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Abstract

Angiosarcoma is a biologically aggressive vascular malignancy with a high metastatic potential. In the era of targeted
medicine, knowledge of specific molecular tumor characteristics has become more important. Molecular imaging using
targeted ultrasound contrast agents can monitor tumor progression non-invasively. Secreted frizzled related protein 2
(SFRP2) is a tumor endothelial marker expressed in angiosarcoma. We hypothesize that SFRP2-directed imaging could be a
novel approach to imaging the tumor vasculature. To develop an SFRP2 contrast agent, SFRP2 polyclonal antibody was
biotinylated and incubated with streptavidin-coated microbubbles. SVR angiosarcoma cells were injected into nude mice,
and when tumors were established the mice were injected intravenously with the SFRP2 -targeted contrast agent, or a
control streptavidin-coated contrast agent. SFRP2 -targeted contrast agent detected tumor vasculature with significantly
more signal intensity than control contrast agent: the normalized fold-change was 1.660.27 (n = 13, p = 0.0032). The kidney
was largely devoid of echogenicity with no significant difference between the control contrast agent and the SFRP2-
targeted contrast agent demonstrating that the SFRP2-targeted contrast agent was specific to tumor vessels. Plotting
average pixel intensity obtained from SFRP2-targeted contrast agent against tumor volume showed that the average pixel
intensity increased as tumor volume increased. In conclusion, molecularly-targeted imaging of SFRP2 visualizes
angiosarcoma vessels, but not normal vessels, and intensity increases with tumor size. Molecular imaging of SFRP2
expression may provide a rapid, non-invasive method to monitor tumor regression during therapy for angiosarcoma and
other SFRP2 expressing cancers, and contribute to our understanding of the biology of SFRP2 during tumor development
and progression.
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Introduction

Angiosarcoma is a biologically aggressive vascular malignancy

with a high metastatic potential and subsequent mortality [1]. It

originates from endothelial cells of small blood vessels and may

affect a variety of organs, including the retroperitoneum, skeletal

muscle, subcutis, liver, heart and breast. The outcome of

angiosarcoma is poor for those patients in whom aggressive

surgery cannot be considered, and therefore there is a desperate

need for novel therapies to improve survival in patients with this

highly lethal disease. A better understanding of the biology of

angiosarcoma is needed to identify new molecular targets.

The DeMore laboratory has recently discovered a novel

angiogenesis factor involved in angiosarcoma growth. While

conducting genomic profiling of breast tumor vascular cells

obtained by laser capture microdissection, secreted frizzled related

protein 2 (SFRP2) was identified as a gene with 6-fold increased

expression in tumor endothelium as compared to normal vessels

[2]. SFRP2 is a 33 kDa secreted protein involved in the Wnt

signaling pathway, an important pathway in tumor biology [3].

Since angiosarcomas have been reported to represent the signaling

abnormalities of pathogenic angiogenesis [4], we speculated that

SFRP2 would also be expressed in human angiosarcomas, which

we confirmed by immunohistochemistry [5]. SFRP2 acts as a

novel stimulator of angiogenesis in vivo and in vitro by stimulating
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endothelial cell migration, protecting against apoptosis, and is

required for and stimulates angiosarcoma tube formation [5]. We

recently reported the generation of a murine monoclonal antibody

to SFRP2 that inhibits angiosarcoma allograft and breast cancer

xenograft growth in vivo [6]. Thus, SFRP2 is a novel therapeutic

target for angiosarcoma and other tumors.

Although SFRP2 is a secreted protein, it has been demonstrated

to incorporate into the extracellular matrix [7] and localizes to

tumor endothelium [2]. Thus we hypothesized that SFRP2-

directed imaging could be an approach to imaging the tumor

vasculature. Currently, tumor response following drug treatment is

based on measurement of anatomical size changes [8]. However,

the standard response measurement does not provide insight into

changes of molecular characteristics. In the era of targeted

medicine, knowledge of specific molecular tumor characteristics

has become more important. Molecular imaging using targeted

ultrasound contrast agent can monitor tumor progression non-

invasively [9]. The principle behind ultrasonic molecular imaging

is the selective adherence of microbubble contrast agents to

biomarkers expressed on the endothelium [10]. Once the contrast

agents accumulate at the target site, they enhance the pathologic

tissue via increased acoustic backscatter, thus visualizing the

presence of biomarkers associated with disease [11]. This

approach evaluates biological changes at the molecular level

before measurable anatomic changes occur. In this study we report

the development of a new molecular imaging reagent to non-

invasively monitor the progression of angiosarcoma by targeting

SFRP2 in the tumor vasculature. In addition to a potential clinical

imaging application, this technology allows us to further elucidate

the biology of SFRP2 in tumor progression.

Materials and Methods

Cell culture
Murine SVR angiosarcoma cells were obtained from American

Type Culture Collection (ATCCH, Manassas, VA) and cultured in

low-glucose DMEM with 10% fetal bovine serum (FBS) (Sigma-

Aldrich, St. Louis, MO). ATCC provides authenticated cell line

identity, and in addition, SVR angiosarcoma cells were tested

negative by Research Analytic Diagnostic Laboratory (Columbia,

MO) for PCR evaluation for: Ectromelia, EDIM, LCMV, LDEV,

MHV, MNV, MPV, MVM, Mycoplasma sp., Polyoma, PVM,

REO3, Sendai, TMEV GDVII. Cells culture was carried out at

37uC in a humidified 5% CO2-95% room air atmosphere.

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Institutional Animal Care and Use

Committee (IACUC) for the University of North Carolina at

Chapel Hill approved all animal procedures (IACUC ID No. 12-

125.0). Animals were anesthetized with isoflurane prior to tumor

imaging. All efforts were made to minimize suffering.

Size-sorted ultrasound contrast agent
A lipid solution containing an 18:1:1 molar ratio of DSPC,

PEG2000-PE, PEG2000-PE-Biotin was sonicated to produce lipid

encapsulated perfluorobutane micro bubbles as described previ-

ously [12]. Differential centrifugation was used to isolate micro

bubbles with a mean diameter of approximately 3 microns [13].

Micro bubbles were coated with streptavidin (Sigma, St Louis,

S4762) by incubating 16109 micro bubbles with 13 mg of

streptavidin in PBS. Unbound streptavidin was removed by three

sequential washes with PBS and streptavidin-coated micro bubbles

were stored at a concentration .16109 micro bubbles/ml at 4uC
until needed.

Determining concentration and size-distribution of
ultrasound contrast agents

The size distribution and concentration of our various

ultrasound contrast agents were measured using single particle

optical sizing in an Accusizer 780AD (Particle Sizing Systems, Port

Richey, FL). Concentrations were reported in particles per ml and

particle diameters were reported in microns.

SFRP2-targeted UCA
Three polyclonal antibodies (two raised in goat and one in

rabbit) against different epitopes of SFRP2 were purchased from

Santa Cruz Biotechnology (Santa Cruz, CA): sc-7426, sc-13940

and sc-31574. These antibodies were biotinylated using EZ-

LinkTM Sulfo-NHS-LC-Biotinylation Kit catalogue #21435

(Thermo Scientific, Rockford, IL) according to the manufacturer’s

instructions by the Immunology Core Facility at the University of

North Carolina at Chapel Hill. Biotinylated antibodies were

incubated with streptavidin-coated microbubbles and unbound

antibodies were removed by three sequential washes with PBS.

SFRP2-targeted micro bubbles were stored at 4uC at a concen-

tration .16109 micro bubbles/ml until needed.

Non-targeted control ultrasound contrast agent
Biotinylated polyclonal antibodies raised in either rabbit or goat

against chicken IgY were purchased from Bethyl Laboratories

(Montgomery, TX) to serve as a control IgG mixture for the

polyclonal antibodies to SFRP2. The non-targeted control

ultrasound contrast agents were prepared by incubating a (2:1)

mixture of the biotinylated goat to biotinylated rabbit antibodies

with streptavidin-coated contrast agent as described above.

Verifying biotinylation of anti-SFRP2 and anti-chicken IgY
by PAGE

Biotinylated SFRP2 and control antibodies were incubated with

and without streptavidin prior to polyacrylamide gel electropho-

resis (PAGE) through a 10% bis-tris gel (Invitrogen, Carlsbad, CA)

according to manufacturer’s protocol. The gel was stained with

Coomassie Blue R-250 and the staining intensity and electropho-

retic mobility of biotinylated antibodies bound to streptavidin was

compared to that of biotinylated antibodies alone. An increase in

the apparent molecular weight of the antibody in the presence of

streptavidin demonstrated the antibody’s ability to bind to

streptavidin.

Establishment of angiosarcoma allografts in vivo
Six week-old male nude mice were injected s.c. in their right

hind limb with 16106 SVR angiosarcoma cells. Tumors reached

,7 mm in length after one week of growth.

Molecular imaging of SFRP2 expression with SFRP2-
targeted ultrasound contrast agent

All ultrasound B-mode images were collected at 15 MHz using

a 15L8 linear array transducer with a Siemens imaging system

(Acuson Sequoia 512, Mountain View, CA) to provide images for

selecting the region of interest (ROI) in each imaging plane and to

measure tumor volume. CPS mode, a nondestructive contrast-

specific imaging technique operating at 7 MHz (mechanical

index = 0.18, CPS gain = 23 dB) was used to image targeted

and control UCAs.

Molecular Imaging of SFRP2 in Angiosarcoma
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Molecular imaging of SFRP2 expression was performed with

our SFRP2-targeted contrast agent as described previously [14].

Briefly, a 3-dimensional (3D) scan of the angiosarcoma tumor was

performed in B-mode to record the outline of the tumor. 56106

non-targeted streptavidin-coated micro bubbles in approximately

50 ml of saline were injected into the tail vein of nude mice with

angiosarcoma tumors. The perfusion of the tumor and surround-

ing tissue by contrast agents was captured in Cadence mode.

Approximately 18 minutes were required for all free-flowing

contrast agents to clear from the vasculature. At this point a 3D

scan of the tumor and surrounding tissue was recorded in Cadence

mode to capture signal from UCA that remained within the

tumor. A baseline 3D scan was acquired after destroying contrast

agents retained within the tumor with a high-energy D color scan.

SFRP2-targeted micro bubbles (56106 micro bubbles in ,50 ml of

saline) were used in an identical manner to determine the

expression of SFRP2 within the angiosarcoma tumors.

Immunohistochemistry
Tumors were fixed in paraffin, sectioned, and immunohisto-

chemistry was performed as previously described [15] using

SFRP2 (1:200 dilution) as the primary antibody. Control tumor

sections were processed similarly, but without the primary

antibody.

Statistics
Results were expressed as a control-normalized, fold-increase of

baseline-subtracted average volumetric pixel intensity 6 SEM. A

two-tailed, paired t-test was used to compare SFRP2-targeted to

control-targeted imaging. A two-tailed, unpaired t-test was used to

compare control-targeted imaging performed in independent

experiments. To determine if there was a statistically significant

relationship between tumor volume and SFRP2-targeted imaging

signal the Pearson correlation coefficient (r) and its p-value were

calculated. All statistical analyses were performed and all plots

were created using GraphPad Prism version 5.0 d for Mac OS X,

GraphPad Software, San Diego California USA, (www.graphpad.

com).

Results

Verifying Biotinylation of polyclonal anti-SFRP2 and anti-
chicken IgY

To verify successful biotinylation of SFRP2 and control

antibodies, PAGE analyses were performed under non-reducing

conditions because the anti-chicken IgY antibody mixtures

contained a carrier protein with an apparent molecular weight

of ,50 kDa which hindered observation of the reduced heavy

chain. Under non-reducing conditions the ,150 kDa antibody

was clearly present in the absence of streptavidin and shifted to a

higher apparent molecular weight after incubation with strepta-

vidin. Likewise, the apparent molecular weight of the biotinylated

SFRP2 antibody was increased in the presence of streptavidin,

verifying its ability to bind to streptavidin-coated contrast agent.

Size distribution of SFRP2-targeted Ultrasound Contrast
Agent

The size distribution of microbubbles in targeted or non-

targeted contrast agent did not change after addition of

streptavidin and biotinylated antibodies. The average diameter

of the targeted and non-targeted microbubbles was ,3 mm with a

mode of ,4 mm and a median diameter of between ,3–4 mm.

The histogram in Fig. 1 shows the distribution of diameters in a

preparation of SFRP2-targeted contrast agent and is representa-

tive of both the targeted and control contrast agent preparations.

Size parameters for targeted and non-targeted contrast agents used

in this study are presented in Table 1.

SFRP2-targeted contrast agent detected SFRP2
expression in SVR tumor allografts

SFRP2 -targeted contrast agent detected tumor vasculature with

significantly more signal intensity than control streptavidin-coated

contrast agent (Fig. 2): the normalized fold-change was 1.660.27

(n = 13, p = 0.0032). After allowing all freely flowing contrast agent

to be cleared from the circulation, our targeted contrast agent was

retained only in the vasculature within the borders of the allograft,

surrounding tissue had no significant echogenicity.

To serve as a control IgG mixture for the polyclonal antibodies

to SFRP2, in a separate experiment we compared the control

streptavidin-coated contrast agent to an immunoglobulin control

streptavidin-contrast agent. We evaluated the retention of control

streptavidin-coated contrast agent coated with a 2:1 mixture of

Figure 1. Size distribution of ultrasound microbubble contrast
agent bound to SFRP2 antibody via a streptavidin bridge.
Microbubble contrast agent containing biotinylated lipid was size-
sorted by differential centrifugation, prior to sequential incubations
with streptavidin and the SFRP2 antibody mixture. Aliquots of the
contrast agent were used to determine the microbubble concentration
and size distribution (Table 1).
doi:10.1371/journal.pone.0086642.g001

Table 1. Size-distribution of targeted and control contrast
agent diameters (mm).

Contrast agent Mean Stdev Mode Median

SFRP2-targeted 3.6 1.4 4.0 3.8

anti-chicken IgY control 2.9 1.2 3.9 3.0

Streptavidin control 3.5 1.6 4.2 3.7

doi:10.1371/journal.pone.0086642.t001

Molecular Imaging of SFRP2 in Angiosarcoma
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biotinylated goat anti-chicken IgY and biotinylated rabbit anti-

chicken IgY. We compared the baseline-subtracted average pixel

intensity of control streptavidin-coated contrast agent to anti-

chicken IgY-contrast agent using an unpaired, two-tailed t-test.

The anti-chicken IgY-contrast agent was retained within the

tumor vasculature at significantly lower levels than the streptavi-

din-coated contrast agent (p = 0.0002, Fig. 3). The anti-chicken

IgY-contrast agent had an average pixel intensity 5-fold lower than

the streptavidin-coated contrast agent. This demonstrates that

immunoglobulin is not responsible for the retention of the SFRP2

contrast agent in the vasculature. Accordingly, we calculated that

the SFRP2-targeted contrast agent would have average baseline-

corrected pixel intensity 8-times higher than the control anti-

chicken IgY-contrast agent.

Immunohistochemistry shows SFRP2 present in SVR
angiosarcoma

To demonstrate that the SVR angiosarcoma expresses SFRP2,

formalin-fixed tumors were stained with a polyclonal antibody to

SFRP2. This verifies that SFRP2 localizes to vessels within the

angiosarcoma (Fig. 2).

SFRP2 – targeted contrast agent is specific for tumor
vasculature

The signal from control streptavidin-coated contrast agent and

SFRP2-targeted contrast was apparent throughout the tumor and

surrounding normal tissue while these reagents were freely

circulating through the vasculature. After allowing all freely

flowing contrast agent to be removed from circulation, video signal

was significantly lower in the normal tissue surrounding the tumor

than within the tumor (Fig. 4a). This demonstrated that the

SFRP2-targeted contrast agent and the control contrast agent did

not bind significantly within normal vasculature. Therefore, the

SFRP2-targeted contrast agent is specific for tumor vessels

compared to normal vessels.

In addition, we examined the video intensity in the kidney and

in the liver (Fig. 4b). We found that both the SFRP2-targed

contrast agent and the control contrast agent were retained within

the liver, resulting in intense echogenicity. On the other hand,

kidney was largely devoid of echogenicity with no significant

difference between the control contrast agent and the SFRP2-

contrast agent, again demonstrating specificity for tumor vessels.

SFRP2 -targeted contrast agent intensity increases with
tumor volume

When we plotted average pixel intensity obtained from SFRP2-

targeted contrast agent against tumor volume (Fig. 5), we found

that in general, average pixel intensity increased as tumor volume

increased (n = 13). Only one of thirteen animals examined had

higher average pixel intensity for the control-contrast agent than

for the SFRP2 -targeted contrast agent (indicated by the arrow in

Fig. 5). Correlation analysis showed a highly significant relation-

ship (p = 0.003, Pearson r = 0.78) between tumor volume and

SFRP2-targeted video signal when omitting the aforementioned

‘‘outlier.’’ Even when this data point was included in the

correlation analysis, there was a significant relationship between

tumor volume and SFRP2- targeted video signal (p = 0.048,

Pearson r = 0.56) as illustrated by the best-fit line in Fig. 5. In the

range of tumor volumes investigated, as tumors increased in

volume SFRP2 expression increased.

Figure 2. SFRP2 -targeted microbubbles bound specifically to
vasculature within angiosarcoma. B-mode images of the SVR
angiosarcoma tumors were overlaid in green with molecular images of
(A) control streptavidin loaded microbubbles or (B) SFRP2 -targeted
microbubbles after three-dimensional molecular imaging. The average
pixel intensity observed for SFRP2 -targeted imaging was significantly
higher (*p = 0.003, n = 13, paired t-test, two-tailed) than observed for
the streptavidin control (C). Immunohistochemistry demonstrated high
levels of expression for SFRP2 in angiosarcoma (D). Black scale bars in
panels A and B represent 1 mm. Black scale bars in panels D and E
represent 35 mm.
doi:10.1371/journal.pone.0086642.g002

Figure 3. Microbubbles targeted with anti-chicken IgY were
retained within angiosarcoma vasculature at significantly
lower levels than microbubbles loaded with streptavidin.
Streptavidin-coated microbubbles were bound to a mixture of
biotinylated anti-chicken IgY (raised in rabbit and goat) to produce
anti-chicken IgY control microbubbles. Three-dimensional molecular
imaging with the anti-chicken IgY control microbubbles resulted in
significantly lower average pixel intensity (*p = 0.0002, n = 10, unpaired
t-test, two-tailed) than observed with microbubbles coated only with
streptavidin.
doi:10.1371/journal.pone.0086642.g003

Molecular Imaging of SFRP2 in Angiosarcoma
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Discussion

SFRP2 is a tumor endothelial marker with increased expression

in tumor vessels compared to normal vessels [2], and is expressed

in a wide variety of human tumors including angiosarcoma. We

created an SFRP2 targeted ultrasound contrast agent that is

retained in tumor vasculature but does not bind to normal vessels.

This novel contrast agent could be useful to help differentiate

between benign and malignant lesions on ultrasound, increasing

the specificity of ultrasound for cancer detection.

The molecular imaging of SFRP2 provides a tool to understand

the role of this secreted factor during tumor progression. There

has been controversy in the literature as to whether SFRP2 is a

tumor suppressor or promoter of tumor growth. SFRP2 has been

implicated in binding to Wnts, thereby blocking Wnt binding to

Frizzled receptors, and resulting in inhibition of b-catenin

activation [16]. This, in combination with data showing that

SFRP2 is hypermethylated in certain tumors [17–19]has led to an

assumption that SFRP2 is a tumor suppressor. However, there is a

discrepancy in which several studies have shown that SFRP2 is an

agonist (rather than an antagonist) of b-catenin [20–24] suggesting

the reverse: that SFRP2 may promote tumor growth. Further

evidence to support this theory is that SFRP2 has been found to be

produced by the majority of malignant glioma cell lines, and

SFRP2 overexpressing intracranial glioma xenografts were signif-

icantly larger than xenografts consisting of control cells in nude

mice [25]. Transient transfection of SFRP2 in renal cell carcinoma

has been shown to increase tumor growth in vivo [26]. We recently

reported the development of a murine monoclonal antibody to

SFFRP2 that inhibits the growth of both SVR angiosarcoma and

triple negative breast cancer in vivo.

Through our assumption that the anti-SFRP2 molecularly

targeted contrast agents bind to endothelium in proportion to the

amount of SFRP2 expressed, we hypothesize that we can detect

whether SFRP2 expression increases or decreases during tumor

growth. An increase in SFRP2 as tumor volumes increase would

support the theory that SFRP2 stimulates tumor growth; and a

decrease in SFRP2 while tumors grow would support the theory

that SFRP2 is a tumor suppressor. Our data show that SFRP2

expression increased as tumor volume increased in vivo, providing

further support for the role of SFRP2 as a stimulator of tumor

growth.

Figure 4. Modified microbubble contrast agents were not retained at significant levels in nonmalignant vasculature. B-mode images
(black and white) are shown overlaid with CPS-mode images (green). CPS-mode is sensitive to ultrasound signal typically produced by microbubbles
oscillating within an ultrasound field. (A) In the absence of ultrasound contrast agent (no contrast) there was no CPS-mode signal within the region of
interest (dotted rectangle) outside of the tumor margins. Tissue artifacts generated the CPS-mode signal observed in the absence of contrast agent.
Contrast agent freely flowing through both tumor and non-tumor vasculature generated CPS-mode signal throughout the field of view (panel A,
perfusion, middle frames) with either streptavidin-coated (control, upper frames) or SFRP2- targeted ultrasound contrast agent (lower frames). No
signal remained within the region of interest drawn outside of the tumor margins after allowing all freely flowing contrast agent to be cleared from
the vasculature, while SFRP2 specific signal was retained within the tumor margins. (B) Modified microbubble contrast agents were not retained
within kidney vasculature. Freely flowing streptavidin-loaded microbubbles (panel B, control, upper frames) or SFRP2 - targeted microbubbles (panel
B, lower frames) were allowed to clear from the vasculature prior to three-dimensional molecular imaging. Single frames are shown from two
different animals (animal 1 or animal 2). The dotted oval region of interest represents the location of the kidney (K) and there was no significant
difference in average pixel intensity after injection of either streptavidin-loaded or SFRP2 -targeted microbubbles. In contrast, the liver (L) retained
both modified microbubble contrast agents to a high degree. White scale bars in panels A and B represent 5 mm.
doi:10.1371/journal.pone.0086642.g004

Figure 5. Video intensity from SFRP2 -targeted microbubble
contrast agent correlated significantly with SVR angiosarcoma
tumor volume. The baseline-subtracted average pixel intensity for
each tumor was plotted against tumor volumes determined using our
three-dimensional B-mode scans. Only 1 of 13 animals was observed to
have higher signal for the streptavidin control than for the SFRP2 -
targeted microbubbles (indicated by arrow). Correlation analysis
showed a significant positive relationship between SFRP2 video signal
and tumor volume as both increased together whether analyzed with
(p = 0.048, Pearson r = 0.56) or without (p = 0.003, Pearson r = 0.78) the
single ‘‘outlier’’ animal. Linear regression was used to determine the
best-fit line through all data points to represent this relationship.
doi:10.1371/journal.pone.0086642.g005

Molecular Imaging of SFRP2 in Angiosarcoma
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Challenges to anti-tumor and anti-angiogenic compound

development and clinical implementation [27] include lack of

knowledge of early response to therapy and resistance that can

develop to therapy [28]. Molecular imaging of SFRP2 expression

may provide a rapid, non-invasive method to monitor tumor

regression during therapy for angiosarcoma, and contributes to

our understanding of the biology of SFRP2 during tumor

progression.
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