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A B S T R A C T   

Lung cancer is the leading cause of cancer-related mortality worldwide. Although the PI3K/Akt/mTOR signaling 
pathway has recently been considered as one of the most altered molecular pathways in this malignancy, few 
articles reviewed the task. In this review, we aim to summarize the original data obtained from international 
research laboratories on the oncogenic alterations in each component of the PI3K/Akt/mTOR pathway in lung 
cancer. This review also responds to questions on how aberrant activation in this axis contributes to uncontrolled 
growth, drug resistance, sustained angiogenesis, as well as tissue invasion and metastatic spread. Besides, we 
provide a special focus on pharmacologic inhibitors of the PI3K/Akt/mTOR axis, either as monotherapy or in a 
combined-modal strategy, in the context of lung cancer. Despite promising outcomes achieved by using these 
agents, however, the presence of drug resistance as well as treatment-related adverse events is the other side of 
the coin. The last section allocates a general overview of the challenges associated with the inhibitors of the PI3K 
pathway in lung cancer patients. Finally, we comment on the future research aspects, especially in which nano- 
based drug delivery strategies might increase the efficacy of the therapy in this malignancy.   

Introduction 

Lung cancer with an 11.6% incidence rate of total cancer cases and 
an 18.4% death rate of total cancer-related mortality is currently the 
most common and the deadliest malignancy in the whole population of 
men and women [2]. Lung cancer could be categorized into two main 
subtypes: non-small cell lung cancer (NSCLC) and small cell lung cancer 
(SCLC) which are different due to histology, prevalence, biological 
behavior, prognosis, and response to treatment [20]. NSCLC is the 
predominant type and accounts for 85% of total cases. The NSCLC per se 
consists of several subtypes including large cell carcinoma (LCC), 
squamous cell carcinoma (SCC), adenocarcinoma (ADC), and other 
less-differentiated variants [39]. The most prevalent type of NSCLC is 
ADC with an approximately 40% rate [148]; also, SCC and LCC have 
25–30% and 5–10% incidence rates, respectively [21]. Lung cancer is 
profoundly affected by smoking which is the most important risk factor 
related to this malignancy so that smoking cessation is considered the 
most valuable arm to struggle with this malignancy. There are also other 

risk factors such as exposure to tobacco smoke, occupational carcino-
gens, radon, and pre-existing non-malignant lung disease [8]. 

Apart from environmental parameters, the significance of molecular 
abnormalities in the development of lung cancer should not be under-
estimated. No cancer can develop without the presence of molecular 
abnormalities, and lung cancer is no exception. Thus far, several 
signaling axes have been accused of being involved in the pathogenesis 
of this cancer; however, it seems this is the overlap of the oncogenic 
pathways that contributes to lung cancer fatality. The first evidence of 
the tight interplay between signaling networks arose from the failure of 
RAS-targeted therapies. Although RAS proteins are indeed one of the 
most important molecules in the pathogenesis of lung cancer, their 
suppression did not provide outstanding outcomes. With this verdict, 
investigations went on, and the new wave of studies shed light on the 
importance of the PI3K/Akt signaling pathway not only in the survival of 
lung cancer cells but also as an intersection for different oncogenic axes 
[22,35]. 

The therapeutic strategies for the treatment of lung cancers are 
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categorized into 4 main groups: surgical resection, radiotherapy, 
chemotherapy, and immunotherapy [21]. However, the major problem 
with lung cancer is that a very small percentage of patients show 
symptoms before the disease progresses too much [172]. Thus, thera-
peutic approaches demonstrate insufficient efficacy to eliminate the 
disease. At this stage, treatments mainly focus on controlling the disease 
and maintaining the quality of life [114]. Nevertheless, targeted therapy 
has shown promising outcomes [47] and could be the candle in the dark 
atmosphere of lung cancer treatment. Regarding the oncogenic roles of 
the PI3K axis, evaluating the inhibitors targeting the components of this 
pathway in order to achieve favorable responses was of interest in the 
recent decade. Accordingly, several potential inhibitors of the 
PI3K/Akt/mTOR signaling pathway have been developed in the context 
of NSCLC [37]. Notwithstanding the promising outcomes of PI3K axis 
inhibitors, the application of these agents in lung cancer is commonly 
associated with some challenges such as drug resistance [15] and the 
presence of toxicities [27] that should be considered to be managed to 
increase the efficacy of the treatments in lung cancer cases. This review 
aims to provide a general overview of alterations in the PI3K/Akt/mTOR 
pathway and discuss the efficacy and challenges related to the admin-
istration of relevant inhibitors in lung cancer cases. 

A glance at the PI3K/Akt/mTOR pathway 

PI3Ks are lipid kinases that are divided into three classes based on 
their structure and function [88]. Class I that is mainly involved in 
human tumors [33,150] is a heterodimer consisting of one of the p85 
regulating subunits plus one of the p110 catalytic subunits, and is 
divided into two subsets: Class IA and IB [66,83]. All p85 regulatory 
subunits (p85α, p85β, p55α, p55γ, p50α) are encoded by the PIKR1 but 
the p110 catalytic subunits (p110α, p110β, p110δ) are encoded by the 
PIK3CA, PIK3B, and PIK3, respectively [96]. Class IA PI3Ks are typically 
activated by RTKs such as EGFR, IGF1-R, and HER2/neu [48]. Class IB 
consists of one of two regulatory subunits p101 or p87, and isoform 
p110γ encoded by PIK3CG [96]. The signaling is started by the inter-
action of a ligand with the tyrosine receptor kinases (RTKs) which either 
communicate directly with a regulatory subunit of PI3K (p85) through 
binding to phosphorylated residues of RTK or indirectly by adapter 
proteins like the protein-1 insulin receptor substrate [34]. This inter-
action blocks the p85 inhibitory effect on the p110 catalytic subunit, 
thereby activating PI3K [173]. Activated kinase binds to the plasma 
membrane and plays a catalytic role in the conversion of phosphatidy-
linositol (4,5)–bisphosphate (PIP2) to phosphatidylinositol (3,4,5)–tri-
sphosphate (PIP3). Then, PIP3 activates Akt either directly via 
phosphorylation or indirectly by adsorption of 
phosphoinositide-dependent protein kinase (PDK1). Besides, mTORC2 
has many known functions in human cells that let it regulate Akt activity 
by residual phosphorylation of serine 473 in C-terminal hydrophobic 
residue, which together with PDK1-mediated activation ring phos-
phorylation results in the complete activation of Akt [42]. The activated 
Akt induces cell survival and cell growth and by various mechanisms 
[67]. It inhibits the pro-apoptotic Bcl-2 protein family members such as 
BCL2 associated agonist of cell death (BAD) and BCL-2-like protein 4 
(BAX) [119], BAD, MDM2 proto-oncogene, and also NF-κB transcription 
factor [17], leading to increased expression of cell survival and 
anti-apoptotic signals [157]. The phosphorylated Akt (pAkt) is able to 
activate mTORC1, one of the main downstream components of signaling 
leading to cell growth, metabolism, and protein synthesis [56]. 

The PTEN gene is responsible for translating an enzyme found in 
almost every tissue in the body. With lipid phosphatase activity, PTEN 
converts PIP3 to PIP2 and prevents the regulation of growth factor signal 
that is modulated by PI3K/Akt [57,61]. This enzyme acts as a tumor 
suppressor [76] and blocks the signaling of PI3K by inhibiting 
PIP3-dependent processes such as membrane uptake and Akt activation, 
thereby preventing cell survival, growth, and proliferation [140]. 
Therefore, PTEN plays a very important role in inhibiting carcinogenic 

transformation [146]. Also, a structural role for PTEN is seen in the 
maintenance of apical-basal polarity in polar epithelial cells by main-
taining an apical pool isolated from PIP2 that cleaves proteins that bind 
PIP2 to the apical membrane [61,134]. Loss of this function may 
contribute to epithelial-mesenchymal transmission (EMT) and the pro-
gression of epithelial cancers. Lung cancer is generally associated with 
the aberrant expression in the PI3K pathway; so, in the following sec-
tion, we aim to take a look at the genetic alterations of this pathway. 
Fig. 1 is depicted to provide a better understanding of the PI3K axis. 

Oncogenic alterations of the PI3K/Akt/mTOR pathway in lung 
cancer 

One of the most notable mutations in NSCLC is the mutation of RTKs 
which are the starting point for the activation of the PI3K/Akt/mTOR 
axis [9]. The other one includes mutations in the KRAS that can activate 
this pathway in parallel [64]. The importance of the PI3K/Akt /mTOR 
pathway also extends to its role in tumors with other known activating 
mutations, such as EGFR. Studies show that the Akt/mTOR pathway is 
fundamentally activated in 67% of patients with EGFR mutations [75]. 
Besides, KRAS mutations are usually associated with LKB1 mutations 
and play an important role in RAS/RAF/MEK signaling in controlling 
mTOR activation [97]. Accordingly, it has been reported that the 
treatment of NSCLC cells with MEK and mTOR inhibitors could signifi-
cantly decrease cancer cell proliferation [78]. Apart from alterations in 
the upstream molecules of the PI3K/Akt axis that is extensively 
reviewed previously [9,97,142], oncogenic alterations in each compo-
nent of this axis may contribute to lung cancer development and pro-
gression. A summary of clinical studies in the context of 
PI3K/Akt/mTOR alterations is provided in Table 1. 

PIK3CA 

Mutations or increases in the number of PIK3CA (encoding PI3K 
major catalytic subunit) copies have been observed in patients with lung 
cancer. It has been shown that an increased number of copies is more 
common in men, smokers, and patients with SCC, as well as in the early 
stages of the disease [63]. The mutations in PIK3CA have been also 
found in advanced NSCLC cases which is responsible for a lower survival 
rate [74]. Indeed, according to a systematic review and meta-analysis 
study, the mutated PIK3CA gene is associated with poor overall sur-
vival (OS) and progression-free survival (PFS) of NSCLC cases. Also, the 
mutations in PIK3CA have an association with lymph node metastasis in 
NSCLC cases [159]. It was shown that PIK3CA mutation has occurred in 
4.1% of patients with advanced NSCLC and had a significant correlation 
with shorter median OS and time to progression. Notably, the authors 
demonstrated that PIK3CA mutation could be considered an indepen-
dent prognostic factor for worse OS in NSCLC patients [87,158]. Simi-
larly, the prevalence of elevated PIK3CA copy numbers was determined 
29.2% in NSCLC patients [147]. In a study of SCC, PIK3CA mutation was 
determined in 11.4% of cases, particularly in exon 20. Controversially, 
the authors demonstrated that the mutations in PIK3CA were associated 
with a good prognosis and longer OS [98]. However, the majority of 
studies, as we have reviewed, claimed that PIK3CA mutations have 
notable roles in the poor prognosis of lung cancer and reduction of 
survival. 

PIK3R1 

PIK3R1 is another component of the PI3K pathway that encodes the 
regulatory subunit (p85). Its mutations are less common than the 
PIK3CA mutation or the loss of PTEN function in lung cancer [145]. 
Many PIK3R1 mutations are curtailment or deletion in the SH-2 (iSH2) 
of the p85 domain that interacts with the C2 domain of p110. This 
interaction may be disrupted by mutations in p85 that can prevent the 
p85-dependent inhibition of p110 [54]. The alteration of PIK3R1 was 
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observed in H358 NSCLC cell lines that harbor a KRAS mutation [111]. 
Similarly, it was shown that PIK3R1 was significantly down-regulated in 
the tissues of lung ADC cases compared with healthy cases in a Chinese 
population [164]. 

Akt 

The Akt genes could be altered in lung cancers either in the form of 
activating mutations or elevated expression of Akt isoforms [108]. The 
overactivated Akt is often associated with lymph node metastasis and 
advanced stages of lung cancer [124,143]. With this regard, survival is 
poor in NCSLC patients with an overactivated Akt profile [79,143]. It 
was exhibited that 51% of patients with NSCLC had overactivated Akt 
according to immunohistochemistry analysis [4]. Notably, Akt over-
activation in human NSCLC cells might be attributed to induction of 
activating mutations in EGFR, PIK3CA, and also loss of PTEN [43]. Apart 
from these alterations, the mutations of Akt1 were observed in a study of 
NSCLC in which 1 specimen showed E17K mutation out of a total of 219 
samples [25]. Similarly, another study of resected NSCLC specimen 
showed that 2 out of 105 SCC samples had E17K mutation of Akt1 [91]; 
highlighting the fact that the overactivation of Akt in lung cancer cases is 
mainly due to alterations in the upstream or regulatory components of 
the PI3K axis rather than intrinsic aberrancies. 

mTOR 

The mammalian target of rapamycin (mTOR) is a fully evolutionary 
serine/threonine kinase belonging to the PI3K kinase family [144]. The 
PI3K/Akt and the mTOR axes are interconnected in such a way that they 
can be considered as a single pathway. The onset and development of 
tumors are significantly associated with the overactivity of this kinase. 
Accordingly, the modulation of mTOR activity is seen in several types of 
cancers including lung cancer [167]. It was shown that mTOR activity is 
regulated by increased PI3K or Akt activity in lung cancer [97]. Besides, 

overexpression of the downstream of mTOR such as 4E-BP1, S6K, and 
eIF4E is associated with a poor prognosis in lung cancer [174]. Changes 
in cancer cell metabolism and intracellular nutrient levels can also 
contribute to the sustained activation of mTORC1 [30]. Conversely, 
those changes are regulated by mTOR signaling. Increased mTOR ac-
tivity affects protein synthesis and increases cell proliferation [102, 
130]. It also indirectly supports tumor growth through its 
anti-autophagic activity [81] and increasing the translation of HIF1A 
causes angiogenesis and oxygenation [26]. 

PTEN 

As mentioned, PTEN is a natural inhibitor for the PI3K/Akt pathway 
and limits the ability of Akt to bind to membranes by dephosphorylation 
of PIP3 to PIP2, thereby reducing its activity [86]. The most common 
mutation in NSCLC is the reduction or elimination of PTEN expression 
[1]. About 45% of NSCLC cases show loss of PTEN and 29% a decrease in 
protein expression [73]. In lung cancer, different mechanisms are 
involved in the regulation of this phosphatase. These include genetic 
mechanisms that are responsible for the dysfunction of PTEN peptides, 
epigenetic mechanisms at the transcriptional level and also at the 
post-transcriptional level [38]. In the oncogenesis of lung cancer, there 
is evidence of PTEN regulation of apical junction complexes. Smoking 
(possibly due to a specific immune-mediated mechanism) may reduce 
the regulation of PTEN expression and thus increase the activation of 
Akt/mTOR signaling in the respiratory tract epithelium of smokers 
compared with non-smokers [129,162]. 

Taken together, all components of the PI3K/Akt/mTOR axis, from 
the beginning to the end, could undergo some kinds of alterations in 
lung cancer. Regarding the inevitable roles of this axis in several cellular 
events such as differentiation, proliferation, growth, survival, intracel-
lular trafficking, and motility, those alterations can consequently induce 
oncogenic functions and result in lung cancer development. Among 
PIK3CA, PIK3R1, Akt, mTOR, and PTEN which underwent alterations, 

Fig. 1. An overview of the PI3K/Akt/mTOR signaling pathway. The PI3K axis is initiated by the interaction of a ligand with an RTK that results in the separation of 
p110α (the catalytic subunit) from p85 (the regulatory subunit). An alternative way is the activation of a GPCR. After the initiation step, p110α catalyzes the 
conversion of PIP2 to PIP3. Upon PIP3 generation, this molecule per se could phosphorylate Akt directly and/or recruit the PDK1. Then, PDK1 and mTORC1 mediate 
the phosphorylation and activation of Akt together. By activating mTOR and consequently S6K, Akt could stimulate cell growth. This kinase inhibits FOXO1 and 
activates NF-κB which therefore suppresses the apoptosis process. Moreover, Akt could inhibit the function of p53 indirectly via activating MDM2. On the other hand, 
PTEN suppresses the PIP3-dependent processes and consequently restricts cell survival, growth, and proliferation. 
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loss of PTEN is the main frequent alteration in lung cancers; further 
highlighting the therapeutic strategies to modulate PTEN deficiency in 
lung cancer patients. 

Cell processes regulated by the PI3K/Akt/mTOR pathway in lung 
cancer 

The PI3K/Akt/mTOR pathway is strongly involved in both 

tumorigenesis and disease progression in NSCLC [80]. A variety of 
cellular processes such as survival, proliferation, migration, metastasis, 
angiogenesis, cellular metabolism, cellular senescence, genomic integ-
rity, and stem cell self-renewal are regulated by the PI3K/Akt/mTOR 
pathway in lung cancer [84]. As a result, any change in the components 
of this axis may contribute to lung cancer progression and promotes 
tumor metastasis. A summary of PI3K/Akt/mTOR oncogenic roles is 
described in Fig. 2. 

Table 1 
A summary of PI3K/Akt/mTOR pathway alteration in the clinical studies.  

Gene Alteration Frequency 
(%) 

St. P. No. Female 
(%) 

Age* Stage Country Outcome Ref. 

PIK3CA Mutation 10 EGFR 
mutated 
lung cancer 

20 NA NA Stage IV or 
recurrent 

US The appearance of concurrent mutations 
such as PIK3CA mutations is common in 
EGFR mutated lung cancer which could 
affect the clinical outcomes. 

[151] 

PIK3CA Mutation 9 NSCLC 89 41.6 59.4** I-IV China Patients with concomitant mutations such 
as PIK3CA mutations showed a higher rate 
of bone metastasis. 

[176] 

PIK3CA Mutation 3.9 of SCC, 
2.7 of ADC 

NSCLC 1117 42.1 NA I-IV China Patients with PIK3CA mutations exhibited 
a significantly worse survival. 

[158] 

PIK3CA Mutation 9 of SCC NSCLC 112 38.3 63.9** NA US The identification of biomarkers such as 
PIK3CA alterations may be required for 
higher treatment effectiveness. 

[137] 

PIK3CA Mutation 4.1 NSCLC 166 45.2 60.2 III and IV Italy PIK3CA mutation had a significant 
correlation with a shorter median time to 
progression and a worse OS. 

[87] 

PIK3CA Mutation 4.2 NSCLC 
(SCC) 

95 35 68 I-IV US Low frequency of PIK3CA mutations and a 
low association with tumor size, grade of 
differentiation, and the stage were 
observed in SCC NSCLC patients. 

[117] 

PIK3CA Overexpression 37 of SCC, 5 
of ADC 

NSCLC 112 38.3 63.9** NA US The identification of biomarkers such as 
PIK3CA alterations may be required for 
higher treatment effectiveness. 

[137] 

PIK3CA Overexpression NA NSCLC 107 NA 64 III-IV Italy Overactivation of PI3K pathway is 
associated with high grade and more 
advanced disease. 

[124] 

PIK3CA Increased copy 
number 

29.2 NSCLC 445 17.2 NA I-IV Italy Increased copy number of PIK3CA, SOX2, 
FGFR1, and BRF2 is likely to occur 
concurrently. 

[147] 

PIK3CA Mutation 11.4 NSCLC 
(SCC) 

308 33.1 NA I-III Norway PIK3CA mutations were associated with a 
significantly longer overall survival and 
time to relapse. 

[98] 

AKT1 Overexpression 18 NSCLC 107 NA 64 III-IV Italy Overactivation of AKT pathway in NSCLC 
patients is associated with high grade and 
more advanced disease. 

[124] 

AKT1 Mutation 1.1 NSCLC 
(SCC) 

95 35 68 I-IV US Low frequency of AKT1 mutations and a 
low association with tumor size, grade of 
differentiation, and the stage were 
observed in SCC NSCLC patients 

[117] 

AKT1 Mutation 0.47 NSCLC 209 NA NA NA Australia Akt1 E17K mutation had a very low 
frequency in NSCLC; however, it could be 
restricted to SCC with a higher incidence 
rate. 

[25] 

AKT1 Mutation 1.9 NSCLC 105 NA 68** NA Italy Despite the low frequency of AKT1 
mutations in lung cancer the oncogenic 
properties of E17K-AKT1 may contribute to 
the development of a subset of SCC 

[91] 

AKT2 Overexpression 22 NSCLC 107 NA 64 III-IV Italy Overactivation of AKT pathway in NSCLC 
patients is associated with high grade and 
more advanced disease. 

[124] 

PTEN Mutation 5 EGFR 
mutated 
lung cancer 

20 NA NA Stage IV or 
recurrent 

US The appearance of concurrent mutations 
such as PTEN mutations is common in 
EGFR mutated lung cancer which could 
affect the clinical outcomes. 

[151] 

PTEN Loss of 
expression 

39 NSCLC 107 NA 64 III-IV Italy Loss of PTEN was more commonly reported 
in SCC than in ADC patients. 

[124] 

PTEN Loss of 
expression 

44 NSCLC 117 42.7 70 I-IV US The loss of PTEN was a frequent event in 
NSCLC cases and thus, this alteration can 
be a favorable prognostic marker. 

[93] 

PTEN Loss of 
expression 

21 of SCC, 4 
of ADC 

NSCLC 112 38.3 63.9** NA US The identification of biomarkers such as 
loss of PTEN alterations may be required 
for higher treatment effectiveness. 

[137] 

NSCLC: Non-small cell lung cancer; SCC: Squamous cell carcinoma; ADC: Adenocarcinoma; St. P.: Study population; No.: Number of patients; NA: Not available; *: 
Median (year); **: Mean (year). 
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Proliferation, apoptosis, and acquisition of chemoresistant phenotype 

It was demonstrated that Akt is involved in apoptosis, proliferation, 
transcription, and migration. This kinase has a pivotal role in disrupting 
the inhibition process of cell cycle progression by hindering FOXO1, 

FOXO3, and FOXO4 which could promote the transition from the G1 
phase to S [12]. A lung cancer study showed that cisplatin remarkably 
elevated the mRNA and protein levels of FOXO3a and moderately the 
mRNA of FOXO1 in A549 and H460 cell lines. Besides, they showed that 
Bim, a target of FOXO3a, was up-regulated after cisplatin treatment. 

Fig. 2. The role of PI3K/Akt/mTOR signaling pathway in lung cancer cells. (A) The blockade of FOXO1/3/4 by Akt could lead to the accelerated transition from the 
G1 phase to S and the inhibition of apoptosis. Also, the inhibition of Akt not only can induce the up-regulation of BAX and down-regulation of Bcl-2/xL but also lead 
to the lower phosphorylation of GSK3β and the regulation of the lung cancer cell cycle. The loss of PTEN and PIK3CA mutations are the most important alteration 
related to drug resistance, particularly anti-EGFR treatments in lung cancer cells. Indeed, these alterations could lead to Akt overactivation and consequently, the 
lung tumor cells become immortal. B) The loss of PTEN up-regulates CXCR4/CXCL12 and CXCR1/CXCL8 and promotes the metastasis process in lung tumor cells. 
Also, the loss of PTEN and the AKT/GSK3β/β-catenin activation in lung cancer cells can reduce E-cadherin and elevate N-cadherin and vimentin expression which 
account for the induction of EMT. The blockade of mTORC1/2 via treatments could diminish the activation of S6K, RhoA, and Rac1 which reduces the ability of 
migration and invasion of lung tumor cells. The stimulation of Akt could up-regulate HIF-1α and consequently VEGF which ultimately cause the induction of the 
angiogenesis process. 
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Thus, they showed that apoptosis could be induced through blocking 
PI3K and Akt and up-regulating FOXOs [82]. It was shown that Osthole, 
an anti-proliferative agent, induced apoptosis in A549 human lung ADC 
cell lines which are derived by down-regulation of Akt signaling [169]. 
Similarly, the effects of Bufalin, a toxic steroid, were evaluated in A549 
human lung ADC cell lines. They demonstrated that Bufalin is able to 
modulate the apoptotic proteins by inhibiting the activation of Akt. This 
phenomenon consequently led to the up-regulation of BAX and 
down-regulation of Bcl-2 [178]. It was shown in a lung cancer cell line 
study that the Akt phosphorylation level was dramatically reduced 
following resveratrol treatment which also decreased the phosphoryla-
tion level of GSK3β expression level and increase lung cancer cell 
apoptosis [77]. The effect of Akt on the apoptosis process in lung tumors 
was evaluated in a study of human lung cancer cell lines in which a 
miR-21 inhibitor promoted apoptosis via blocking the expression of Akt. 
This treatment resulted in a reduction of Bcl-2 expression and an in-
crease in BAX expression [177]. In lung cancer cell lines (A549 and 
H358) PTEN was shown as a key molecule in the induction of miR-92a 
oncogenic roles. The inhibition of miR-92a resulted in an elevation of 
cleaved-caspase-3, caspase-PARP, and BAX as pro-apoptotic proteins 
[85]. 

It has been indicated that both PIK3CA mutations and PTEN loss play 
important roles in conferring resistance to anti-EGFR therapies in lung 
cancers [105]. In a study of lung cancer cell lines, the presence of 
PIK3CA mutation was the main cause of gefitinib resistance [29]. 
Likewise, evaluating the patients with lung cancer who had resistance to 
EGFR-inhibition demonstrated that 5% of those patients had PIK3CA 
mutations [127]. Besides, it was shown that PTEN loss induces resis-
tance to erlotinib (an anti-EGFR agent) in EGFR-mutant lung cancer 
[136]. miR-1269b in lung cancer could inhibit PTEN and induce resis-
tance to cisplatin [171]. In a study of gefitinib-resistant lung cancer cell 
line (PC-9), the loss of PTEN was associated with elevated Akt phos-
phorylation [170]. Akt can activate NF-κB and adjust the expression of 
Akt1 leading to drug resistance of NSCLC cells to chemotherapeutic 
agents [65]. 

Metastasis, epithelial to mesenchymal transition (EMT), and angiogenesis 

PTEN might promote the invasion of tumors by regulating the tumor 
microenvironment and affecting the remodeling process of the extra-
cellular matrix [18]. Loss of PTEN leads to ETS2 activation which is the 
trigger of matrix metalloproteinase 9 (MMP9) and CCL3 activation that 
consequently affects extracellular matrix remodeling and induces 
metastasis [11,154]. Lung tumors are not excluded and the alterations in 
PTEN could aggravate the invasion properties of cancer [106]. It was 
shown that TOPK, a MAPK-like serine/threonine kinase, facilitates the 
metastasis of lung cancer in a PTEN-dependent manner by inhibiting 
PTEN and over-activating Akt [131]. A study evaluated the PTNE 
knockout in lung cancer cell lines and tumor models. They showed that 
PTEN loss could increase the expression of CXCR4/CXCL12 and 
CXCR1/CXCL8 which are related to metastasis induction in tumors 
[110]. These studies highlighted the role of the PI3K axis and PTEN in 
the induction of lung cancer metastasis. 

The PI3K/Akt/mTOR signaling pathway activates a range of down-
stream molecules which could down-regulate epithelial proteins such as 
E-cadherin and up-regulate mesenchymal proteins like N-cadherin and 
vimentin. These changes are account for EMT induction [168]. 
Accordingly, it was shown that overexpression of miR-92a in lung can-
cer cell lines could decrease E-cadherin expression and elevate the 
expression of N-cadherin, vimentin, and β-catenin through PTEN inhi-
bition [85]. It was shown that metastasis-associated protein 1 (MTA1) 
overexpression in lung cancer cell lines could induce EMT by reducing 
the expression of E-cadherin and increasing vimentin levels by acti-
vating the signaling of AKT/GSK3β/β-catenin pathway [90]. In A549 
human lung ADC, it was demonstrated that TGF-β treatment reduced the 
expression of E-cadherin while increased the expression of vimentin and 

fibronectin. Interestingly, when cells were treated with LY294002 (a 
PI3K inhibitor) before TGF-β treatment, the expression of vimentin and 
fibronectin was suppressed, and consequently, the EMT is prevented 
[14]. Another study showed that ginkgolic acid could inhibit the EMT 
process in A549 and H1299 lung cancer cell lines by suppressing the 
TGF-β-induced activation of PI3K and Akt [3]. Interestingly, TGF-β has 
been reported as a vital cytokine to activate the mTOR signaling 
pathway and thereby an inducer of EMT. In this vein, the inhibition of 
mTORC1 and mTORC2 could significantly reduce the migration and 
invasion of lung cancer cells by decreasing the activation of RhoA and 
Rac1 signaling [132]. 

The angiogenesis is regulated by several factors downstream of 
PI3K/Akt such as mTOR, NO synthase, FOXO3, and GSK3 [166]. They 
could regulate HIF-1α expression, which induces the transcriptional 
activation of vascular endothelial growth factor (VEGF) which is a 
potent stimulus in angiogenesis [175]. Therefore, increased activity of 
the PI3K/Akt pathway could lead to lung tumor development with 
angiogenic properties [149]. In an experimental mouse model of A549 
lung ADC, curcumin was shown to have an inhibitory role in the hepa-
tocyte growth factor (HGF)-stimulated tumor growth. Curcumin could 
elevate E-cadherin and decrease vimentin, CD34, and VEGF, thus, it 
prevented EMT and angiogenesis. They reported that curcumin carried 
out this event by targeting c-Met and inhibiting the c-Met/PI3-
K/Akt/mTOR/S6 axis [58]. Another study showed that the inhibition of 
the PI3K/Akt/mTOR axis using specific siRNAs resulted in a reduction of 
VEGF expression which led to attenuated angiogenesis in A549 lung 
ADC [16]. It was shown that wortmannin, a specific Akt inhibitor, 
resulted in a significant reduction of HIF-1α and CD34 expression and 
the inhibition of angiogenesis and tumor growth in lung cancer tumor 
models [156]. Similarly, the activity of Akt was demonstrated to be 
elevated following the up-regulation of RBP2 in NSCLC cell lines. The 
increased activation of Akt resulted in an elevation of HIF-1α and VEGF 
expression that accounts for angiogenesis induction [115]. 

The PI3K/Akt/mTOR pathway inhibitors in lung cancer 

Regarding the outstanding role of the PI3K/Akt/mTOR pathway in 
regulating cell growth in NSCLC, the application of inhibitors that target 
principal molecules of this pathway seems to be an of-interest area in the 
context of lung cancer targeted therapy. It is worth noting that the 
various genetic statuses and the cross-talk of the PI3K/Akt/mTOR 
pathway in NSCLC might impede the optimal performance of the ther-
apy [138]. Therefore, monotherapy based on the genetic status and/or 
combination therapy with other inhibitors could be beneficial to over-
come the therapeutic resistance. 

PI3K inhibitors 

The inhibitors of PI3K are generally categorized into the pan- and 
isoform-selective PI3K inhibitors. It was demonstrated that the inhibi-
tion of some major components of the PI3K pathway could suppress 
cancer growth [24]. The first-generation of PI3K inhibitors like 
LY294002 and wortmannin showed anti-cancer activities in pre-clinical 
studies, but their clinical usage was more limited due to lack of selec-
tivity and weak solubility and instability [165]. Nevertheless, their 
development is the foundation of attaining new clinically applicable 
PI3K inhibitors. 

GDC-0941 
GDC-0941 is an oral reversible pan class I PI3K inhibitor which was 

effective in NSCLC cell lines with RTK activation, PIK3CA mutation, and 
PTEN loss [137]. The therapeutic effects of this agent in combination 
with erlotinib (an EGFR inhibitor) or ERK pathway inhibitors were 
greater in the NSCLC cell line as compared to its effect alone [179]. Also, 
the efficacy of GDC-0941 plus carboplatin and paclitaxel (with or 
without bevacizumab) or plus cisplatin, pemetrexed, and bevacizumab 
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was evaluated in a Phase Ib trial in advanced NSCLC patients. It was 
shown that about 45% of patients showed partial responses to the 
treatment [7]. 

BKM120 
BKM120 is also one of the pan class I PI3K inhibitors which is 

effective in the most prevalent PIK3CA mutations (H1047R and E545K) 
[153]. A Phase I dose-escalation trial assessed the maximum-tolerated 
dose (MTD), safety, and efficacy of BKM120 in advanced solid tumors 
(colorectal, breast, lung, and others). It was shown that BKM120 was 
effective, but the incidence of grade 3 and 4 treatment-related adverse 
events (AEs) was 63% in all study cases. Notably, the majority of AEs 
were observed at dose levels of more than 100 mg [6]. 

SAR245408 (XL147) 
SAR245408 (XL147) is a strong ATP competitive oral inhibitor of the 

class I PI3K family. SAR245408 could significantly inhibit the PI3K 
tumor pathway in the mouse model of A549 ADC (active KRAS 
expression and LKB1deficiency) when administered orally. Also, it leads 
to significant inhibition of tumor growth and shrinkage in models of 
lung cancer [139]. In a dose-escalation Phase 1 trial of patients with 
refractory advanced solid malignancies (34% had NSCLC), 13% of pa-
tients were reported to show grade 3 and 4 treatment-related AEs. 
Among all patients, 8 including NSCLC, prostate, and head and neck 
cancer cases showed PFS for 6 months. The partial response was 
observed in 1 NSCLC patient [128]. SAR245408 in combination with 
erlotinib was also examined in another Phase 1 dose-escalation trial in 
patients who had NSCLC. The MTD was demonstrated to be 400 mg for 
SAR245408 and 150 mg for erlotinib. The analysis revealed that only 
3.7% of patients had a partial response while 51.9% had stable disease. 
Therefore, the application of this agent in combination with erlotinib 
didn’t show suitable clinical activity in NSCLC cases [135]. 

PX-866 
PX-866 is another pan class I PI3K inhibitor that binds PI3K irre-

versibly. In a study of A549 NSCLC tumor xenografts, PX-866 suppress 
the tumor growth and the anti-tumor activities were elevated when it 
was combined with cisplatin [53]. A Phase 1 trial evaluated PX-866 as a 
single agent in patients with advanced solid tumors. It was demonstrated 
that the disease was stabilized in about 22.5% of patients include NSCLC 
(3.2%). The MTD was determined 12 mg and PX-866 was well-tolerated 
[59]. Another Phase 2 trial assessed docetaxel with or without PX-866 in 
advanced NSCLC patients who had a history of receiving systemic 
treatment regimens. The analysis demonstrated that the differences of 
PFS, OS, and objective response rates (ORR) were not significant 
(p-value = 0.65, 0.9, and 0.4, respectively). The prevalence of grade 3 or 
higher treatment-related AEs was higher in combination therapy 
compared with monotherapy. Taken together, PX-866 didn’t improve 
the therapeutic efficacy of docetaxel in NSCLC patients. 

GSK-2,636,771 
GSK2636771 is an orally bioavailable and selective PI3Kβ inhibitor. 

The outcomes of this agent were evaluated in a first-time in-human 
study in patients with advanced solid tumors who had PTEN-deficient or 
PIK3CB alteration. Data showed that GSK2636771 at 400 mg could 
inhibit the targets sufficiently with a favorable safety profile. Besides, 
one patient with NSCLC who received GSK2636771 remained on ther-
apy and free of progression for 33 weeks [95]. 

Akt inhibitors 

Akt inhibitors are a broad-spectrum agent that targets the serine/ 
threonine kinase Akt by competing for the ATP-binding site or func-
tioning elsewhere within the protein [68]. Although Akt1-activating 
mutations are low in NSCLC cases, NSCLC is a sensitive malignancy 
for Akt inhibitors because of the occurrence of Akt1 and Akt2 

overexpression [37]. 

Perifosine (KRX-0401) 
Perifosine is an alkylphosphocholine phospholipid derivative [49]. It 

is able to induce NSCLC cell death by suppressing Akt and elevating the 
expression of TRAIL receptors [28]. Furthermore, it was demonstrated 
that perifosine could block the mTOR axis in human lung cancer by a 
different method compared with conventional mTOR inhibitors such as 
rapamycin [36]. A Phase 1 trial of perifosine plus radiation therapy was 
conducted in patients with advanced solid tumors (81% of patients had 
NSCLC). It was demonstrated that perifosine plus fractionated radio-
therapy was well-tolerated and the toxicity of bone marrow was not 
observed. Also, the recommended daily dose of perifosine was recom-
mended for the Phase 2 trial at 150 mg, 1 week prior to radiotherapy 
[152]. 

MK-2206 
MK-2206 is a first-in-class and powerful allosteric inhibitor against 

all Akt isoforms. It was shown to inhibit tumor cell proliferation in 28 
NSCLC cell lines [37]. Furthermore, the suppressive role of MK-2206 on 
tumor cell growth was enhanced in combination with AZD6244 (a 
MEK1/2 inhibitor) in NSCLC cell lines [99]. The combination of 
MK-2206 with erlotinib synergistically suppressed the proliferation of 
both erlotinib-resistant and erlotinib-sensitive NSCLC cell lines [50]. 
Accordingly, a Phase 2 trial of erlotinib plus MK-2206 was carried out in 
metastatic NSCLC patients who were previously treated with erlotinib. 
Among all patients, 51.2% showed at least one grade 3 treatment-related 
AEs. Overall, it was demonstrated that Akt pathway inhibition is a 
feasible therapeutic approach [72]. A Phase 1 trial evaluated the ther-
apeutic outcomes of MK-2206 plus carboplatin/paclitaxel, erlotinib, or 
docetaxel in patients who had advanced solid tumors (18% of patients 
had NSCLC). They exhibited that MK-2206 plus the anticancer agents 
were well-tolerated, with a low rate of grade 3 or 4 AEs. Among all 
NSCLC patients, only one who received MK-2206 and docetaxel showed 
a confirmed PR. Taken together, MK-2206 plus the anticancer agents 
demonstrated early evidence of antitumor activity in patients with 
advanced NSCLC [101]. 

AZD5363 
AZD5363 is a pan-Akt inhibitor that blocks all isoforms of Akt and 

inactivates the process of Akt substrates phosphorylation in different cell 
lines [113]. AZD5363 was evaluated as a single agent in 41 out of 182 
tumor cell lines including NSCLC in which it could inhibit the prolifer-
ation of tumor cells in vitro and had an antitumor effect in xenografts. 
The mutations of PIK3CA and/or PTEN in the tumor may increase sus-
ceptibility to AZD5363, but RAS mutations may cause AZD5363 resis-
tance [5,41]. 

mTOR inhibitors 

The inhibitors which target mTORC1 are the most developed class of 
PI3K/Akt/mTOR pathway inhibitors [107]. Rapamycin was the first 
discovered mTOR inhibitor [37]. Temsirolimus, everolimus, and rida-
forolimus which are rapamycin analogs only affect mTORC1 but not 
mTORC2. These inhibitors of mTORC1 could potentially activate the 
pathways of Akt and/or ERK as a compensatory mechanism; hence, their 
combination with MEK inhibitors and PI3K inhibitors could have a 
wider targeting range and increase anticancer susceptibility [62,139]. 

Rapamycin 
Rapamycin inhibits mTORC1 allosterically by blocking a conserved 

domain that is unique to mTOR and makes rapamycin act more specif-
ically [123]. In studies of NSCLC, rapamycin shows anti-tumor activities 
by inhibiting G1 cell cycle progression [10], and inducing apoptosis via 
the activation of p53-independent pathways [100] or by inhibiting the 
survivin expression mediated by HIF under hypoxic conditions [13]. 
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Interestingly, by its ability to induce autophagy, this agent bypasses the 
resistance of NSCLC tumor cells to the EGFR TKI erlotinib [40]. A Phase 
1 trial evaluated rapamycin in combination with sunitinib (a 
multi-targeted RTK inhibitor) in patients with advanced-stage IIIB (with 
pleural effusion) or IV NSCLC. Among 90 patients who received treat-
ment, no objective responses were observed, and only 6 showed stable 
disease as the best response. The MTD was determined to be 25 mg daily 
for sunitinib and 2 mg daily (4 weeks on while 2 weeks off) for rapa-
mycin. Overall, rapamycin in combination with sunitinib was 
well-tolerated, safe, and feasible with no notable anti-tumor outcome in 
patients with advanced NSCLC [161]. 

Temsirolimus 
Temsirolimus inhibited the proliferation of NSCLC cell lines (A549, 

H1299, and H358) was in a dose-dependent manner. Besides, it signif-
icantly reduced the growth of the NSCLC mouse model and improved the 
survival rate in a pleural disseminated tumor-bearing mouse model 
[104]. In a Phase 2 trial, the outcome of temsirolimus as a single agent 
was assessed in previously untreated patients with stage IV NSCLC. 
Among 52 evaluable patients, 4 achieved a confirmed partial response 
and 14 showed stable disease for 8 weeks or more. Also, the median OS 
was 6.6 months and the median PFS was 2.3 months. The incidence of 
grade 3 and 4 AEs was 64% and 23%, respectively. Nevertheless, data 
showed that the application of temsirolimus as a single agent for the 
treatment of NSCLC was not optimal enough which might be due to 
various intracellular pathways and several genetic alterations presented 
in NSCLC cases [118]. A Phase 1 trial evaluated temsirolimus plus 
pemetrexed in patients with advanced non-squamous NSCLC. Among 
only 4 available patients for assessing anti-tumor activities, the best 
response was observed in 2 patients who had stable disease of 12 weeks 
and 1 patient who showed stable disease for 4 weeks. Also, 1 patient 
demonstrated disease progression. Indeed, no objective responses were 
reported which could be due to the low number of patients in this trial 
[160]. 

Everolimus 
Everolimus has been examined in several clinical trials in the context 

of NSCLC. However, it could not generally induce optimal clinical out-
comes in monotherapy. Thus, studies have investigated the combination 
therapy of this agent plus chemotherapy and targeted agents [107]. A 
Phase 1 trial evaluated the clinical outcomes of everolimus in combi-
nation with docetaxel in patients with advanced NSCLC that was pro-
gressed following at least one prior chemotherapy. Notably, the 
combination of everolimus with docetaxel demonstrated promising 
clinical outcomes with an acceptable safety profile [116]. In another 
Phase 1 trial, the clinical outcomes of everolimus plus erlotinib were 
assessed in patients with advanced NSCLC. The combination therapy 
showed disease control in 47% of patients in which 1% achieved a 
complete response, 9% achieved a partial response, and 37% achieved 
stable disease as the best overall response. It could be concluded that the 
combination of everolimus and erlotinib was well-tolerated with an 
acceptable disease control ratio in NSCLC cases [109]. In a recent Phase 
1 trial in patients with advanced solid tumors (51.6% of patients had 
NSCLC and KRAS mutations), everolimus plus sorafenib (a multikinase 
inhibitor) was evaluated for clinical outcomes [103]. Out of 30 patients 
who received the treatment, 5 achieved partial metabolic response (4 of 
them were KRAS-mutated), 23 demonstrated stable metabolic disease 
while 1 had the progressive one. Besides, the median PFS and OS were 
3.25 and 5.85 months, respectively. Overall, they showed that ever-
olimus plus sorafenib had acceptable tolerability while they were not 
able to induce durable responses in KRAS mutant patients with solid 
tumors including NSCLC [103]. 

Ridaforolimus 
Ridaforolimus inhibits mTOR-dependent activity with a simulta-

neous effect on cell growth of various tumors including NSCLC in vitro 

and induced a potent antitumor function in NSCLC xenografts [120, 
125]. Accordingly, ridaforolimus could inhibit the proliferation of 
NSCLC cell lines include KRAS-mutant cells [107]. Its combination with 
erlotinib showed benefits over monotherapy. Ridaforolimus could also 
suppress the growth of erlotinib-resistant KRAS-mutant NSCLC xeno-
graft models [44]. A Phase I study of ridaforolimus in combination with 
cetuximab was conducted to assess the toxicity of this combination in 
advanced NSCLC patients (58.3%), head and neck, and colorectal cancer 
patients who progressed after at least 1 prior regimen for metastatic 
disease. Notably, the treatment prolonged the time of stable disease and 
showed clinical responses in NSCLC cases. The authors indicated that the 
combination of ridaforolimus and cetuximab in heavily pretreated pa-
tients with NSCLC had some promising responses [141]. 

Dual PI3K/mTORs inhibitors 

Regarding the high sequence homology of the mTOR hinge region 
with PI3K, some second-generation mTOR inhibitors __which termed 
dual PI3K/mTOR inhibitors__ could hinder PI3K and mTORC1/2, reduce 
the activation of Akt and lead to more effective inhibition of the 
signaling pathway compared with the inhibitors of mTOR [92]. Besides, 
dual PI3K/mTOR inhibitors are more efficient and safer than PI3K in-
hibitors plus mTOR inhibitors, leading to fewer AEs and reduced feed-
back loop activation by the feedback loop [23]. 

NVP-BEZ235 
NVP-BEZ235 is an oral imidazoquinolines compound [37]. There is 

increasing evidence that elucidates the advantages of NVP-BEZ235 
application in combination with other strategies to improve its cyto-
toxic effects [37]. Accordingly, a study demonstrated the impressive role 
of NVP-BEZ235 in combination with selective blockades of STAT3 
signaling in sensitizing NSCLC cell lines to apoptotic cell death, by 
inducing CHOP (a pro-apoptotic transcription factor) and its target Bim 
[60]. A study reported that NVP-BEZ235 could remarkably sensitize 
NSCLC xenografts with oncogenic KRAS to the pro-apoptotic effects of 
ionizing radiation; however, it could not sufficiently induce apoptosis 
[45,122]. Although NVP-BEZ235 blocks the PI3K and mTOR, the 
application of mTOR inhibitors (rapamycin or everolimus) and 
NVP-BEZ235 produced a synergistic antitumor effect against human 
lung cancer cells and xenografts [163]. A Phase 1 dose-escalation trial 
evaluated a special NVP-BEZ235 (NVP-BEZ235 SDS sachet) in patients 
with advanced solid tumors (3 out of 25 was NSCLC). Overall, they 
showed that the NVP-BEZ235 SDS sachet exhibited acceptable tolera-
bility with a favorable safety profile [112]. 

GDC-0980 
GDC-0980 is another dual inhibitor of class-I PI3K and mTOR which 

has been assessed in clinical trials of patients with advanced solid tu-
mors [107]. In a preclinical study of GDC-0980, its anti-tumor activity 
was investigated in solid tumor cancer cell lines. The evaluation of 
GDC-0980 activities showed that it had the greatest effectiveness in the 
prostate, breast, and NSCLC lines. Indeed, GDC-0980 showed broad 
anti-tumor functions with favorable responses in 124 out of the 167 cell 
lines. Besides, they demonstrated that GDC-0980 was more effective 
than GDC-0941 in cell viability experiments [155]. 

XL765 (SAR245409) 
XL765 is another dual inhibitor of class-I PI3K and mTOR. It could 

delay the growth of the tumor or cause the shrinkage of the tumor in 
lung xenograft models. Also, it was demonstrated that XL765 was able to 
suppress angiogenesis and proliferation and induce apoptosis in an 
NSCLC xenograft model [71]. A Phase 1 trial of XL765 plus erlotinib was 
conducted in 46 patients with advanced solid tumors (80.4% had lung 
cancer). This combination regime demonstrated stable disease in 37.5% 
of patients as the best responses [55]. 
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PF-04691502 
PF-04691502 is a potent ATP competitive dual PI3K/mTOR inhibitor 

with the ability to inhibit cell proliferation in the mutant PIK3CA and 
deleted PTEN NSCLC cell lines. Its anti-tumor activity has been reported 
in xenografts, U87 (PTEN-null) and SKOV3 (PIK3CA mutant) NSCLC 
resistant to gefitinib and erlotinib [89]. Also, PF-04691502 was 
demonstrated to induce autophagy in NSCLC cell lines in a pre-clinical 
study [32]. An overview of trials evaluating the outcomes of 
PI3K/Akt/mTOR inhibitors in lung cancer cases is presented in Table 2. 
Besides, Fig. 3 demonstrates an overview of the chemical structures of 
stated drugs and their targets in a lung tumor cell. 

Challenges associated with treatments targeting the PI3K/Akt/ 
mTOR pathway in lung cancer 

Despite promising results of the therapeutic agents targeting the 
PI3K/Akt/mTOR pathway in cancer targeted therapy, there are also 
some challenges that could impede the application of these inhibitors. 
Investigations showed that single agent often resulted in stable disease 
as the best response [15]. As discussed, the PI3K/Akt/mTOR pathway 
has a complex association with other parallel cascades such as the 

RAS/RAF/MEK/ERK pathway. Hence, studies hypothesized that the 
functions of these compensatory pathways and also the releases of 
feedback loops are the main reasons for resistance to PI3K/Akt/mTOR 
inhibitors. However, the understanding of the mechanism associated 
with the resistance to these agents is still a novel research area and 
needed further investigation [15,46]. It was demonstrated that 
multi-targeting of different pathways is able to improve the outcome of 
the treatment. Therefore, one approach to increase the therapeutic ef-
ficacy of PI3K/Akt/mTOR inhibitors is combination therapy. In this 
context, the application of PI3K inhibitors and MEK inhibitors exhibited 
promising outcomes in pre-clinical studies of lung cancer [46]. 

Alongside the drug resistance, the incidence of treatment-related AEs 
poses new challenges in the treatment of various cancers [27]. Despite 
favorable outcomes of PI3K/Akt/mTOR in combination with the in-
hibitors of parallel pathways, the incidence of AEs is higher with greater 
toxicities [133]. Studies demonstrated that metabolic derangements 
such as hyperlipidemia and hyperglycemia are frequent AEs for patients 
receiving PI3K/Akt/mTOR inhibitors [19]. Indeed, the existence of 
these adverse events might be due to the effective roles of 
PI3K/Akt/mTOR components in the insulin signaling pathway [69]. The 
evaluation of BKM120 (PI3K inhibitor) in a study of solid tumors 

Table 2 
An overview of trials utilized PI3K/Akt/mTOR inhibitors in lung cancer cases.   

Description Cancer type Phase Status Response Identifier      
SD PR CR OR  

PI3K inhibitors          

BKM120+Carboplatin+
Disodium pemetrexed 

To investigate adverse events and the MTD of 
BKM120 in combination with carboplatin and 
disodium pemetrexed 

SCLC I Completed NA NA NA NA NCT01723800 

Pilaralisib+Erlotinib To evaluate safety and tolerability of XL147 in 
combination with erlotinib 

NSCLC I Completed 51% 3.7% 0 0 NCT00692640 

PX-866+Docetaxel To assess the safety, MTD, pharmacokinetics, and 
efficacy of PX-866 combined with docetaxel 

NSCLC I/II Completed 68% 6% NA NA NCT01204099 

Taselisib To evaluate taselisib (GDC-0032) effectiveness in 
PI3K-overactivated patients 

SCC II Completed 61% 4% NA NA NCT02785913 

BYL719 To investigate the efficacy of single agent BYL719 
in patients who carry specific molecular alterations 
except for EGFR alterations 

Advanced 
NSCLC 

II Completed NA NA NA NA NCT02276027 

INC280 To investigate the efficacy of single agent INC280 
in patients who carry specific molecular alterations 
except for EGFR alterations 

Advanced 
NSCLC 

II Completed NA NA NA NA NCT02276027 

LDK378 To investigate the efficacy of single agent LDK378 
in patients who carry specific molecular alterations 
except for EGFR alterations 

Advanced 
NSCLC 

II Completed NA NA NA NA NCT02276027 

Akt inhibitors          
MK2206+Erlotinib To assess the efficacy and safety profile of MK2206 

and erlotinib in patients who have progressed after 
previous erlotinib therapy 

Advanced 
NSCLC 

II Completed 9% NA NA NA NCT01294306 

Ipatasertib To study the effectiveness of Ipatasertib-plus- 
docetaxel in patients who have failed or are 
intolerant to first-line immunotherapy 

NSCLC II Active NA NA NA NA NCT04467801 

Everolimus+Erlotinib To evaluate MTD for everolimus-plus-erlotinib in 
previously chemotherapy-treated patients 

NSCLC I Completed 37% 12% 12% NA NCT00456833 

mTOR inhibitors          
Sunitinib+Rapamycin To determine the optimal dose, MTD, efficacy, and 

safety of sunitinib-plus-rapamycin 
NSCLC I Completed 6.7% 0 0 0 NCT00555256 

Neratinib+Temsirolimus To investigate the efficacy and safety of neratinib 
monotherapy and neratinib plus temsirolimus in 
patients harboring HER2-activating mutations 

NSCLC II Completed 55% 12% 4% 71% NCT01827267 

Everolimus+Docetaxel To evaluate responses of everolimus-plus-docetaxel 
in patients with recurrent disease 

Advanced 
NSCLC 

II Terminated 63% 8% 0 NA NCT00406276 

Ridaforolimus To study the dose-limiting toxicity and efficacy of 
ridaforolimus-plus-cetuximab in patients after at 
least 1 previous regimen 

Advanced 
NSCLC 

I Terminated NA NA NA NA NCT01212627 

RAD001+Paclitaxel 
+Carboplatin 

To assess the efficacy and safety of RAD001-plus- 
paclitaxel and -carboplatin in patients with 
neuroendocrine differentiation 

LCC IV Completed 29% 45% 0 45% NCT01317615 

BIBW 2992+Rapamycin To investigate MTD, responses, and safety profile of 
BIBW 2992-plus-rapamycin in patients carrying an 
EGFR mutation 

NSCLC Ib Completed 46% 5.1% 0 12% NCT00993499 

SD: Steady disease; PR: Partial response; CR: Complete response; OR: Overall response; MTD: Maximum tolerable dose; NSCLC: Non-small cell lung cancer; SCC: 
Squamous cell carcinoma. 
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(include NSCLC) showed that the most frequent treatment-related AEs 
were rash, hyperglycemia, diarrhea, anorexia, mood alteration, and 
nausea. Moreover, 63% of patients demonstrated grade 3 and 4 
treatment-related AEs [6]. Another PI3K inhibitor, XL147 was evaluated 
in patients with refractory advanced NSCLC. Maculopapular rash and 
hypersensitivity reactions were considered as the DLTs. The incidence of 
grade 3 and 4 treatment-related AEs was 13% and the most frequent 
treatment-related AEs were dermatologic toxicities, diarrhea, nausea, 
and decreased appetite [135]. MK-2206 (Akt inhibitor) plus erlotinib 
resulted in the presence of rash, diarrhea, fatigue, and mucositis in pa-
tients with NSCLC. Among all patients, 51.2% showed at least one grade 
3 treatment-related AEs [72]. In a study of Everolimus in combination 
with erlotinib in patients with metastatic or unresectable NSCLC, the 
most frequent dose-limiting toxicities were stomatitis, rash, and diar-
rhea. Of all examined patients, 43% experienced grade 3 or 4 
treatment-related AEs. Also, the incidence of serious AEs was 54%, most 
frequently gastrointestinal disorders, infections and infestations, and 
respiratory disorders [109]. 

Taken together, many components of the PI3K/Akt/mTOR axis have 
been investigated as the targets of drugs in the treatment of lung cancers. 
Drugs targeting PI3K, Akt, and mTOR have demonstrated the most 
promising outcomes with a wide range of inhibitors; nevertheless, there 
is still a lack of data about how the response of those drugs is enough to 

control the development and growth of lung tumors. Notably, it is 
worthy to mention that mTOR inhibitors such as rapamycin, temsir-
olimus, and everolimus and drugs targeting mTOR as one of the targets 
like NVP-BEZ235 showed much more promising results with a more 
satisfying response profile compared with PI3K and Akt inhibitors. Thus, 
it could be inferred that the optimal efficacy of PI3K/Akt/mTOR in-
hibitors was achieved when other therapeutic agents accompany them 
in the context of combination therapy that could have some reasons to 
be elucidated. One of them is the presence of complex signaling in cells 
that may cause the single component targeting of a pathway such as the 
PI3K axis not to yield satisfying outcomes because of negative feedbacks 
which could induce the activation of the upstream pathway and also the 
interconnection of PI3K axis with other pathways like MAPK. Besides, 
the detection of the exact alteration of the PI3K/Akt/mTOR pathway in 
lung cancer patients was not performed routinely in the clinic, and 
hence, anti-PI3K/Akt/mTOR could be associated with lower effective-
ness. Although the evaluation of PI3K/Akt/mTOR inhibitors was typi-
cally in Phase III/IV clinical trials, in the lung cancer context the status 
of those drugs is yet in Phase I/II level which affirms why there is still a 
gap to be filled. 

Moreover, another concern about PI3K/Akt/mTOR inhibition is the 
incidence of treatment-related AEs which is, unfortunately, more severe 
in combination treatment regimes in lung cancer cases. Regarding the 

Fig. 3. The chemical structure and the target of PI3K/Akt/mTOR inhibitors in a lung tumor cell. Several types of PI3K/Akt/mTOR inhibitors target the components 
of this pathway from PI3K (GDC-0941, PX-866, and BKM120) to Akt (perifosine and MK-2206), and mTORC1 (rapamycin, temsirolimus, and everolimus) in order to 
disrupt the overactivated signaling. 
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cross-reactions of the PI3K axis with other signaling pathways and 
numerous targets of this axis, it is rational that blocking some compo-
nents led to a pathological condition; indeed, AEs related to PI3K/Akt/ 
mTOR inhibition range from metabolic to immunological disorders. The 
most frequent grade 3 or higher AEs were decreased leukocytes (lym-
phopenia, neutropenia), elevated AST, ALT, and CPK, diarrhea, and 
nausea. These side effects could be life-threatening that need acute 
intervention; however, monitoring toxicities, medical actions, and also 
patients’ education are some strategies that can be utilized to manage 
AEs. The details of PI3K/Akt/mTOR inhibitors-related AEs in lung 
cancer trials are summarized in Table 3. 

The application of nano-based strategies 

One way to manage the PI3K/Akt/mTOR inhibition toxicities could 
be the application of nano-based drug delivery strategies. Studies 
showed that the combination of molecular targeted agents and nano- 
carriers result in local delivery of the payload and the controlled 
release of the drugs; an event that may prevent the toxicities due to 
systemic exposure to the inhibitors [31,126]. Nanoparticles can be a 
favorable strategy to enhance the efficacy of treatments by crossing 
various barriers in the body, being able to carry the drugs to the target 
site, and having the capacity to co-deliver more than one drug [94]. 
Therefore, the administration of nano-based inhibitors could enhance 
the pharmacokinetics and safety profiles, efficacy, and also 

bioavailability of those therapeutic agents [70]. 
Despite the potential capacity of nanoparticles to improve the effi-

cacy of PI3K/Akt/mTOR inhibitors in the treatment of several cancers 
such as colorectal [121] and gastric cancer [66], there are limited 
numbers of studies evaluating the outcomes of those inhibitors in 
conjugation with nanoparticles in lung cancer, and consequently, this 
area is in the initial steps. In lung cancer mice models, it was shown that 
a sorbitol diacrylate-polyethylenimine (SDA-PEI)-based Akt1 inhibition 
resulted in a potent antitumor effect against lung tumors while increased 
the efficacy of therapy compared with naked DNA treatments [52]. 
Similarly, it was shown that the conjugation of shRNA targeting Akt1 
with a nanoparticle carrier, glycerol triacrylate-spermine (GT-SPE) 
polyspermine, inhibited the tumorigenesis of the lung cancer mice 
model. Indeed, this approach protected the shRNA from being degraded 
by nuclease successfully [51]. The comparison of nano-based 
PI3K/Akt/mTOR inhibitors and inhibitors alone is depicted in Fig. 4. 

Conclusion and future perspectives 

Cancers in the lung are considered malignancies with a dismal 
prognosis and a high rate of mortality. The progression in illustrating the 
molecular changes of lung cancer has resulted in determining the po-
tential pathways which are associated with the initiation and advance-
ment of this malignancy. The PI3K/Akt/mTOR signaling pathway is one 
of those which has a pivotal role in the proliferation and cell growth 

Table 3 
Details of reported treatment-related AEs following the administration of PI3K/Akt/mTOR inhibitors in lung cancer cases.   

Phase Treatment- 
related AEs * 

Any grade AEs * High frequent treatment-related AEs Trial identifier   

Any 
G. 

≥ Grade 
3 

Serious Dis- 
cont. 

Any grade ≥ Grade 3  

PI3K inhibitors         
GDC-0941+Erlotinib I 100 66.7 33.3 19.3 Diarrhea, Nausea, Fatigue Rash, Elevated ALT NCT00975182 
GDC-0941+Paclitaxel+

Carboplatin+/-Bevacizumab 
I 100 86.4 84.8 33.3 Nausea, Vomiting, Fatigue Neutropenia, Dyspnea, Anemia NCT00974584 

BKM120 II NA NA NA NA Hyperglycemia, Pruritus, 
Diarrhea 

Hyperglycemia, Asthenia, 
Increased ALT 

NCT01820325 

BKM120+MEK162 Ib 93.3 64 NA 29.2 Increased CPK, Diarrhea, 
Increased AST 

Increased CPK, Increased ALT, 
Increased AST 

NCT01363232 

BKM120+Trametinib Ib 97 65 19 31 Dermatitis acneiform, 
Diarrhea 

Increased CPK, Increased ALT, 
Stomatitis 

NCT01155453 

BKM120+Everolimus I NA NA NA NA Hyperglycemia, Increased 
AST/ALT 

Fatigue, Hypokalemia, Pneumonia NCT01470209 

XL147 I 63.8 13 4.3 2.9 Skin toxicities, Nausea, 
Diarrhea 

Rash, Diarrhea NCT00486135 

PX-866+Docetaxel II NA NA NA NA Diarrhea, Nausea, 
Vomiting 

Neutropenia NCT01204099 

Akt inhibitors         
Perifosine+Radiotherapy I NA NA NA NA Nausea, Fatigue, Diarrhea NA [152] 
MK-2206+Erlotinib II NA 55 NA NA NA Rash, Diarrhea, Fatigue NCT01294306 
MK-2206+AZD6244+Sorafenib II NA NA NA NA Fatigue, Diarrhea, Rash Fatigue, Diarrhea, Rash NCT01248247 
MK-2206+Gefitinib I NA NA NA NA Increased eosinophil, 

Rash, Diarrhea 
NA NCT01147211 

mTOR inhibitors         
Rapamycin+Pemetrexed I/II NA NA NA NA Lymphopenia, Anemia, 

Fatigue 
Lymphopenia, 
Hypophosphatemia, Neutropenia 

NCT00923273 

Rapamycin+Afatinib Ib 100 66.7 56.4 23.1 Diarrhea, Mucosal 
inflammation, Rash 

Diarrhea, Mucosal inflammation, 
Asthenia, Rash 

NCT00993499 

Temsirolimus II NA 64 NA NA NA Dyspnea, Fatigue, Hyperglycemia, 
Hypoxia, Nausea 

[118] 

Everolimus+Gefitinib II NA 22.5 4.76 3.2 Rash, Diarrhea, Oral 
ulcerations 

Lymphopenia, Hyponatremia, 
Fatigue, Diarrhea 

NCT00096486 

Everolimus+Erlotinib II 100 72.7 NA 10.6 Diarrhea, Stomatitis, Rash Stomatitis, Asthenia, Diarrhea NCT00456833 
Ridaforolimus I NA NA NA 0 Mouth sores, Rash, Anemia Mouth sores, Hyperglycemia, 

Thrombocytopenia 
NCT00704054 

Dual PI3K/mTORs inhibitors         
NVP-BEZ235+Everolimus Ib NA NA 17.3 NA Fatigue, Anorexia, Nausea, 

Diarrhea 
Increased AST, Increased ALP, 
Anemia 

NCT01508104 

XL765+Erlotinib I 89.1 15 8.7 4.3 Diarrhea, Rash, Nausea Increased AST, Nausea, Vomiting NCT00777699 

AEs: Adverse events; Any G.: Any grade; ALT: Alanine aminotransferase; CPK: Creatine phosphokinase; AST: Aspartate aminotransferase; ALP: Alkaline phosphatase; 
Dis-cont: Discontinued; NA: Not available.*: % of all patients. 
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events and therefore, the presence of alterations in this axis could 
initiate and enhance lung cancer progression. Regarding the develop-
ment of genomic analysis methods, several alterations in the PI3K/Akt/ 
mTOR axis have been identified in lung cancer from RTKs (at the top of 
the PI3K axis) to mTOR (at the bottom of this axis). Accordingly, al-
terations frequently occur in PIK3CA and PTEN, but PIK3R1, Akt, and 
mTOR are also altered. The presence of those molecular changes 
consequently leads to the induction of some oncogenic events such as 
the acquisition of chemoresistant, metastasis, tumor invasion, and EMT. 
Therefore, studies have focused on blocking the components of the PI3K 
axis due to their oncogenic role in the context of lung cancer. Also, 
investigating the genetic alteration and interactive signaling networks 
seems to be necessary to develop an efficient approach to maximize the 
anti-tumor responses. With this regard, the inhibition of PI3K, Akt, and 
mTOR results in the induction of anti-tumor responses, but at the cost of 
some challenges. Typically, the application of PI3K/Akt/mTOR in-
hibitors as monotherapy exhibits unsatisfactory anti-tumor activity that 
might be related to the drug-resistance phenomenon. Despite the un-
known aspect of this challenge, researchers believe that utilizing the 
combination therapy either with another targeted therapy or chemo-
therapy is a promising approach to overcome drug resistance and 
enhance therapeutic efficacy. However, the inhibition of the PI3K axis 
whether as monotherapy or combination therapy is also associated with 
the presence of treatment-related AEs which is another challenge. The 
application of the nanoparticle-based tool to carry and deliver inhibitors 
to the targeted site could be a promising strategy to improve the effec-
tiveness of the PI3K/Akt/mTOR inhibitors. Nonetheless, there is a big 
gap for lung cancer context treatment using nanoparticle-based in-
hibitors; however, few studies which have been performed showed a 
potent capacity. 

In a word, it seems that there is a lack of data for the application of 
nano-based approaches in the context of PI3K/Akt/mTOR inhibitors and 
lung cancer, and we propose this area as an untouchable field for future 
researchers in lung cancer treatment. Taken together, it is essential to 
understand the costs and benefits of PI3K/Akt/mTOR inhibitors for 
future treatment approaches to gain the most reliable therapy with a 
favorable efficacy and safety profile in the context of lung cancer. 
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