcu-

lation and estimation of clonal subpopulations using the optimal trees across the longi-

tudinal timepoints from same patient. Finally, the clonal lineages were plotted with

“timescape” [64] using the CITUP tree structures and the clonal frequencies across the

longitudinal timepoints for individual PC patients.

Survival analysis of resistant genes from TCGA

Selected prostate cancer studies [65–79] including the prostate cancer (MSK, 2019),

prostate adenocarcinoma (TCGA, provisional), and The Metastatic Prostate Cancer

Project that were available on cBioPortal (www.cbioportal.org) were used for survival

analysis to determine if genomic aberrations in significant genes associated with resist-

ance were associated with poor patient survival in the expanded patient cohorts. All the

genes reported in Additional file 1: Table S3 are tested, and p values from log-rank test
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were calculated. The p values from the log-rank test were then adjusted using the

Benjamini-Hochberg procedure.

Cox regression model for OS and PFS using available clinical and genomic parameters

Using data from 70 prostate cancer patients with available clinical data across all clinical

and genomic parameters, we performed a Cox regression model using the “survival” R

package. We used the coxph function by utilizing one or all the factors as predictors and

the survival months as the outcome variable for the univariate or multivariate analysis.

Any predictor that had a p value < 0.05 was considered statistically significant. For the

discrete clinical and genomic parameters, total cfDNA < 2 ng, diploid cfDNA profiles, low

disease volume, protracted rate of progression, and prostate disease were used as a

reference for the Cox regression models.
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