
The accurate classification of pathogens 
with epidemic potential can optimize 
communicable disease control and reduce 
associated costs1,2. Recognition of the useful-
ness of rapid genotyping for this purpose 
has led to a call for closer interplay between 
epidemiological surveillance and disease-
management strategies3. The application and 
interpretation of genetic typing in clinical 
and epidemiological studies requires not 
only an understanding of the typing tech-
niques involved, but also efficient integration 
of the results into clinical and public health 
decision-making4,5.

Clinical genomics and bioinformatics 
have been dominated by eukaryotic para-
digms in which genomic rearrangements 
typically denote dysfunction. However, 
prokaryotic genomes, particularly those of 
bacteria, have a mosaic structure and can 
vary significantly, even within a species; it 
remains unclear, therefore, how microbial 
genomic data should be processed so that 
they are easy to interpret, accessible and 
easy to share. There is a growing mismatch 
between the volume of microbial genome 
data available and the ability to automate 
its systematic analysis and interpretation6,7. 
In this Perspective we outline selected 
approaches to the translation of pathogen 
genotyping and microbial genomics into 
formats that can be incorporated into 

communicable disease management, surveil-
lance and control. Further, we introduce the 
concept of pathogen profiling as a tool for 
disease management in public health.

Moving beyond the phenotype
Pathogen profiles. Analysing the dynamics 
of infections that have epidemic potential 
relies on the accurate demarcation and iden-
tification of individual strains or epidemic 
clones, together with the identification of 
specific virulence factors and other validated 
markers. Together, this information can be 
consolidated into a pathogen profile, which 
comprises information derived from tradi-
tional phenotype-based methods, such as 
bacterial culture identification (often based 
on biochemical properties and antibiotic 
resistance), and other information, such 
as that derived from nucleic-acid-based 
techniques. Nucleic-acid-based techniques 
include various high-throughput epidemio-
logical typing methods that have the capacity 
to simultaneously identify and analyse 
multiple selected regions within a given 
pathogen genome and are relatively new to 
mainstream clinical microbiology8,9.

The argument that a species-based 
description of pathogens has inherent limita-
tions is not new. Many bacterial species con-
tain different strains that are associated with 
distinct clinical features and epidemiology, 

and which cannot be distinguished by 
traditional means4,10. Strains of the same 
species can vary by as much as 35% in either 
the complement or number of unique genes 
present and sometimes have significant 
variation within individual genes. For 
example, the sizes of the Escherichia coli 
and Salmonella enterica chromosomes 
can vary by more than 1 Mb and 300 kb, 
respectively11, and most bacterial species 
are a mosaic of different subpopulations. In 
many bacteria the characteristics that deter-
mine pathogenicity for hosts are encoded 
on mobile genetic elements that are trans-
ferred between strains at different rates. 
Organizing bacterial strains into clonal 
complexes rather than traditional species 
groupings is therefore often more relevant 
to clinicians and is better suited to epidemi-
ological analyses. For example, the diversity 
of hundreds of distinct Campylobacter jejuni 
strains, as defined by multilocus sequence 
typing (MLST), is represented by 17 clonal 
complexes, six of which comprise more than 
60% of the strains isolated from human 
campylobacteriosis12.

The heterogeneity of pathogens, hosts 
and the environment means that no single 
characteristic can adequately reflect the 
clinical and epidemiological complexity of 
infection or reliably predict the outcome(s). 
The systematic construction of pathogen 
profiles from a combination of genomic 
or other ‘omic’ markers in a manner that 
enables data to be integrated and shared, 
is essential for successful surveillance and 
disease management13. Consider, for example, 
an infection that is potentially caused by 
several different strains of the same spe-
cies, each of which has different sets of 
virulence factors that can be distinguished 
by genotyping. If the optimal management 
strategies varied for infections caused by 
different subtypes, then rapid subtype 
identification would optimize disease 
management. For example, antibiotic resist-
ant strains of Mycobacterium tuberculosis, 
detection of which indicates potential 
therapeutic failure, can be identified using 
genetic markers2,8. Similarly, evidence 
from the monitoring of HIV or hepatitis 
C virus (HCV) infections supports this 
approach14,15 (BOXES 1,2).
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Profile attributes. A pathogen profile is a 
single, multivariate observation (or set of 
observations) that is composed of classes 
of specific attributes, for example, genome, 
transcriptome, proteome or metabolome 
data, which are designed to allow interro-
gation of existing (or future) databases (see 
Further information; TABLE 1), and integra-
tion with clinical observations and patient 
outcomes (FIG.1). The profile can indicate 
the probability that a specific marker 
is associated with a clinically relevant 
phenotype, such as in vivo antimicrobial 
resistance or high transmissibility. This 
information would allow classification of 
strains into risk groups for either treatment 
failure or a propensity to cause outbreaks. 
It is often important to also capture 
quantitative information about a pathogen 
in vivo, for example, viral or bacterial loads 
and their units of measurement.

In contrast to traditional subtyping, 
which is based on phenotypic characteristics 
such as serotype, biotype, phage type or 
antimicrobial susceptibility, genetic profil-
ing describes the phenotypic potential in the 
nucleic acid sequence. Genotyping systems 
that are based on comparison of sizes and 
numbers of different DNA fragments sepa-
rated by gel electrophoresis — pulse field 
gel electrophoresis (PFGE), or nucleic acid 
amplification-based typing methods such as 
restriction fragment length polymorphism 
(RFLP) or random amplified polymorphic 
DNA chain reaction (RAPD) — have been 
less reliable than direct sequence-based 
methods, due to a lack of precision and 
reproducibility16. Sequence-based typing 
and RAPD, plasmid fingerprinting or PFGE 
can be viewed as examples of direct and 
indirect methods of assessing nucleic acid 
sequence, respectively. All of these methods 
provide both strain typing and phyloge-
netic data2,17,18 that can be processed using 
sequence alignment and clustering tech-
niques and are amenable to standardization 
and database cataloguing. The derived 
information often correlates well with clini-
cally relevant phenotypic characteristics, 
such as virulence19–21. Typing systems that 
use markers with specific or binary values, 
including MLST, are more reproducible and 
are therefore more appropriate for pathogen 
profiling19,20. Such typing systems enable 
classification of pathogens that are relevant 
to the investigation of chains of infection 
transmission and are useful tools for studies 
of global epidemiology18. Detailed descrip-
tions of molecular typing techniques that 
are used for epidemiology studies can be 
found elsewhere20–22.

Selection of attributes. The choice of 
attributes used to construct a profile depends 
on the clonality of the species, the function, 
diversity and rates of change of chosen genes, 
and their clinical or public health relevance. 
As a rule, microbial profiles should include 
key molecular markers that are potentially 
associated with specific patient outcomes 
or risk factors, and antimicrobial resist-
ance markers. Profiles of different types of 
viruses and bacteria can differ significantly 
as there is no unique or common template 
or genotyping method that can capture all of 
the attributes required to describe all types 
of microorganisms. Some genome profiling 
techniques are based on conserved genes 
— genes that are associated with metabolism 
or other ‘housekeeping’ functions — whereas 
others target variable genes that are often 
associated with virulence20. Virulence 
determinants are frequently present on trans-

ferable genetic material, such as plasmids, 
pathogenicity islands and bacteriophages, 
with genetic histories and dynamics distinct 
from those of the conserved genes of the host 
bacterial population.

The specific disease and the type of control 
measures influence both the clinical relevance 
and discriminatory power of the typing 
system that is used for profiling and the level 
of statistical significance that is required to 
identify clustering23. Microbial genotyping 
alone might not always be the correct classifi-
cation method as outbreaks are occasionally 
caused by several different agents, rather 
than a single, virulent clone; for example, 
sewage contamination of water or food could 
cause an outbreak of diarrhoea. Therefore 
a combination of genomic and phenotypic 
microbial characteristics and comparison of 
genotypic clusters with those identified by 
epidemiological investigations, is important 

Box 1 | HIV case study

HIV is a complex retrovirus characterized by extensive genetic variability. On the basis of 
phylogenetic analyses, multiple circulating HIV-1 group M genetic subtypes and recombinant forms 
have been recognized. Inter-subtype diversity is relevant to the development of antiretroviral drug 
resistance, diagnostic tests and rates of virus transmission and disease progression that influence the 
dynamics of the HIV pandemic56,66. For example, subtype C has lower replicative efficiency than 
subtype B but is associated with a greater propensity for transmission in utero and higher levels of 
shedding from the genital tract than subtypes A or D.

Interpretation of genotypic data (see table) must account for both the number of mutations that 
contribute to resistance and the various patterns of mutations. Different algorithms, which use 
public or commercial databases to correlate genotypes collected from patients before and after 
antiviral therapy with corresponding phenotypic susceptibilities15,56,57, have been developed for 
bioinformatics-assisted antiretroviral therapy. They produce cumulative susceptibility scores that 
are increasingly recognized for their clinical value. Susceptibility scores range from 0 (Stanford, 
intermediate or low-level resistance; ANRS*, resistant) to 1 (Stanford, potential low-level resistance 
or susceptible; ANRS, susceptible); the sum of drugs’ individual scores provides the genetic 
susceptibility score of the antiretroviral regimen or genotypic inhibitory quotient (the ratio of drug 
concentration to the number of target mutations)27,57.

In the table, examples of specific mutations (indicating the site and effect of a mutation) encoding 
drug resistance include: inhibitors of nucleoside reverse transcriptase (Zidovudin – K70R; T215Y or 
F; M41L; D67N; L210W and Lamivudine – M184V or I); inhibitors of nucleotide reverse transcriptase 
(Fenofovir – K65R); inhibitors of non-nucleoside reverse transcriptase (Nevirapine – K103N; V106A; 
V108I; Y181C or I;G190A); and protease inhibitors (Indinavir – V32I; V82A or T or F; I84V; L90M).

In the table entry for data sources, examples of specific rule-based algorithms developed for the 
interpretation of anti-retroviral susceptibility from genotypic data are shown. These algorithms are 
periodically updated as new mutations in the HIV genome are linked with resistance and as new 
treatments become available. Currently more than 20 interpretation systems are available. *ANRS, 
Agence Nationale de Recherches sur le Siaa; ‡CREST, can resistance testing enhance selection of 
therapy (study).

HIV profile Uses Data sources

Molecular subtype Risk of disease progression and 
transmission; molecular epidemiology

Individual clinical trials; 
electronic trial databases

Resistance mutations 
associated with 
poor viral response 
to individual 
antiretrovirals 

Resistance prediction/viral response 
against individual drugs and 
antiretroviral therapy optimization 
tools – ranking combination drug 
therapies

Stanford hivdb
Geno2pheno
Retrogram
ANRS*
CREST‡

Virtual Phenotype (Virco)
Detroit Medical Center
HIV Resistance Web
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Assessing outcomes

Chance of eradicating
HCV infection 40% –50% 75% –90%

HCV profile

Determinants of 
resistance to treatment

HCV genotype

Clinical markers

Tailoring therapy

Present Absent

Choice of therapy

Choice of therapy
monitoring procedures

Mutations in NS5 and ISDR genes (presence indicates resistance)

Genotype 2 or 3Genotype 4,5 or 6Genotype 1

Markers of liver fibrosis HCV viral load

High dose, 
prolonged duration

Follow-up without 
treatment

Low dose, 
short duration

HCV RNA load baseline and 
monitoring recommended

HCV RNA load monitoring 
not recommended

in outbreak investigations. Using a combina-
tion of methods can enhance the discrimi-
natory power and precision of microbial 
profiling24 and might be required to define 
genotypes that are composed of conserved 
and variable portions of the genome, but 
would increase the cost and the complexity 
of data interpretation and sharing.

The task of defining which information 
to include in the pathogen profile is non-
trivial and is becoming even more complex 
as the number and scope of molecular 
typing methods increases and are linked 
with treatment and public health decisions25. 
The nature of clinical reports of antimi-
crobial resistance illustrates this problem26. 
Currently, clinical microbiologists usually 
report the pathogen name and antibiotic 
susceptibilities, but few, if any, other details. 

In future, routine reports could include 
predictive prognostic markers such as a 
calculated post-test probability based on the 
pre-test information. For example, interpre-
tative reports of antiretroviral susceptibility 
testing might include information about 
mutations and cumulative sensitivity scores 
to rank the likely efficacy of individual drugs 
and combinations27.

A pathogen profile is a synthesis of dif-
ferent markers and clinical end-points that 
can be extracted from medical charts and 
that characterize an individual patient’s 
clinical and public health outcomes. The 
profile can be heuristic, when only a single 
genetic marker is associated with a specific 
patient outcome, however greater insight can 
be achieved when attributes from different 
levels of the biological hierarchy (that is, gene 

detection, gene expression, metabolite profiles 
and so on) corroborate and complement 
each other. Large-scale genotyping generates 
valuable information that can be translated 
into databases to search for strain-specific 
epidemiological markers or to construct 
an evolutionary history of strains for a 
particular epidemiological catchment area. 
This objective becomes greatly simplified if 
the genomic data are categorized, archived 
and electronically portable so as to facilitate 
access, retrieval and comparisons. The task of 
designing, capturing and correlating patho-
gen profiles can be assisted by the develop-
ment of a standards-based representation of 
attributes and pathogen-specific ontologies.

The medical and cost benefits of highly 
integrated, comprehensive disease-control 
programmes that include routine microbial 
genotyping have been demonstrated28,29, yet 
incorporating multiple data sources remains 
a technical challenge16. The need for models 
that define data elements in communicable 
disease informatics, and the relationships 
between them, have been identified30,31. 
Microbial profiles provide data models with 
discrete elements amenable for standardiza-
tion. FIGURE 2 illustrates such a data model 
by demonstrating the relationships between 
meticillin-resistant Staphylococcus aureus 
(MRSA) as a concept (object) and the deter-
minants of its pathogen profile. However, 
the vocabulary of profiling data (the words 
or individual components), syntax (the ‘sen-
tence’ structure) and messaging protocols are 
yet to be developed. Healthcare vocabularies 
such as the UMLS (United Medical Language 
System, National Library of Medicine), 
LOINC (Logical Observation Identifier 
Names and Codes, Regenstrief Institute) 
and SNOMED (Systematised Nomenclature 
of Medicine, College of American 
Pathologists)32,33 provide integration mecha-
nisms for high-level terms used in medical 
charts (for example, tuberculosis) with the 
relatively low-level terms used in the clinical 
laboratory (for example, Mycobacterium 
tuberculosis Beijing Family spoligotype).

Successful initiatives that have focused 
on common interchange standards in 
genomics and proteomics, such as minimum 
information about a microarray experi-
ment (MIAME), minimum information 
requested in the annotation of biochemical 
models (MIRIAM)34 and minimum infor-
mation to describe a proteomic experiment 
(MIAPE)35,36, should be informative in 
the push to integrate databases in the 
management of disease. These projects 
have introduced formats to enable the 
unambiguous interpretation of results and 

Box 2 | Hepatitis C virus case study

Hepatitis C virus (HCV) is classified into six major genotypes, numbered 1 to 6, which can vary in 
nucleotide sequence by as much as 30% and occupy unique geographical niches. Chronic HCV 
infection is responsible for inflammation of the liver, and ~20% of patients progress to liver cirrhosis 
with an increased risk for the development of hepatocellular carcinoma67. The complications of 
HCV infection can be prevented by antiviral therapy. The combination of pegylated interferon-α 
(IFN-α) and ribavirin has become the standard treatment for chronic HCV infection. HCV profiles 
(see figure) are important clinically because they most accurately predict the chance of an antiviral 
response, dictate the duration of therapy, the dosage of ribavirin and determine the virological 
monitoring procedures67,68. The amino-acid variability of HCV proteins reflects different 
sensitivities to IFN-α-based therapy and a range of mutations in genes encoding protein kinase 
receptors and the IFN-α sensitivity-determining region associated with HCV protease and 
polymerase inhibitors have been identified69. HCV genotypes 1 and 4 are more resistant to 
antivirals and are cleared from infected cells more slowly. Current algorithms for the use of HCV 
profiles in the treatment of chronic hepatitis C are shown in the figure.
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aim to ensure that experimental results in 
genomics, proteomics and metabolomics are 
deposited in public databases before publica-
tion, as has already been long established 
for nucleotide sequences. The Pathogen 
Information Markup Language (PIML) has 
also been recently introduced to enhance 
the interoperability of microbiology datasets 
for pathogens with epidemic potential31 by 
capturing the data elements that describe 
determinants of pathogen profiles.

Matching profiles. Once a profile has been 
constructed for a strain, it can be matched 
with those of others or with existing datasets 
using similarity measures and clustering 
techniques (see Supplementary information 
S1 (box) for a list of microbial databases). 
Sequence similarity or genotype matching 
of microorganisms implies a common line-
age rather than a unique identity, in contrast 
to eukaryotic DNA matching. Different 
distance functions for phylogenetic assess-
ments and clustering algorithms have been 
applied to reveal or compare microbial 
patterns in bacterial or viral fingerprints 
(for example, Euclidian distance or Pearson 
correlation, index of diversity, approximate 
matching heuristics and information theo-
retic similarity measures)37,38. For example, 
Simpson’s index of diversity estimates the 
probability that two unrelated strains will 
be placed into two different typing groups38. 
The closer this numerical index is to 0 
the higher the chance that two microbial 
profiles match.

Alternatively, the level of reported similar-
ity between sequences, which can indicate 
biological relationships, can be measured as 
E values (expert value) which range from 
0 (100% identity), or close to 0, to larger 
numbers which indicate lower similarity. The 
relatedness of isolates can be visualized using 
dendrograms that are based on unweighted 
pair group methods with arithmetic means 
(UPGMA) for small numbers of isolates or 
clustering, for example using eBURST, for 
larger datasets39. The eBURST algorithm, 
which was developed for the interpretation 
of MLST results, first identifies mutually 
exclusive groups of related genotypes in the 
population, then identifies the group’s found-
ing genotype, predicts the descent — from the 
founder — of other genotypes, and shows 
the output as a radial diagram, centred on the 
predicted founding genotype. The compu-
tational power required and the confidence 
limits used depend on the number of 
markers and their diversity within and among 
species, and the number of representative 
samples. Computational pattern matching 
and validation techniques have received little 
attention in the biomedical literature so far40,41.

Uses of pathogen profiling
Knowledge discovery from databases. 
Although the number and range of data 
relevant to microbial profiles have increased, 
they do not characterize the entire pheno-
type of a pathogen in an environmental or 
experimental context. Linking systematically 
annotated profiles with clinical and research 

databases can identify previously unrec-
ognized associations between phenotype, 
genotype, environment and host responses 
and, potentially, the specific genes that 
govern them42. Functionally linked genes or 
proteins have been identified by examining 
connections between them, using compu-
tational methods like the Rosetta Stone43,44, 
Phylogenetic Profile45 or Operon46. Networks, 
created by relationships among phenotype, 
disease expression, environment and 
experimental context and associated genes 
with differential expression, could provide 
new insights into microbial interactions and 
pathogenesis47–49. This approach has been 
fruitful in metagenomics50 and information 
management systems designed to assist with 
genotyping or functional genomics are now 
being developed51,52. For example, in silico 
analyses that combine molecular phylogeny 
and targeted sequencing have identified pos-
sible target genes for antimalarial treatment53 
and predicted candidate antigens for vaccine 
development (reverse vaccinology54).

A great deal of data that are relevant to 
microbial profiling already exist. Public 
electronic bacterial typing databases such 
as MLSTNet, PulseNet, the BioPortal and 
SPOTCLUST, among others, use web-based 
formats that allow universal access and 
matching of bacterial or viral isolates to each 
other and to those represented in databases. 
More recently, structured polymorphism 
databases have been built, yet data sharing and 
integration remain difficult, due to the lack 
of common structures47,55. Several hundred 

Table 1 | Classes of determinants for pathogen profiling

Class of determinant Data type Uses Data standards Refs

Pathogen identification Presence of pathogen, genus and species-
specific gene

Confirmation of identity of a pathogen SNOMED, LOINC 13, 19, 
20

Virulence Presence or absence of individual genes or 
mutants associated with virulence

Primary risk assessment or outcome 
prediction*

Clinical, 
bioinformatics, 
ontologies

21

Transmissibility Presence or absence of individual genes 
associated with transmissibility

Secondary risk assessment or outcome 
prediction*

N/A –

Antimicrobial resistance Presence or absence of individual genes 
or mutations associated with resistant 
phenotype

Treatment response prediction SNOMED, XML 22

Clonality Genotypes and epidemiological data Confirmation of epidemiological 
links or generation of hypotheses 
about relationships in the absence of 
epidemiological data‡;
Tracking geographical and temporal 
spread of pathogens of public health 
importance

PIML, RDF 
Microarray & Gene 
Expression Markup 
Language

23,24

Clinical information Patient’s demographics and location, 
laboratory number

Unique identifier, temporal and geo-
positioning

HL-7, UMLS 25,70

*Identifying risk factors for recent infection or rapidly progressive disease. ‡Identifying an outbreak in what appears to be sporadic cases of infection. LOINC, Logical 
Observation Identifier Names and Codes (Regenstrief Institute); N/A, not available; PIML, Pathogen Information Markup Language; SNOMED, Systematised Nomenclature of 
Medicine (College of American Pathologists); UMLS, United Medical Language System.
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Nucleic acid 

mRNA 

Proteins 

Pathogen profile

Transcriptome 

Proteome 

Metabolome 

Genome 

Metabolites

Clinical features of infection
Clinical 
markers

Phenome 
markers

Expression 
markers

Proteomic 
markers

Genomic 
markers

Probability of 
sustained response
given specific 
microbial load

Presence/absence 
of mRNA in a 
clinical sample

Individual or network 
of genomic 
mutations

Culture-independent 
spectroscopy profile

Enzyme activity 
in vitro

public domain molecular biology databases 
are currently online but few contain raw 
data. Most represent the efforts of individu-
als to organize, annotate and interpret data 
from other sources. These databases are 
highly valued and are increasingly expected 
to replace paper publication as the medium 
of communication46. Some are classification 
databases (for example, the Staphylococcus 
aureus spa typing tool or the SPOTCLUST 
database for Mycobacterium tuberculosis 
genotyping). Critical factors that distinguish 
the best databases include networks of sub-
scribers willing to share data, the availability 
of statistical algorithms to analyse these data 
and the quality of the curation process.

MLST and PulseNet are good examples 
of advanced databases. At the core of the 
MLST concept is the provision of freely 
accessible nucleotide-sequence databases, 
which function as a common dictionary to 
enable direct comparison of bacterial isolates 
without requiring the physical exchange of 
cultures. In this sense they provide the basis 
of a common language for bacterial typing45. 
In contrast to archival databases such as 
GenBank, MLST databases are curated for 
accuracy. To overcome some limitations of 
the first MLST stand-alone web sites, a new 
network-based database (MLSTdB-Net) has 
been implemented with more than 30 MLST 
schemes, for different bacterial species. It is 
hosted at 33 websites to ensure greater com-
putational power and better analytical per-
formance. Some of the MLST websites allow 
researchers to run and curate their own 
schemes remotely. The PulseNet system, 
which is based on PFGE patterns, is the most 
developed system for the characterization 
of bacterial isolates with a fingerprinting 
approach. It is one of the few networks that 
integrate epidemiological and typing data 
over wide geographical regions45,50.

Antimicrobial therapy optimization. The 
great diversity of mutational patterns contrib-
uting to antimicrobial resistance complicates 
the choice of optimal therapies. A range of 
bioinformatics tools, which are designed to 
predict drug resistance or response to therapy 
from genotype, have been developed to pro-
vide clinicial support. These tools use either 
a statistical approach, in which the inferred 
model and prediction are treated as regression 
problems, or machine learning algorithms, in 
which the model is treated as a classification 
problem17. A statistical learning approach to 
ranking of therapeutic choices often relies on 
a direct correlation between baseline micro-
bial profile, the therapeutic decision and 
response to treatment, for example, expected 

reduction in viral load resulting from anti-
HIV combination therapy (BOX 1). Several 
susceptibility scores have been used for 
combination antiretroviral therapy that take 
into account specific resistance mutations and 
add up the activities of individual drugs in 
the regimen27,56,57. Computer-assisted therapy 
is an attractive way to reduce the complexity 
of prescribing antimicrobial combinations. 
It highlights the need for databases that can 
be widely shared, and that allow correlation 
of quality-controlled data from genotypic 
resistance assays and treatment regimens 
with short- and long-term clinical outcomes. 
Differences in antimicrobial sensitivities 
reflect variation in amino-acid composition 
of resistant microorganisms, but simply 
counting mutations is not enough to detect 
most functional differences, which affect 
treatment outcomes. The data links between 
laboratory and clinical databases will unlock 
the full utility of microbial profiles.

Efficiency in outbreak investigation and 
disease monitoring. The genetic signatures of 
pathogens enrich the accuracy and predictive 
power of laboratory experiments2,3. Microbial 
typing can confirm or refute putative epide-
miological links among and between cases and 
potential environmental sources, and there-
fore might trigger public health investigations. 
Alternatively, typing studies can demonstrate 
that putative clusters are unrelated and so rule 
out the need for further action. However, the 

usefulness of pathogen profiling goes beyond 
specific questions related to the investigation 
of possible outbreaks. It can also be used for 
disease monitoring, by identifying transmis-
sion and associations between microbial types 
and clinical outcomes41. Molecular profiling 
can assist in the assessment of the reproduc-
tive number (R0) of an infectious organism 
during epidemics, in making infection control 
policies more organism-specific41 and in 
predicting clinical outcomes. For example, 
multiple isolates of the same pathogen that 
have indistinguishable profiles, which are 
highly clustered in time and space, would 
suggest an outbreak and trigger an epidemio-
logical investigation supplemented by a social 
network analysis of patients involved. This 
could potentially identify a ‘superspreader’ 
— an individual who is responsible for 80% of 
transmission events58. Evidence suggests that, 
for some infections such as severe acute respi-
ratory syndrome (SARS) that have epidemic 
potential, public health control strategies that 
are focused on ‘superspreaders’ would be 
three times more effective than the random 
interventions currently used58.

Molecular typing also facilitates the 
detection of chains and patterns of infection 
transmission and the construction of epi-
demic trees3. For example, by distinguishing 
tuberculosis (TB) due to recent infection from 
reactivation, typing allows the assessment 
of current rates of active transmission in a 
community and hence guides appropriate 

Figure 1 | Interaction of the different ‘omes’ in a microbial cell. Each ‘ome’ is a complex function 
of the other ‘omes’, and the amount of integration increases from the bottom to the top.
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control efforts. Molecular typing has led to 
a reassessment of the role of casual contacts 
in the transmission of TB59. Specifically, 
a two-stage TB contact tracing strategy, 
based on clustering of genetically related 
M. tuberculosis isolates, can improve the iden-
tification of epidemiological links and prevent 
more cases of secondary infections in low 
prevalence settings, and therefore augment 
traditional contact tracing59,60. This capacity of 
pathogen profiling is especially important as 
changes in contact patterns often underlie the 
re-emergence of disease.

Early warning for population health and 
infection control. A particularly exciting 
prospect is the integration of typing databases 
with epidemiological information, potentially 
producing global real-time epidemiological 
surveillance of pathogens that have epidemic 
potential61,62. There is increasing evidence 
of the value of rapid molecular profiling in 
assisting outbreak detection and hospital 
infection control26,28,29,63. For example, rapid 
outbreak detection by routine MRSA spa 
typing is a potential alternative to traditional 
approaches to hospital-acquired infection 
control28,63. In a prospective study, automated 

clonal alerts, which were based on real-time 
spa typing of hospital MRSA isolates and 
temporal-scan test statistics, were 100% 
and 95.2% sensitive and specific, respectively, 
in identifying outbreaks and were more 
sensitive and timely than routine surveillance 
by infection control nurses63.

In such an ‘on-line’ surveillance system, 
novel and previously characterized strains can 
be compared, grouped by cluster analysis and 
depicted as dendrogram or multidimensional 
graphs to simplify the presentation of complex 
time–space relationships. Spatial surveillance, 
using emerging geographical information 
systems, will enhance the ability to measure 
the extent and variables of an outbreak in 
space and time and the power to detect local-
ized events64. The output from these systems 
ultimately needs to be integrated into clinical 
and diagnostic processes. Real-time data 
sharing, especially of genotypes of microbial 
isolates from different animal species as well 
as humans (for zoonotic infections) and from 
different jurisdictions or countries, could 
enhance rapid response using input and action 
triggers provided by multiple diagnostic, 
veterinary and public health laboratories and 
other partner organizations.

Concluding remarks
In this Opinion we have identified some of 
the major steps that are needed to generate 
and translate accessible genomic informa-
tion about pathogens of clinical and public 
health importance. The synergistic use of 
high-throughput molecular testing, with 
advanced machine-learning approaches, has 
already redefined several traditional clas-
sifications of cancer65. A similar approach 
has started to affect communicable disease 
control. The concept of pathogen profiling 
described here provides a framework for 
data integration and sharing to ensure that 
the flood of data from new molecular tech-
nologies will be used effectively in public 
health surveillance and disease management.

We argue that diagnostic pathogen profil-
ing will help to predict patient outcomes and 
identify markers that can be used for early 
diagnosis and to predict and monitor treat-
ment responses. Pathogen profiling to iden-
tify individual genetic variation, along with a 
detailed knowledge of polymorphisms, will 
allow tailored interventions, a process com-
monly referred to as ‘personalized medicine’. 
The potential value of pathogen profiles can 
be shown by, for example, the use of HIV 
and HCV genotyping to direct the choice 
of antiviral therapy, or specific genetic 
signatures in cancer tissue or host immune 
responses to predict outcomes27,31,57.

There are, however, many challenges in 
producing useful pathogen profiles. The 
methods used to generate input data and 
standards for sharing data are still evolving. 
A shift of emphasis towards integrative data 
analysis and sharing is difficult, but might 
prove to be the key to the successful transla-
tion and integration of laboratory diagnos-
tics into improving clinical and public health 
outcomes in medicine.
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