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Purpose: To assess the prognostic value of copper-dependent genes, copper-

dependent-related genes (CDRG), and CDRG-associated immune-infiltrating

cells (CIC) for pancreatic cancer.

Methods: CDRG were obtained by single-cell analysis of the

GSE156405 dataset in the Gene Expression Omnibus (GEO) database. In a

ratio of 7:3, we randomly divided the Cancer Genome Atlas (TCGA) cohort into a

training cohort and a test cohort. Tumor samples from the GSE62452 dataset

were used as the validation cohort. CIBERSORT was used to obtain the immune

cell infiltration. We identified the prognostic CDRG and CIC by Cox regression

and the least absolute selection operator (LASSO) method. The clinical

significance of these prognostic models was assessed using survival analysis,

immunological microenvironment analysis, and drug sensitivity analysis.

Results: 536 CDRG were obtained by single-cell sequencing analysis. We

discovered that elevated LIPT1 expression was associated with a worse

prognosis in pancreatic cancer patients. EPS8, CASC8, TATDN1, NT5E, and

LDHA comprised the CDRG-based prognostic model. High infiltration of

Macrophages.M2 in pancreatic cancer patients results in poor survival. The

combined prognostic model showed great predictive performance, with the

area under the curve (AUC) values being basically between 0.7 and 0.9 in all

three cohorts.

Conclusion: We found a cohort of CDRG and CIC in patients with pancreatic

cancer. The combined prognostic model provided new insights into the

prognosis and treatment of pancreatic cancer.
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Introduction

Pancreatic cancer has a highmortality rate (Wei andHackert,

2021). The number of new cases and deaths from pancreatic

cancer is approximately the same in 2020 (Sung et al., 2021).

Pancreatic cancer has the characteristics of high heterogeneity,

difficult early diagnosis, limited efficacy, and poor prognosis

(Park et al., 2021). Patients with pancreatic cancer are already

at an advanced stage when diagnosing (Kamisawa et al., 2016).

Surgery is still the most effective way to treat pancreatic cancer

(Vincent et al., 2011). Despite improvements in treatment,

pancreatic cancer has a 5-years survival rate of less than 10%

(Rawla et al., 2019). Many patients eventually relapse after

surgery (Siegel et al., 2014). Emerging evidence suggests that

targeted therapy based on genetic testing may provide a viable

treatment option for overcoming the limitations of pancreatic

cancer treatment (Dókus et al., 2020). However, the clinical

application of targeted therapy based on genetic testing is very

limited due to tumor heterogeneity and its complex molecular

subtypes (Hosein et al., 2020; Wang et al., 2021a; Giuliani et al.,

2021). Therefore, new prognostic biomarkers and therapeutic

targets are urgently needed. This will help clinicians to timely and

accurately predict patient prognosis and develop personalized

treatment plans.

Multiple cells in pancreatic cancer now can be studied

accurately due to the advances in single-cell sequencing,

which is a strong method for characterizing diverse cell types

and has been used to study a variety of cancers (Treutlein et al.,

2016; Ziegenhain et al., 2017). At the same time, through cell

clustering and annotation, we can better understand the cellular

differentiation and immune mechanisms of pancreatic cancer

(Hwang et al., 2021).

Defects in the execution of cell death by tumor cells are one

of the main reasons for their resistance to therapy (Hassannia

et al., 2019). As a form of regulated cell death, copper-

dependent death occurs through the direct binding of

copper to fatty acylation components of the tricarboxylic

acid cycle (Tsvetkov et al., 2022). Copper has two roles in

carcinogenesis: it promotes tumor development while also

causing redox stress in cancer cells (Maung et al., 2021).

Copper is also used to treat cancer as a medication

component and as a regulator of drug sensitivity and

absorption (Maung et al., 2021). The study by Yu et al.

confirmed that copper deficiency may be a novel approach

to the treatment of pancreatic cancer (Yu et al., 2019a).

Tumor cells make up a minor portion of pancreatic cancer

tissue, with the extracellular matrix accounting for the majority

of the rest (Sherman et al., 2014). Pancreatic cancer has a broad

immunosuppressive microenvironment that promotes cancer

cell proliferation by directly suppressing antitumor immunity

or evading immune surveillance (Ren et al., 2018; Zhang et al.,

2021). Though in pancreatic cancer patients, a variety of

immunotherapies have been explored, the majority of them

have not been satisfactory (Looi et al., 2019; Leinwand and

Miller, 2020).

Herein, we first identified CDRG in pancreatic cancer by

single-cell sequencing analysis. Based on these CDRG, we also

identified CIC in pancreatic cancer patients. Based on the above

analysis results, we constructed a combined predictive model for

pancreatic cancer patients that can effectively predict their

prognosis. This study informed the treatment strategy for

pancreatic cancer.

Material and Methods

Data collection

The TCGA database (TCGA-PAAD; URL: https://portal.gdc.

cancer.gov/) was used to get the transcriptome and clinical data.

The workflow type we used was Counts. The GEO database

(https://www.ncbi.nlm.nih.gov/geo/) was used to obtain the

pancreatic cancer single-cell sequencing dataset GSE156405.

We screened the data from 4 patients. We also downloaded a

microarray gene expression profile dataset GSE62452. All data

were log2 transformed. 10 copper-dependent genes (Negative

hits: MTF1, GLS, CDKN2A; Positive hits: FDX1, LIAS, LIPT1,

DLD, DLAT, PDHA1, PDHB) were obtained from the study by

Tsvetkov et al. (Tsvetkov et al., 2022).

Data processing of the GSE156405

First, we performed quality control on the data. The data of

4 patients were obtained from it. Cells with less than 1% of

mitochondrial genes, ribosomal genes, and erythrocyte genes and

cells with between 500 and 4,000 total genes were retained. Genes

expressed in at least 3 cells were kept. We identified the

6,000 most fluctuating genes based on their degrees of

fluctuation across all samples. The “CellCycleScoring”

function was used to judge the selected cell cycle, and the

“ScaleData” function was used to remove the influence created

by the cell cycle. The LogNormalize method was used to

normalize and integrate the samples. After the data was

corrected, principal component analysis was used for

dimensionality reduction of the data, and TSNE was used for

cluster analysis. We used the “SingleR” package to annotate cell

kinds. We download the singler database, import “ref Human

all.Rdata” into the environment, then use the singler method to

define cell subsets. The “PercentageFeatureSet” function was

used to calculate the proportion of copper-dependent genes in

each cell after importing them. We classified the cells as

low_cuproptosis or high_cuproptosis based on the median

ratio of copper-dependent genes. Then, we use the

“FindMarkers” function to identify the genes that differ

between low_cuproptosis and high_cuproptosis cells, and we
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selected the genes to screen out the genes whose p-value is less

than 0.05. These genes were classified as copper-dependent-

related genes (CDRG).

Data processing of the cancer genome
atlas

First, the data downloaded were preprocessed and combined

using the Perl language to access the count file. The gene symbol

was also transformed with Perl. Then, the corresponding gene

expression was acquired by matching the transcriptome data

from TCGA with CDRG. We excluded patients with incomplete

clinical data and those with 0 days of follow-up. We matched the

CDRG expression data to the survival data, ran a univariate COX

analysis, and filtered out prognostically significant genes with a

p-value less than 0.05. We used the “caret” package to randomly

split the matched cohort into a training cohort and a test cohort

in a 7:3 ratio.

Data processing of the GSE62452

GSE62452 includes 69 tumor samples and 61 non-tumor

samples. After excluding non-tumor samples. We used this

dataset as a validation cohort.

Weighted Co-Expression network analysis

WGCNA analysis is a systems biology approach for

characterizing patterns of genetic association between different

samples (Langfelder and Horvath, 2008). It can be used to

identify highly covalent gene sets and to identify candidate

biomarker genes or therapeutic targets based on the

interconnection of each gene set and the association between

the gene set and the phenotype. We used the “WGCAN” package

to generate the CDRG module. From there, we selected the

modules that were relevant to survival time and survival

status for subsequent analysis.

Prognostic model based on copper-
dependent-related genes

First, we matched GRCD expression data to survival data and

performed the univariate COX analysis (p < 0.01). The

prognostic genes were shown in the forest diagram. Then, we

further selected GRCD with prognostic significance using the

LASSO regression method. The prognostic model was built and

the risk score of each patient was calculated. We divided BC

patients into high- and low-risk groups based on median score.

Between the two, we used clinical correlation heat maps to

analyze differences in clinical characteristics and to examine

differences in patient prognosis. The survival differences were

then verified. Univariate and multivariate cox analyses were then

performed to analyze risk scores and different clinical

information.

Validation and evaluation of the copper-
dependent-related genes-based
prognostic model.

The risk score for each sample in the test cohort was

calculated using the model formula. After that, in training and

test cohorts, survival analyses were carried out to see if there were

any variations in prognosis between the two groups.

Simultaneously, we plotted the distributions of samples

between the two groups to determine the effectiveness of

differentiating patients based on risk values. The expression of

model genes was compared using heatmaps. Subsequently, we

plotted the time-dependent receiver operating characteristic

(ROC) plots and calculated the area under the curve (AUC)

to validate the predictive power of the constructed prognostic

model. In the validation cohort, we calculated the risk score for

each patient. Next, survival analyses were performed. The

model’s accuracy was assessed by the ROC curve.

Functional enrichment analysis

We performed the Gene Ontology (GO) analysis and the

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis by the “clusterProfiler” package and the results were kept

if the p-value < 0.05. The bar charts were used to represent the

results of the analysis.

Immunoassay analysis

To explore if there’s a link between our model and the level of

tumor infiltration, we devised two ways to visualize our data: the

immune infiltration heatmap and the correlation map. The

tumor infiltration methods we used were CIBERSORT and

XCELL (Newman et al., 2015; Aran et al., 2017). We found a

list of immune checkpoint-related genes in the literature. The

analysis results were displayed using boxplots.

Identify copper-dependent genes
associated with prognosis

We matched transcriptome data from TCGA to copper-

dependent genes to obtain corresponding gene expression and

excluded patients with incomplete clinical data and 0-days
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follow-up. Then, We matched copper-dependent gene

expression data with survival data and performed the

univariate COX analysis (p < 0.05) to obtain prognostic

copper-dependent genes.

Identification of copper-dependent-
related genes-associated immune-
infiltrating cells (CIC)

The composition of 22 immune cells in pancreatic cancer

was obtained by CIBERSORT analysis (Newman et al., 2015).

Rainbow graphs were used to show the proportion of different

immune cells in pancreatic cancer in each sample. Box plots

were used to show variations in immune cell infiltration

between high and low-risk groups. Immune cells with p

less than 0.05 were defined as CDRG-associated immune

cells. We matched CDRG-dependent immune cell

infiltration results with survival data for further selection

by LASSO regression. The screened cells are used for

subsequent analysis.

Combined prognostic model construction
and validation

Multivariate Cox regression was applied to build the

combined prognostic model in the training cohort from the

risk score, the expression of the selected copper-dependent genes,

and the infiltration results of CIC. Correlation coefficients were

calculated by using multivariate Cox regression. To test the

clinical impact of the combined model in the three cohorts,

we drew survival curves and ROC curves.

Drug sensitivity analysis

We used the expression matrix and drug processing

information from the Cancer Genome Project (CGP, https://

www.cancerrxgene.org/) to obtain the drugs associated with the

combined model using the “pRROpheticPredict” function

(Geeleher et al., 2014).

Results

Analysis of the gene expression omnibus
dataset

The gene expression levels of each cell in the 4 samples

ranged from 500 to 4,000, with a relatively uniform distribution.

At the same time, we found that the percentage of mitochondrial

genes was less than 1%, and the percentage of erythrocyte genes

was basically less than 0.1% (Supplementary Figure S1A). Cells

were evenly distributed among the 4 samples. The number of

genes and their expression levels are positively correlated with a

correlation coefficient of 0.91 (Supplementary Figure S1B). From

all genes, we chose 3,000 hypervariable genes, which were

highlighted in red and we also marked the top 10 genes

(Supplementary Figure S1C). Then we integrated the

4 samples. The results showed that the integration could be

used for subsequent analysis. After PCA dimensionality

reduction, using the TSNE clustering technique, we divided all

cells into 14 groups (Figure 1A). Then after using the

“PercentageFeatureSet” function to input 10 copper-dependent

genes, the proportion of them in each cell was obtained.

According to the median ratio of copper-dependent genes, we

divided the cells into low_cuproptosis and high_cuproptosis

cells. The distribution of low_cuproptosis cells and

high_cuproptosis cells in each cell cluster was relatively

uniform (Figure 1B). Finally, between the two groups, we

analyzed the differentially expressed genes and identified

536 CDRG.

Weighted Co-Expression network analysis

WGCNA analysis of samples from the TCGA cohort

identified gene modules related to clinical characteristics. We

obtained 12 non-grey modules and screened out gene modules

with p < 0.05 (Figure 1C). WGCNA analysis showedMEgrey was

linked to the survival status. We selected it for subsequent

analysis.

Construction and evaluation of the
copper-dependent-related genes-based
prognostic model

After matching transcriptomic data from TCGA and CDRG,

we matched CDRG expression data with survival data and

performed independent prognostic analysis, resulting in

13 genes with prognostic significance in the training cohort.

Figure 2A showed the CDRG associated with prognosis. Then we

performed Lasso regression analysis and screened 5 CDRG genes

finally (Figures 2B,C). Based on these results, we constructed the

prognostic model. The prognostic model was calculated as

follows: risk score = EPS8*0.21942004 + CASC8*0.30361292 +

TATDN1*0.16143689 + NT5E*0.14433129 +

LDHA*0.03993997. At the same time, we calculated and

recorded the risk score for each patient.

We then analyzed the distribution of gene expression and

patient survival in the models between the high—and low-risk

groups in training and test cohorts (Figures 3A,B). We found that

with the increase in risk value, the proportion of BC patients who

died increased (Figures 3C,D). Moreover, we found that genes

Frontiers in Genetics frontiersin.org04

Guan et al. 10.3389/fgene.2022.978988

https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.978988


FIGURE 1
Single-cell sequencing analysis. (A) Integration and cluster analysis. We can find the distribution of these 14 clusters (B) Distribution of low-
copper-dependent cells and high-copper-dependent cells. We found that the distribution of low_cuproptosis cells and high_cuproptosis cells in
each cell cluster was relatively uniform. (C) WGCNA showed MEgrey was linked to the survival status.

FIGURE 2
CDRG-based prognosticmodel construction. (A)Univariate COX analysis. There are 13 high-risk CDRGs, including KRT7, EPS8, LAMC2, CASC8,
GAPDH, TATDN1, NT5E, LDHA, ASPH, ARMC10, DERA, S100A2, and FAM83A. (B,C) LASSO regression analysis. We performed LASSO regression
analysis on these 13 genes. We finally obtained 5 modeling genes, which were EPS8, CASC8, TATDN1, NT5E, and LDHA. Risk score =
EPS8*0.21942004 + CASC8*0.30361292 + TATDN1*0.16143689 + NT5E*0.14433129 + LDHA*0.03993997. We then divided the sample into
high-risk groups and low-risk values based on the median risk score.
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EPS8, CASC8, TATDN1, NT5E, and LDHA were highly

expressed in the low-risk group(Figures 3E,F). Survival

analysis showed a significantly poorer prognosis for patients

in the high-risk group (Figures 4A,B). At 1, 2, 3, 4, and 5 years,

the AUC values for the training cohort were 0.823, 0.691, 0.657,

0.606, and 0.606, respectively (Figure 4C). At 1, 2, 3, 4, and

5 years, the AUC values for the test cohort were 0.670, 0.624,

0.627, 0.627, and 0.642, respectively (Figure 4D).

In the validation cohort, the survival analysis revealed the

model successfully stratified the patients (Figure 4E). At 1, 2, 3, 4,

and 5 years, the AUC values were 0.694, 0.729, 0.658, 0.620, and

0.825, respectively (Figure 4F).

Enrichment analysis

Then, we performed the enrichment analysis. The results

of GO enrichment analysis showed that these genes were

mainly related to protein processing and maturation

(Figure 5A). The results of the KEGG enrichment analysis

showed that these genes were mainly related to glycolysis and

sugar metabolism and protein processing, and transport

(Figure 5B).

Immunoassay analysis

In tumor development, the immunological

microenvironment is critical. Immunocorrelation analysis

showed Myeloid dendritic cell activated, T cell CD4+

naive, T cell CD8+, T cell CD8+ central memory, Common

lymphoid progenitor, Myeloid dendritic cell, Endothelial

cell, Cancer associated fibroblast, Macrophage M2, B cell

memory were significantly related to risk score (Figure 6A).

To further understand the differences in immune

microenvironments to guide immunotherapy, the

immunological function of high-risk and low-risk

populations was discussed. Figures 6B,C showed that

between the two groups there were significant differences

in immune function and the expression of immunological

checkpoint genes.

Identify copper-dependent genes
associated with prognosis

After matching transcriptomic data from TCGA and the

copper-dependent genes, we matched the copper-dependent

FIGURE 3
Evaluation of CDRG-based prognostic model. (A,B)We analyzed the distribution of gene expression and patient survival in themodels between
the high—and low-risk groups in training and test cohorts. (C,D)We found that with the increase in risk value, the proportion of BC patients who died
increased. (E,F) Moreover, we found that genes EPS8, CASC8, TATDN1, NT5E, and LDHA were highly expressed in the low-risk group.
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gene expression data with survival data and performed

independent prognostic analysis, resulting in only the

LIPT1 with prognostic significance.

Identification of the CIC

We obtained 22 immune cells by CIBERSORT analysis

(Figures 7A,B). Only the immune cells linked to CDRG were

kept. B cells, NK cells, and Macrophages were significantly

different between high-risk and low-risk groups. These cells

were identified as CDRG-associated immune-infiltrating cells.

We then matched immune-infiltrating cell data with survival

data for further screening by LASSO regression analysis. T cells

regulatory Tregs, Macrophages.M2, Mast.cells.activated, and

Eosinophils were screened out. We retained Macrophages.M2.

Construction and evaluation of the
combined prognostic model

According to the expression of LIPT1, the risk score, and the

immune infiltration of Macrophages.M2, a combined model of

prognosis prediction was established. The combined model was

calculated as follows: combined score = risk

score*0.09297–LIPT1*1.29283–Macrophages.M2*2.51248.

Survival analysis showed a significantly poorer prognosis for

patients in the high-risk group (Figures 8A–C). At 1, 2, 3, 4, and

5 years, the AUC for the training cohort were 0.718, 0.645, 0.679,

0.776, and 0.776, respectively (Figure 8D). At 1, 2, 3, 4, and

5 years, the AUC for the test cohort were 0.810, 0.763, 0.817,

0.833, and 0.868, respectively (Figure 8E). At 1, 2, 3, 4, and

5 years, the AUC for the validation cohort were 0.740, 0.667,

0.714, 0.783, and 0.819, respectively (Figure 8F). The AUC in

FIGURE 4
Evaluation of CDRG-based prognostic model. (A,B)We found that patients in the high-risk group had a poorer prognosis in both the training (A)
and test (B) cohorts (p < 0.05). (C,D)We found that the AUC in both cohorts was basically between 0.6 and 0.7. (E,F) In the validation cohort, the high-
risk patients had a worse prognosis and the AUC was between 0.6 and 0.7.
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FIGURE 5
GO enrichment analysis (A) and KEGG enrichment analysis (B) of CDRG. (A) The results of GO enrichment analysis showed that these genes
were mainly related to protein processing and maturation (B) The results of the KEGG enrichment analysis showed that these genes were mainly
related to glycolysis and sugar metabolism and protein processing, and transport.

FIGURE 6
Immunoassay analysis. (A) Immune cell infiltration distribution. The distribution of immune cells was significantly different between the high-
and low-risk groups. (B) Immune-related functions. (C) The expression of immune checkpoint-related genes.
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three cohorts was basically between 0.7 and 0.9, demonstrating

that the combined prognostic model was accurate and stable and

better than the CDRG-based prognostic model.

Drug sensitivity analysis

To target treatment, in the high-risk group, drug sensitivity

tests were carried out in order to identify medications that were

more effective. The results illustrated that Lapatinib, Paclitaxel,

Refametinib, and Afatinib had lower IC50, meaning that they

were more susceptible to the medications (Figure 9).

Discussion

Extensive bioinformatics analysis was performed in this

study to investigate the significance of copper-dependent

genes, CDRG, and immune cell infiltration in pancreatic

cancer. Using the GEO and TCGA datasets, this study

effectively builds a combined model based on copper-

dependent genes, CDRGs, and immune cell infiltration, which

can effectively stratify the risk of pancreatic cancer patients and

predict their performance in training cohorts, testing Time to live

in the queue and validation queue. Furthermore, we found the

combined model’s predictive performance was superior to that of

the CDRG-based prognostic model alone. We also confirmed

that the roles of CDRGs in the immune microenvironment differ

significantly among them, which may provide new predictors for

immunotherapy in pancreatic cancer patients. Drug sensitivity

analysis identifies more sensitive drugs for high-risk groups,

which is valuable for the stratified treatment of pancreatic cancer.

Programmed cell death has received increasing attention in

tumor therapy and immune microenvironment research (Wang

et al., 2021b; Niu et al., 2022). Copper-dependent death is a newly

proposed concept that occurs through the direct binding of

copper to fatty acylated components of the Krebs cycle (Wang

et al., 2021a). Copper acts as a cofactor for mitochondrial

cytochrome c oxidase and meets the energy needs of rapidly

dividing cells. Therefore, tumor cells require more copper than

non-dividing cells (Lopez et al., 2019). Ge et al. (2022) also

showed that more of this metal nutrient, such as copper, is

required during tumor development and metastasis. Copper

concentrations have been shown to be elevated in serum or

tumors of many cancer patients, such as colorectal, breast,

gallbladder, or thyroid cancers (Basu et al., 2013; Pavithra

et al., 2015; Baltaci et al., 2017; Stepien et al., 2017). Studies

have shown that the copper-dependent enzyme Lysyl oxidase-

like 2 (LOXL2) can remodel tumor cells and promote tumor cell

metastasis (Zhan et al., 2019; Lin et al., 2020; Yun et al., 2022).

Safi et al. (2014) suggest the copper signaling axis as a new target

for prostate cancer therapy. In addition, Bulatov et al. (2018)

reported that a copper-based metal complex, the Isatin-Schiff

base-copper (II) complex, can activate p53 protein, inhibit

tumor cell proliferation and induce apoptosis. However,

studies of genes related to copper dependence in pancreatic

cancer are lacking. For the first time, we provide the prognostic

features of pancreatic cancer copper-dependent genes and

CDRG, which have crucial consequences for pancreatic

cancer prognosis.

FIGURE 7
Immune infiltration analysis. (A) The proportion of different immune cells in tumors. (B) Differences in immune cells between high and low-risk
groups. We found differences in B cells, NK cells, and Macrophages between high and low-risk groups. We then performed a LASSO regression
analysis and T cells regulatory Tregs, Macrophages.M2, Mast.cells.activated, and Eosinophils were screened out. We retained Macrophages.M2.
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Six genes in the combined prognostic model have been

initially elucidated in the pathogenesis and progression of the

disease. LIPT1 encodes an enzyme involved in mitochondrial

lipoate synthesis (Habarou et al., 2017). Chen et al. (2021) found

that LIPT1 is an important survival-related gene in prostate

cancer. Eps8 has been originally discovered to be a substrate for

EGFR kinase activity, enhancing EGF responsiveness (Luo et al.,

2021). Eps8 enhances the ability of cancer cells to migrate (Chen

et al., 2010; Chu et al., 2012). Studies had confirmed that

CASC8 was a tumor susceptibility gene (Cui et al., 2018). The

study by Yu et al. (2019b) showed that TATDN1 upregulates

NOVA1 expression by adsorbing microRNA-140–3p and

promotes the proliferative potential of breast cancer cells.

NT5E encodes CD73, a key enzyme for AMP hydrolysis in

adenosine synthesis (Ghalamfarsa et al., 2019). Alam et al.

(2022) built a 13-gene prognostic model to evaluate the

prognosis of lung adenocarcinoma, in which NT5E is a key

molecule. LDHA is a gene encoding a key glycolytic enzyme

(Tang et al., 2022). Reyna-Hernández et al. found increased

expression of LDAH in invasive cervical cancer (Reyna-

Hernández et al., 2022). Our research, which combined these

six genes to create a predictive model, could help us better

understand tumor cells.

Immunotherapy has a significant effect on many malignant

tumors (Motzer et al., 2015; Robert et al., 2015; Sharma et al.,

2016). However, Checkpoint blockade has little effect on

pancreatic cancer (Royal et al., 2010; Brahmer et al., 2012).

Whole-cell therapeutic vaccines have similarly failed to show

any effect in late-stage trials (Le et al., 2019). Pancreatic cancer

is one of the most immunotolerant tumor types (Bear et al., 2020).

Although advances in the pancreatic cancer genome and immune

landscape have facilitated the development of targeted therapies,

FIGURE 8
Evaluation of the combined prognosticmodel. (A–C) In training, test, and validation cohorts, The high-risk patients had aworse prognosis (D–F)
The AUC in t training, test, and validation cohorts was basically between 0.7 and 0.9.
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they are only available for a small proportion of pancreatic cancer

patients (Nevala-Plagemann et al., 2020). Ultimately, the 5-years

overall survival rate for pancreatic cancer patients is less than 10%,

highlighting the need for alternative treatment options (Vincent

et al., 2011). Our study found that immune cell infiltration and

immune checkpoint gene expression were significantly different

between high-risk and low-risk groups, which will provide a

reference for guiding immunotherapy for pancreatic cancer.

For immune checkpoint genes that did not show significant

differences, we think it might be due to cellular communication

between tumor cells and immune cells (Liu et al., 2021). The complex

immune microenvironment of pancreatic cancer also makes single-

agent immunotherapy for pancreatic cancer often unsuccessful (Wu

et al., 2019). Understanding the complex interactions of tumor cells

with the tumor stroma and the use of targeted drugs in combination

with immunomodulatory therapy has shown promising results (Goel

et al., 2017; Schaer et al., 2018). Inhibition of the tumor

microenvironment combined with immune checkpoint inhibitor

therapy can promote effective tumor control (Knudsen et al., 2021).

The study by Gajewski et al. (2013) indicated that cancer

must evade anti-tumor immune responses in order to grow

gradually. Tumor immune evasion is identified as a

characteristic of tumor progression (Batlle and Massagué,

2019). The main immunosuppressive cells in the tumor

microenvironment are macrophages, and their infiltration is

associated with poor prognosis (Malla et al., 2022). Yan et al.

(2022) found that inhibition of Macrophages.M2 polarization

inhibited cervical cancer progression. In our study, we explored

the difference of Macrophages.M2 infiltration between high-risk

and low-risk groups, which had implications for our further

targeted therapy in pancreatic cancer.

Drug-resistant treatment is a major challenge in the current

treatment of pancreatic cancer (Hennig et al., 2022). Resistance

to chemotherapy drugs is also a major cause of poor prognosis in

pancreatic cancer patients (Zhu et al., 2022). Our study selected

drug candidates relevant to prognostic models, which had

implications for our further pancreatic cancer treatment.

However, our study has some limitations. Firstly, the

research data comes from the TCGA and GEO public

databases. In the future, in vivo or in vitro basic experiments

will be performed to confirm our findings, and we will further

refine them in the future. Secondly, Our study is a retrospective

study based on previous data. Prospective clinical validation is

needed henceforth, which we will improve in the future. Finally,

The copper-dependent-related genes defined in this study

require further experimental validation.

This is the first combined prognostic model to our knowledge

to be constructed using copper-dependent genes, copper-

dependent-related genes, and immune cell infiltration profiles.

It provides information for the study of programmed death in

pancreatic cancer and contributes to the treatment of pancreatic

cancer patients.

FIGURE 9
Drug sensitivity analysis. The candidates are Lapatinib (A), Paclitaxel (B), Refametinib (C), and Afatinib (D).
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Conclusion

Based on copper-dependent genes, copper-dependent-

related genes, and immune cell infiltration profiles, the

combined prognostic model was built for pancreatic cancer.

We can accurately estimate the prognosis and immunological

microenvironment of pancreatic cancer patients using this

model. In addition, Our findings might lead to new

approaches to pancreatic cancer therapy.
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