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Abstract: Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide with a widespread
occurrence and diverse effects. PACAP has well-documented neuro- and cytoprotective effects,
proven in numerous studies. Among others, PACAP is protective in models of diabetes-associated
diseases, such as diabetic nephropathy and retinopathy. As the neuropeptide has strong neurotrophic
and neuroprotective actions, we aimed at investigating the effects of PACAP in a rat model of
streptozotocin-induced diabetic neuropathy, another common complication of diabetes. Rats were
treated with PACAP1-38 every second day for 8 weeks starting simultaneously with the streptozo-
tocin injection. Nerve fiber morphology was examined with electron microscopy, chronic neuronal
activation in pain processing centers was studied with FosB immunohistochemistry, and functionality
was assessed by determining the mechanical nociceptive threshold. PACAP treatment did not alter
body weight or blood glucose levels during the 8-week observation period. However, PACAP atten-
uated the mechanical hyperalgesia, compared to vehicle-treated diabetic animals, and it markedly
reduced the morphological signs characteristic for neuropathy: axon–myelin separation, mitochon-
drial fission, unmyelinated fiber atrophy, and basement membrane thickening of endoneurial vessels.
Furthermore, PACAP attenuated the increase in FosB immunoreactivity in the dorsal spinal horn
and periaqueductal grey matter. Our results show that PACAP is a promising therapeutic agent in
diabetes-associated complications, including diabetic neuropathy.

Keywords: diabetes; PACAP; neuroprotection; myelin; dorsal horn; periaqueductal grey

1. Introduction

Pituitary adenylate cyclase-activating peptide (PACAP) is a member of the vasoactive
intestinal peptide (VIP)/secretin/glucagon peptide family and has two biologically active
isoforms—PACAP-27 and PACAP-38, with the latter being predominant in mammals [1].
PACAP acts through G-protein-coupled receptors: its specific receptor is PAC1, while
VPAC1 and VPAC2 receptors bind PACAP and VIP with the same affinity. PACAP has
a widespread distribution in the body, with the highest expression levels in the nervous
system and endocrine glands, where it acts as a neurotransmitter, neuromodulator, and neu-
rohormone [2–6]. In addition, PACAP and its receptors are widely expressed in peripheral
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organs [1,7–10], and the peptide plays different roles in numerous physiological processes in
the cardiovascular, respiratory, urogenital, musculoskeletal, and digestive systems [11–16].
One of the established effects of the neuropeptide is its neurotrophic/neuroprotective
action [17–22]. This has been proven in numerous neuronal insults and models of neu-
rodegenerative diseases, such as spinal atrophy [23], amyotrophic lateral sclerosis [24],
Alzheimer’s disease [25–27], stroke [28–30], Parkinson’s disease [20,31–33], Huntington
chorea [34], and several types of retinal injuries [21,35–37].

Several reports have proven that PACAP is also protective in diabetes-related patho-
logical conditions, such as diabetic nephropathy [38,39] and retinopathy [40–46]. It has
been demonstrated that PACAP is protective in the inner, neuronal retinal layers in diabetic
retinopathy and also acts on pigment epithelial cells in hyperglycemic conditions [47–49].
Vasculopathy is in the background of several diabetic complications. PACAP has been
shown to ameliorate hyperglycemia-induced vascular dysfunction in isolated vessels [50].
Diabetic neuropathy is a common microvascular complication of diabetes, affecting around
50–70% of diabetic patients [51,52]. PACAP is involved in glucose metabolism and in-
sulin secretion [53,54], in addition to protective effects exerted on the insulin-producing
pancreatic beta cells [55,56]. More importantly, from a neuropathy point of view, PACAP
influences Schwann cell functions [57,58], stimulates axonal growth [59,60], and promotes
regeneration of peripheral nerves [61–64]. However, it is not known whether it has protec-
tive effects in diabetic neuropathy. Therefore, in the present study, we aimed at investigating
the neuroprotective effects of PACAP in an experimental model of diabetic neuropathy
in rats.

The two major predictors of developing neuropathy are the duration of diabetes and
the degree of metabolic instability [65]. Hyperglycemia results in excessive production of
reactive oxygen species (ROS), overproduction of advanced glycation end products and glu-
tamate, and decreased production of neuroprotective factors and hyperglycemia-activated
signaling pathways, such as the polyol, hexosamine, and DAG-PKC pathways [65–69].
Signs and symptoms of diabetic neuropathy include loss of reflexes, dysesthesia, and
paresthesia, along with neuropathic pain—hyperalgesia and allodynia [70]. Diabetic neu-
ropathy is associated with alterations in the structure of peripheral nerves as well as in
central structures of the pain processing pathway. However, the mechanism of neuropathic
pain is still not understood, and it is an unmet medical need due to the ineffectiveness
of the currently available therapy in a great proportion of cases. Previously, it has been
shown that streptozotocin (STZ)-induced diabetes leads to alterations in the dorsal horn
of the spinal cord and the mesencephalic periaqueductal grey matter (PAG) [71]. Among
others, altered c-Fos and FosB expressions in these centers have been reported [72–76].
Therefore, in the present study, we also investigated the expression of FosB, a marker of
chronic neuronal activation [77,78], in the above pain processing centers, in addition to the
detailed morphological analysis of peripheral nerve fibers and functional assessment of
pain sensation.

2. Results
2.1. Blood Glucose Levels and Body Weight

Vehicle (saline) treated diabetic and PACAP-treated diabetic groups had a significant
rise in blood sugar levels after the 7th day of the experiment. Blood glucose level was
6.6 ± 0.34 mmol/L in the vehicle-treated control and 6.7 ± 0.24 mmol/L in the PACAP-
treated control group on week 8. These values were 27.1 ± 2.02 mmol/L in the vehicle-
treated diabetic and 26.4 ± 1.65 mmol/L in the PACAP-treated diabetic group (Figure 1a).
These data show that blood glucose levels were not significantly affected by PACAP
treatment.
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Figure 1. Change of blood glucose levels (a) and body weight (b) in control and diabetic groups. Data show mean ± SEM 

of n = 5/6 rats/group, * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control groups. 
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8th weeks, compared to the vehicle-treated diabetic group (Figure 2a). 

2.2.2. Dynamic Plantar Aesthesiometer (DPA) 
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the PACAP-treated diabetic group from the 5th week, compared to the vehicle-treated 

diabetic group, but the difference was not statistically significant (Figure 2b). 

 

Figure 1. Change of blood glucose levels (a) and body weight (b) in control and diabetic groups. Data show mean ± SEM
of n = 5/6 rats/group, * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control groups.

Vehicle-treated diabetic and PACAP-treated diabetic groups showed a significant
decrease in their body weight from the second week. On week 8, we measured 477 ± 15 g
in the vehicle-treated control, 473 ± 11 g in the PACAP-treated control groups, while only
302 ± 23 g in the diabetic and 292 ± 6 g in the PACAP-treated diabetic groups (Figure 1b).
PACAP-38 treatment did not influence the body weight loss.

2.2. Functional Tests
2.2.1. Randall–Selitto Test

The Randal–Selitto test revealed an increased pressure sensitivity in the vehicle-
treated diabetic and PACAP-treated diabetic groups after the 6th week of the experiment,
compared to the vehicle-treated control and PACAP-treated control groups. Pressure
sensitivity increased to a lower extent in the PACAP-treated diabetic group on the 7th and
8th weeks, compared to the vehicle-treated diabetic group (Figure 2a).
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## p < 0.01, ### p < 0.001 vs. PACAP-treated diabetic group, & p < 0.05 vs. vehicle-treated diabetic group.

2.2.2. Dynamic Plantar Aesthesiometer (DPA)

The DPA test showed an increased touch sensitivity in the vehicle-treated diabetic
and PACAP-treated diabetic groups after the 5th week of the experiment, compared to the
vehicle-treated control and PACAP-treated control groups. It was less prominent in the
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PACAP-treated diabetic group from the 5th week, compared to the vehicle-treated diabetic
group, but the difference was not statistically significant (Figure 2b).

2.3. Immunohistochemistry

Our study showed that the number of FosB immunoreactive nuclei in laminae I-III of
the spinal cord dorsal horn of segments L4–L5 was higher in the vehicle-treated diabetic
and PACAP-treated diabetic groups, compared to the vehicle-treated control and PACAP-
treated control groups. PACAP-treated diabetic animals had, however, significantly fewer
FosB positive nuclei than vehicle-treated diabetic rats (Figure 3).
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Figure 3. Representative images of FosB immunohistochemistry in the spinal dorsal horn of segments
L4–L5 in (a) vehicle-treated control, (b) PACAP-treated control, (c) vehicle-treated diabetic, and
(d) PACAP-treated diabetic groups. Histograms (e) show the number of FosB immunoreactive
nuclei in laminae I-III of the spinal dorsal horn of segments L4–L5. Data are means ± SEM of
n = 5/6 rats/group.* p < 0.05, ** p < 0.01, *** p < 0.001 vs. vehicle-treated control, ## p < 0.01 vs.
vehicle-treated diabetic group.
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The number of FosB-positive nuclei in the lateral part of PAG was also investigated.
We found that both vehicle- (saline) and PACAP-treated diabetic animals showed an
elevated number of FosB immunoreactive nuclei in the lateral PAG, compared to the
vehicle-treated control and PACAP-treated control groups. When comparing the PACAP-
treated diabetic group to the vehicle-treated diabetic group, we found that PACAP was
effective in significantly reducing the neuronal activity in the lateral PAG (Figure 4).
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Figure 4. Representative images of FosB-positive nuclei in the lateral part of PAG (marked
by dotted lines) (a) in vehicle-treated control, (b) PACAP-treated control, (c) vehicle-treated
diabetic, and (d) PACAP-treated diabetic groups. Histogram (e) shows the number of FosB-
positive/immunoreactive nuclei in the lateral part of PAG in vehicle-treated control, vehicle-treated
diabetic, PACAP-treated control, and PACAP-treated diabetic groups. Data are means ± SEM of
n = 5/6 rats/group. ** p < 0.01, *** p < 0.001 vs. vehicle-treated control, ## p < 0.01 vs. vehicle-treated
diabetic groups.

2.4. Electron Microscopy of the Sciatic Nerve

In vehicle-treated control and PACAP-treated control animals, normal peripheral
nerve structure was found without any signs of myelin or axonal injury. PACAP treatment
did not cause any changes under control (no diabetes) situations. However, the sciatic
nerve of diabetic animals showed signs of neuropathy: axon–myelin separation, elevated
average mitochondrial number in the axons, unmyelinated fiber atrophy, and basement
membrane thickening. The percentage of the axon–myelin separation was significantly
higher in the diabetic groups, compared to the control groups. However, it was significantly
less prominent in the PACAP-treated diabetic group (Figure 5).
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Figure 5. Representative electron microscopic images of axon–myelin separation in myelinated axons.
The cell membrane of the Schwann cell is detached from the myelin sheath (arrows) and the axon
is dislocated (star) (a). The separated cell membrane of the Schwann cell is visible (arrowheads,
(b)). Histogram (c) shows the ratio of the axon–myelin separation in vehicle-treated control, vehicle-
treated diabetic, PACAP-treated control, and PACAP-treated diabetic groups. Data are shown as
means ± SEM of n = 5/6 rats/group. * p < 0.05, *** p < 0.001 vs. vehicle-treated control; ### p < 0.001
vs. vehicle-treated diabetic group.

A marked elevation in the mitochondrial number in the myelinated axons was found
in the vehicle-treated diabetic group. This could not be observed in the PACAP-treated
diabetic group; thus, PACAP successfully prevented the rise in mitochondrial number
(Figure 6).
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Figure 6. Representative electron microscopic images of diabetes-induced mitochondrial fission in
vehicle-treated diabetic (a) and PACAP-treated diabetic (b) groups. Mitochondria are marked by
arrowheads. Histogram (c) shows the average mitochondrial number in one myelinated axon in
vehicle-treated control, vehicle-treated diabetic, PACAP-treated control, and PACAP-treated diabetic
groups. Data are shown as means± SEM, n = 5/6 rats/group. *** p < 0.001 vs. vehicle-treated control,
## p < 0.01 vs. vehicle-treated diabetic groups.

We also found unmyelinated fiber atrophy, characterized by a decrease in the un-
myelinated fiber area in the vehicle-treated diabetic and PACAP-treated diabetic groups,
compared to the vehicle-treated control and PACAP-treated control groups. This decrease
was significantly less severe in the PACAP-treated diabetic group. No difference was ob-
served between the vehicle-treated control and PACAP-treated control groups (Figure 7).
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(d) groups. Histogram (e) shows the area of the unmyelinated fibers (e) in vehicle-treated control,
PACAP-treated control, vehicle-treated diabetic, and PACAP-treated diabetic groups. Data are
represented as means ± SEM of n = 5/6 rats/group. ** p < 0.01, *** p < 0.001 vs. vehicle-treated
control; ### p < 0.05 vs. vehicle-treated diabetic groups.

Electron microscopy also revealed thickening of the basement membrane in the en-
doneurial capillaries in the vehicle-treated diabetic group. PACAP-treated diabetic ani-
mals did not show any basement membrane thickening; there was no difference between
the vehicle-treated control, PACAP-treated control, and PACAP-treated diabetic groups
(Figure 8).
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Figure 8. Representative electron microscopic images of the basement membrane of endoneurial
capillaries in vehicle-treated diabetic ((a), arrows) and PACAP-treated diabetic ((b), arrowheads)
groups. Histogram (c) shows the thickening of the basement membrane of the endoneurial capillaries
in vehicle-treated control, PACAP-treated control, vehicle-treated diabetic, and PACAP-treated
diabetic groups. Data are shown as means ± SEM of n = 5/6 rats/group, *** p < 0.001 vs. vehicle-
treated control groups.

3. Discussion

In the present study, we demonstrated that in vivo PACAP treatment is protective
in diabetic neuropathy. An 8-week PACAP-38 treatment effectively counteracted the
functional and morphological changes observed in diabetic rats without altering the blood
glucose levels or body weight. This observation is in accordance with our previous results
studying the effects of PACAP treatment in diabetic nephropathy [38]. These data suggest
that PACAP, in spite of its effects on glucose homeostasis and insulin secretion [53,54],
is protective in our diabetic neuropathy model, not by acting directly on glucose levels,
but most probably due to its neuro- and general cytoprotective effects [20,79]. Although,
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as outlined above, PACAP is known to stimulate insulin secretion, it did not alter blood
glucose levels in this model of type I diabetes. Whether it affects insulin levels in this model
or in a model of type II diabetes awaits further investigations.

In the present study, we found that STZ-treated control diabetic rats displayed the
morphological signs of diabetic neuropathy, i.e., axon–myelin separation, an increase
in axonal mitochondria number, unmyelinated fiber atrophy, and basement membrane
thickening of perineurial vessels. All these signs were attenuated by in vivo PACAP
treatment.

Previous studies have reported that axon–myelin separation is due to hypergly-
cemia [80], Na+ channel dysfunction [81], and glycogen accumulation in Schwann cells [82],
which led to a hyperosmolar perineurial environment, causing axon–myelin separation
and demyelination [83]. Our study showed that PACAP treatment markedly attenuated
this axon–myelin separation. PACAP is known to be involved in myelin maturation
and synthesis by inducing the expression of myelin markers [58,84], and it has a trophic
and antiapoptotic effect on Schwann cells [57,85]. PACAP receptors are upregulated in
peripheral nerve injury in the Schwann cells, and the peptide promotes myelin gene expres-
sion, inhibits the release of pro-inflammatory cytokines, and stimulates anti-inflammatory
cytokines [86,87].

In experimental diabetic neuropathy, the increase in mitochondrial number has been
reported in myelinated axons [80,88,89]. Presumably, hyperglycemia-induced oxidative
stress stimulates mitochondrial fission, which leads to the overproduction of mitochondrial
ROS resulting in small aberrant, more electron-dense mitochondria with a reduced respira-
tory capacity [88]. It has been suggested that the inhibition of mitochondrial fission would
relieve the ROS-induced oxidative stress [90]. The attenuated response in PACAP-treated
animals might be due to the ability of PACAP to decrease oxidative metabolite levels,
increase antioxidant potential [91], and stimulate antioxidant enzymes, such as peroxire-
doxin [92], heme oxygenase-1 [93], superoxide-dismutase [94], and glutathione [39,95].

Unmyelinated fiber atrophy was found in STZ-induced diabetic rats, with a reduced
cross-sectional area of the axons, similar to other reports [96]. This could also be attenuated
by PACAP treatment. The protective effects of PACAP in nerve degeneration have been
confirmed by dozens of studies [97,98]. Among others, PACAP promotes cell survival
and neurite outgrowth [62,99], enhances axonal sprouting [100], and stimulates neuronal
differentiation during development and regeneration [64,101–104]. In peripheral nerve
injuries, PACAP has been shown to be upregulated and to promote regeneration partly
through stimulation of other growth factors, such as glial cell line-derived neurotrophic
factor [97,105–107]. Given the importance of endogenous PACAP in nerve regeneration, not
surprisingly, mice lacking endogenous PACAP show a slower axonal regeneration with an
increased pro-inflammatory environment [61]. These authors suggested that endogenous
PACAP is involved in the controlled immune response that is necessary for proper nerve
regeneration after injury [61]. This action of PACAP has been recently supported by human
data: transcriptional profiling of the skin from patients with carpal tunnel syndrome
revealed that the gene encoding PACAP was the most strongly upregulated gene and its
expression was associated with recovery of intraepidermal nerve fibers [62].

Diabetes is also associated with the thickening of the basement membrane of the
vasa nervosum as a consequence of the increased expression and decreased breakdown of
collagen IV [108–110]. We found that diabetes resulted in the thickening of the basement
membrane, attenuated by PACAP treatment. Similar to our present results, PACAP was
found to attenuate basement membrane thickening in diabetic nephropathy [39]. Simi-
lar vascular protective effects have been observed in murine endothelial cells exposed
to glucose: PACAP elicited an antiproliferative effect under chronic hyperglycemic con-
ditions [111]. PACAP has also been demonstrated to protect endothelial cells against
oxidative stress [112]. The protective effects on vessels are reflected in morphological
signs, but PACAP has also been shown to reduce hyperglycemia-induced vascular dys-
function [50]. In that study, PACAP restored the disturbed relaxation of the vessels to an
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extent comparable to superoxide dismutase without direct scavenging of ROS. The elevated
levels of fibroblast growth factor basic, matrix metalloproteinase 9, and nephroblastoma
associated with endothelial dysfunction could be reduced by PACAP administration [50].
The model used in our study mimics type I diabetes, as streptozotocin leads to toxic de-
generation of the insulin-producing beta cells. Based on these observations, however, it is
plausible that PACAP could also be protective in neuropathies observed in type II diabetes,
as the main mechanism of neuropathic induction is not directly related to the model itself
but more to the increased glucose levels. However, in order to prove this point, further
experiments are required.

The observed morphological signs of the protective effects of PACAP were also re-
flected in functional improvement in our study. Mechanical hyperalgesia is present in
early diabetic neuropathy [113]. In our study, the intraperitoneally administered PACAP
significantly attenuated the enhancement of pressure sensitivity by measuring mechanical
hyperalgesia. In addition to the protective effects on nerve fibers, the anti-nociceptive and
anti-hyperalgesic effects of PACAP might also be due to the decreased release of the pro-
nociceptive neuropeptides [114]. In our present study, we also investigated the activation
of pain-processing central structures. The expression of the acute neuronal activity marker
c-Fos has been shown to be increased in the STZ diabetic model in the PAG and dorsal
horn of the spinal cord [71]. Previous studies have found that FosB expression is signifi-
cantly elevated in rats in the case of chronic pain and stress but not acute pain [115,116].
The dorsal horn of segment L4 of the spinal cord corresponds to the primary nociceptive
afferent regions of the rat’s hind paw [117], while the lateral PAG is an important center
of the descending anti-nociceptive system [118]. Here, we described chronic neuronal
activity (i.e., FosB expression) in the spinal dorsal horn of segments L4–L5 and in the
lateral part of PAG in our STZ diabetes model and found that PACAP treatment effectively
prevented FosB activation in these centers. Our earlier findings in mice lacking endogenous
PACAP support these findings, as PACAP knockout mice showed increased basal neuronal
activity (i.e., c-Fos) in the lateral PAG [119]. The importance of endogenous PACAP in
pain-processing centers has been highlighted also by several other studies [120–123].

In conclusion, here we show, for the first time, that PACAP treatment can attenuate or
moderate the pathological changes of diabetic neuropathy, suggesting that PACAP could
have therapeutic potential in diabetic neuropathy.

4. Materials and Methods
4.1. Animals

The experiment was carried out using adult male Wistar rats (n = 22) weighing
360–420 g. The experimental animals were housed under light/dark cycles of 12:12 h and
received normal rat chow and drinking water ad libitum. Rats were randomly divided into
four groups: (1) vehicle (saline)-treated control (non-diabetic) (n = 5); (2) PACAP-treated
control (non-diabetic) (n = 5); (3) vehicle-treated diabetic (n = 5), and (4) PACAP-treated dia-
betic (n = 5) groups (in the figures, these groups are referred to as control, control + PACAP,
diabetic, diabetic + PACAP groups, respectively). Diabetes was induced by a single dose of
65 mg/kg intravenous streptozotocin injection (Sigma, Budapest, Hungary). PACAP (20 µg
PACAP1-38/100 µL saline solution) was injected intraperitoneally every second day for
eight weeks, starting simultaneously with the streptozotocin injection to PACAP-treated
control and PACAP-treated diabetic groups. The dose of PACAP was based on previous
observations where this dose was effective in a rat model of diabetic nephropathy [38,39].
Vehicle-treated control and vehicle-treated diabetic groups received 100 µL saline intraperi-
toneally. Body weight and blood glucose levels (Accu-Check Active, Roche, Budapest,
Hungary) were measured weekly, rats with glucose levels higher than 11 mmol/L were con-
sidered diabetic. Experimental procedures were carried out in accordance with approved
protocols (University of Pecs; BA02/2000-24/2011). We performed in vivo behavioral tests
on all experimental animals of the four groups. Following 8 weeks of survival, animals
were processed for histological analysis.
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4.2. Functional Tests
4.2.1. Mechanical Nociceptive Threshold—Randall–Selitto Test

The pressure sensitivity of the hind paw was measured by the Randall–Selitto test
using Ugo Basile Analgesia Meter on a weekly basis. During the Randall–Selitto test, a
continuously increasing pressure—at a maximum of 250 g—was applied to the hind paw
of the rats. The increasing pressure caused the withdrawal of the paw, which was con-
sidered as the mechanical nociceptive threshold in grams [124,125]. Three measurements
were made on both left and right hind paws, and the average of the assessments was
taken. A decreased mechanical nociceptive threshold in this test can be considered as
hyperalgesia [113].

4.2.2. Mechanical Nociceptive Threshold—Dynamic Plantar Aesthesiometer Test (DPA)

Touch sensitivity on the plantar surface of the hind paws was determined by a dynamic
plantar aesthesiometer (DPA) (Ugo Basile, Gemonio, Italy) on a weekly basis. During the
DPA test, a continuously increasing force—at a maximum of 50 g in 10 s—was applied to
the hind paw by the elevation of a blunt-end needle and the aesthesiometer automatically
detected the latency time and force (in grams) at the time of paw withdrawal. The decreased
mechanical nociceptive threshold in the DPA test is a sign of allodynia since this mechanical
stimulus is not painful to the rats [126].

4.3. Histology
4.3.1. Tissue Collection and Preparation for Histology

Animals were anesthetized with an overdose of isoflurane (Forane, Abbott Hungary,
Budapest, Hungary) on week 8. Rats were transcardially perfused with 25 mL of phosphate-
buffered saline (PBS), followed by 300 mL of 4% paraformaldehyde solution in Millonig
buffer for 20 min. The brain and spinal cord were dissected and then placed into the same
fixative solution for post-fixation for 72 h at 4 ◦C. The sciatic nerve was also removed from
all animals and further processed for electron microscopy.

A tissue block containing the midbrain was isolated from the brains by cutting at the
frontal planes of the posterior border of the median eminence and the transverse fissure. A
tissue block of the L4-L5 spinal cord segments was also dissected. Blocks were sectioned
by a Leica VT S 1000 (Leica, Wetzlar, Germany) vibratome. Five series of 30 µm coronal
sections, interspaced by 120 µm, were collected in anti-freeze solution and stored at −20 ◦C
until further use.

4.3.2. Immunohistochemistry for FosB

Free-floating labeling for the chronic neuronal activation marker FosB was performed
on a series of the midbrain and spinal cord sections, as published earlier [127]. Briefly,
sections were permeabilized with 0.5% Triton X-100 solution. Normal goat serum (2%,
NGS, Jackson Immunoresearch, Europe Ltd., Suffolk, UK) was used to reduce non-specific
binding. Subsequently, sections were treated with rabbit anti-FosB antibodies (1:500, Santa
Cruz, sc-48 Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) in PBS with 2% NGS
overnight. After washes, sections were treated with biotinylated goat anti-rabbit serum and
avidin–biotin complex (Vectastain ABC Elite Kit Vector Lbs., Burlingame, CA, USA) accord-
ing to the supplier’s protocol. The labeling was developed in Tris buffer (pH 7.4) with 0.02%
3, 3′ diamino-benzidine (DAB) (Sigma) and 0.00003 v/v% H2O2. The reaction was carried
out under visual control and was stopped after 7 min with PBS. Then, preparations were
washed and mounted on gelatin-covered slides. After drying, sections were dehydrated
with ethanol solutions (50%, 70%, 96%, absolute, absolute 5 min, respectively), cleared
by xylene (2 × 20 min), and coverslipped using Depex (Fluka, Heidelberg, Germany).
Specificity of the FosB antiserum (Santa Cruz, sc-48) was characterized earlier [128,129].
Western blot studies also support the specificity (http://datasheets.scbt.com/sc-48.pdf,
2017). Preabsorption experiment in the rat revealed that the blocking peptide (sc-48-P,
Santa Cruz) prevented the immunolabeling. In line with this, omission and/or replacement
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of the primary or secondary antibodies by non-immune sera abolished the signal in all
tests (images not shown).

4.3.3. Digital Imaging and Morphometry at Light Microscopic Level

The DAB-labeled FosB immunohistochemistry was studied and digitalized by a
Nikon Microphot FXA microscope with a Spot RT camera (Nikon, Tokyo, Japan). For
each animal, five serial sections were photographed. The number of FosB positive nuclei
was determined using non-edited digital images by manual cell counting. The whole
cross-sectional surface areas of the lateral PAG, as well as the dorsal horn laminae I, II,
and III, individually were measured, and summed (laminae I + II + II) at L4–L5 spinal
segments were evaluated, as marked in Figures 3 and 4. Cell counting was carried out
by a skilled neurophysiologist who was not informed about the identity of preparations.
For documentation and publication purposes, the micro-photos were grey-scaled and
contrasted using Adobe Photoshop 7.0.1 software.

4.3.4. Electron Microscopy

Sciatic nerve samples were placed in fixing solution (2.5% glutaraldehyde + 2% forma-
lin + 0.1 M PBS) immediately after dissection in +4 ◦C for 24 h. A post-fixation procedure
was performed with 1% osmium tetroxide. After dehydration in ascending alcohol (50%–
70%–90%–96%) and subsequent transfer to propylene oxide, samples were embedded in
Araldite resin. Semithin sections (0.5 µm) were cut by ultramicrotome (Leica Ultracut R),
stained with 1% toluidine blue (Sigma), and examined with a Nikon Eclipse 80i microscope.
Ultrathin sections were prepared from the area of interest and were contrasted by 2.5%
uranyl–acetic acid and lead citrate. Slides were examined using a JEM-1200 EX-II electron
microscope. The following parameters were analyzed: percentage of the axon-myelin
separation, mitochondrial number in myelinated axons, area of the unmyelinated fibers,
and thickness of the basement membrane.

4.4. Statistical Analysis

Statistical analysis was performed in GraphPad Prism 6.01 software. Two-way analysis
of variance (ANOVA) was used to detect significant differences between groups. Multiple
comparisons were performed by Tukey’s test. Data are presented as means ± S.E.M
(standard error of the mean). Differences were considered statistically significant when
p < 0.05.
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