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Purpose:Gene expression data generated frommicroarray technology is often analyzed

for disease diagnostics and treatment. However, this data suffers with missing values that

may lead to inaccurate findings. Since data capture is expensive, time consuming, and is

required to be collected from subjects, it is worthwhile to recover missing values instead

of re-collecting the data. In this paper, a novel but simple method, namely, DSNN (Doubly

Sparse DCT domain with Nuclear Norm minimization) has been proposed for imputing

missing values in microarray data. Extensive experiments including pathway enrichment

have been carried out on four blood cancer dataset to validate the method as well as to

establish the significance of imputation.

Methods: A newmethod, namely, DSNN, was proposed for missing value imputation on

gene expression data. Method was validated on four dataset, CLL, AML, MM (Spanish

data), and MM (Indian data). All the dataset were downloaded from GEO repository.

Missing values were introduced in the original data from 10 to 90% in steps of 10%

because method validation requires ground truth. Quantitative results on normalized

mean square error (NMSE) between the ground truth and imputed data were computed.

To further validate and establish the significance of the proposed imputation method,

two experiments were carried out on the data imputed with the proposed method,

data imputed with the state-of-art methods, and data with missing values. In the first

experiment, classification of normal vs. cancer subjects was carried out. In the second

experiment, biological significance of imputation was ascertained by identifying top

candidate tumor drivers using the existing state-of-the-art SPARROWalgorithm, followed

by gene list enrichment analysis on top candidate drivers.

Results: Quantitative NMSE results of the DSNN method were compared with three

state-of-the-art imputation methods. DSNN method was observed to perform better

compared to these other methods both at high as well as low observable data.

Experiment-1 demonstrated superior results on classification with imputation compared

to that performed onmissing datamatrix as well as compared to classification on imputed

data with existing methods. In experiment-2, cancer affected pathways were discovered

with higher significance in the data imputed with the proposed method compared to

those discovered with the missing data matrix.
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Conclusion: Missing value problem in microarray data is a serious problem and can

adversely influence downstream analysis. A novel method, namely, DSNN is proposed

for missing value imputation. The method is validated quantitatively on the application of

classification and biologically by performing pathway enrichment analysis.

Keywords: matrix imputation, compressive sensing, machine learning, gene enrichment analysis, AML, CLL, MM,

blood cancer

1. INTRODUCTION

1.1. Motivation
High dimensional gene expression data helps in determining
gene-to-gene interactions in different biological pathways.
Molecular techniques such as “Microarrays” are used to measure
expression levels of genes. Different machine learning algorithms
and statistical methods are applied to gene expression data to
extract relevant information for applications such as disease
diagnosis and classification of clinical subtypes. These analyses
assist in developing effective drugs for specific diseases because
treatment procedures differ from disease to disease and case
to case. For example, in blood cancer, the drugs are required
to be targeted toward the specific type of cancer. Similarly, in
personalized therapy, the response of a subject to a particular
drug can be captured and its correlation with the mutation
profiles of the subject can be examined to design targeted
medicine. Thus, the therapy can be customized according to the
genetic built of the subject.

A persistent problem associated with microarray dataset is
the presence of varying number of missing values in the data
that may arise owing to poor slide quality (dusty or scratchy),
poor image quality, or insufficient resolution (1). Subsequent
downstream analysis on incomplete gene expression matrices
may be highly inaccurate. One of the ways of dealing with the
problem of missing values is to capture microarray data again but
it does not guarantee complete data matrix. Moreover, the entire
process is expensive and time consuming. An alternate solution
to this problem is to remove the genes containing missing values
from the analysis. However, this can result in loss of information
and may lead to inaccurate findings on driver genes and/or
altered biological pathways. Therefore, it is worthwhile to apply
advanced computational methods for the imputation of missing
values in microarray data prior to any analysis.

1.2. Background
Numerous methods have been developed in the recent times
for imputation of gene expression data. These can be broadly
categorized into four classes: hybrid methods, local methods,
global methods, and knowledge assistedmethods (Table 1). Some
of the early methods developed to account for the missing
values are ZEROimpute, ROWimpute and COLimpute (18).
In ZEROimpute, missing values are replaced with zeros. In
ROWimpute and COLimpute, missing values are replaced with
the averaged values of the observed entries of the corresponding
rows or columns. These methods do not take into consideration
the correlation present among genes and therefore, do not
perform optimally. Gene expression matrix is highly correlated.

Therefore, it is important to consider correlation among genes.
Several methods exist in literature based on correlation among
genes. These are categorized into local and global approaches
based on the type of correlation utilized by them. As shown in
Table 1, local approaches impute missing values by considering
the group of genes that show high correlation with the gene
containing missing values. Such methods perform optimally
when the data is heterogeneous. k nearest-neighbor imputation
(KNNimpute) (2) is one of the earliest local approach method to
impute missing value. It first estimates k nearest group of genes
that are similar to the missing target gene, followed by averaging
of these genes to impute the missing value of the target gene.
SKNNimpute (Sequential KNNimpute) (3) and IKNNimpute
(iterative KNNimpute) (4) are variations of KNNimpute.
Gaussian mixture clustering imputation (GMCimpute) (5), least
square imputation (LSimpute) (6), and variations to LLSimpute,
sequential LLSimpute (SLLSimpute) (7), iterative LLSimpute
(ILLSImpute) (8), robust least square estimation with principal
components (RLSP) (9), Bayesian gene selection BGSregress (10),
collateral missing value imputation (CMVE) (11), and auto-
regressive least square imputation (ARLS) (12) are all examples of
local approaches. On the other hand, SVDimpute (Singular Value
Decomposition) (2), Bayesian Principal Component Analysis
(BPCA) (13) are the examples of global approach and utilize the
global correlation present in the entire gene expression matrix.
Hybrid approaches include methods like LinCmb (14), HPM-
MI (15), and tri-imputation (16). GOimpute (17), HAimpute (1),
and (iMISS) (19) are knowledge-assisted methods that combine
the already existing domain knowledge to imputation techniques
for imputing missing values in gene expression data, thereby,
increasing their imputation accuracy. Gene Ontology based
similarity measure has been recently used for missing value
imputation in miRNA microarray data (20). A brief review of all
the existing methods is shown in Table 1.

Most of the methods perform missing value imputation in
gene expression data at comparatively higher observability, say,
when 70% or more data is available (that is equivalent to 30%
or less data is missing). Recent developments have made it
possible to predict expression data values when the observed data
is as low as 10%. Gene expression data is a highly correlated
data because of the high level of interdependence between the
genes. This interdependence is due to functional relationship
between the genes as the group of genes interact together
in any biological process. Therefore, it is evident that gene
expression matrix is very similar to a low rank matrix that can be
embedded into a lower dimensional subspace. Hence, imputation
of missing values in data matrix has been projected as the matrix
completion problem.
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TABLE 1 | Review of existing methods for missing value imputation in gene expression data.

Local approach Global approach Hybrid approach Knowledge assisted approach

Method • Imputes missing values by first

estimating the local correlation

among the group of genes that

are highly correlated with the

gene containing missing values

and then using the local

correlation to calculate the

missing value

• Imputes missing values by

utilizing the global correlation

among the genes in the

complete gene

expression matrix

• Exploits both the global and local

correlation among genes to

calculate missing values in gene

expression data

• Imputes missing values by

integrating already existing domain

knowledge to imputation methods.

Information about biological

process in the microarray

experiment etc. is an example of

domain knowledge that can be

integrated to the method

Advantages • Perform optimally when the data

is heterogeneous i.e., genes

exhibit dominant local

similarity structure

• Perform optimally when the

data has high global

covariance in

expression matrix

• Perform optimally regardless of the

type of covariance present in the

gene expression data

• Improves accuracy of missing value

imputation and perform optimally in

presence of noisy data

Limitations • Perform poorly when data lacks

local similarity structure

• Fail to perform well when the

data is heterogeneous

• Perform sub optimally when data is

noisy and has high missing rates

• Perform sub optimally when data

has high missing rates

Examples • K nearest-neighbor imputation

(KNNimpute) (2) and its

variations-SKNNimpute

(Sequential KNN) (3), IKNNimpute

(iterative KNNimpute) (4)

• Gaussian mixture clustering

imputation (GMCimpute) (5)

• Least square imputation

(LSimpute) (6) and its variations-

Local least square imputation

(LLSimpute) (3), Sequential

LLSimpute (SLLSimpute) (7),

iterative LLSimpute (ILLSimpute)

(8) and robust least square

estimation with principal

components (RLSP) (9)

• Bayesian gene selection

BGSregress (10), Collateral

missing value imputation (CMVE)

(11), Auto-regressive least square

imputation (ARLS) (12)

• Bayesian Principal Component

Analysis (BPCA) (13)

• SVDimpute (Singular Value

Decomposition) (2) first

estimates principal

components of gene

expression matrix by

calculating Singular value

decomposition of the gene

matrix and it then selects the

most significant components.

These selected components

are further used to

approximate missing values in

the gene expression data

• LinCmb (14) uses both global and

local correlation information in the

data. It estimates missing values

using five different imputation

algorithms, row average,

KNNimpute, GMCimpute,

SVDimpute and BPCA. It then

takes a convex combination of the

results obtained from each of the

methods to compute final result

• HPM-MI (Hybrid Prediction Model

with Missing value Imputation) (15)

is a hybrid approach that uses both

k-means clustering and Multilayer

perceptron. It uses eleven different

missing value imputation

techniques to compute missing

values and then selects the best

clusters using k-means to compute

final result

• Tri-imputation (16) employs three

base imputation algorithms to

impute the genes with

missing values

• GOimpute (17) uses the prior

information about the functional

similarities in term of GO for missing

value imputation

• HAimpute (Imputation using

Histone Acetylation information) (1)

combines histone acetylation

information as domain knowledge

with imputation methods such as

KNNimpute and LLSimpute.

Accuracy of missing value

imputation improves considerably

after utilizing domain knowledge

Matrix completion is a popular and challenging area of
research in various domains. Many matrix completion methods
exist in the literature and out of these methods, LMaFit (Low
Rank Matrix Fitting) (21), LogDet (Logarithm determinant)
(22), and Robust PCA (RPCA) (23) are three different
state-of-the-art matrix completion methods. LMaFit is based
on matrix factorization, while LogDet implements nuclear
norm minimization. RPCA performs feature reduction and is
quite robust to outliers. However, these methods have some
limitations. LogDet becomes computationally expensive as the
size of the matrix increases. LMaFit and RPCA-GD provide good
performance, but their parameters need to be tuned properly
for better recovery of missing values. Recently Kapur et al. (24)
has used low rank constrained matrix completion method for
imputing missing values in genomics.

In this paper, a novel 2-stage method, DSNN (Doubly Sparse
DCT domain with Nuclear Norm minimization), has been
proposed for predicting missing values in gene expression data
using Compressive Sensing (CS) based formulation. In the

first stage, missing values were recovered in gene expression
data by formulating it as the CS-based reconstruction with
double sparsity in the Discrete Cosine Transform (DCT).
It has been shown in Gupta et al. (25) that DCT acts as
approximate Karhunen-Loève type transform for a large class of
signals, particularly, for slowly varying signals. Inspired by this,
researchers have used DCT-based CS recovery to impute gene
expression data in recent TV-DCT method (26) and CT-NNBI
method (27), although only column sparsity was utilized in both
these methods, while DSNN utilizes double sparsity.

Matrix obtained in first stage is considered a noisy version
of the original matrix. Therefore, in Stage-2, denoising of the
matrix recovered from Stage-1 is done by utilizing nuclear
norm minimization. It exploits the low rank property of the
data matrix. Missing value imputation was performed on four
blood cancer dataset at different observability of data (10–90%)
using NMSE as evaluation metric. Significance of imputation
was validated by two experiments. In the first experiment,
classification of normal vs. cancer subjects was carried out. In

Frontiers in Oncology | www.frontiersin.org 3 January 2020 | Volume 9 | Article 1442

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Farswan et al. Significance of Missing Value Recovery in Pathways

the second experiment, biological significance of imputation was
ascertained by first identifying top 500 genes using SPARROW
algorithm (28), followed by KEGG and GO analysis on these top
500 genes. SPARROW (SPARse selected expRessiOn regulators
identified With penalized regression) algorithm finds candidate
tumor drivers from the “selected expression regulators” (SERs).
It defines SERs as the genes that drive dysregulated transcription
leading to carcinogenesis. This algorithm regresses the gene
expression values on the candidate SERs and provides a rank
to each SERs based on the genes expression values of the
samples. The method has been described briefly in section 3.
Once the ranking was done by SPARROW, top 500 ranked genes
from the list were further studied by KEGG (29–31) and GO
pathway (32, 33) analysis using a web based application, Enrichr,
developed and maintained by Chen et al. (34) and Kuleshov
et al. (35).

2. MATERIALS AND METHODS

2.1. Dataset Description
Four publicly available microarray gene expression dataset of
different cancer types and different population have been used.
Dataset-1 is Chronic lymphocytic leukemia (CLL) cancer dataset
(GSE50006) submitted by Dana-Farber Cancer Institute, USA.
CLL dataset contains expression values of 220 subjects across
54675 probe-ids and consists of two classes depending on
whether the subject has CLL or not. There are 188 tumor
samples and rest 32 are normal samples. Dataset-2 is Acute
myeloid leukemia (AML) cancer dataset (GSE9476) (36) from
Fred Hutchinson Cancer Research Centre, USA. It contains
gene expression values of 64 subjects across 22283 probe-ids.
Two classes are present in the data. Label “1” corresponds
to person suffering from AML and label “2” corresponds to
healthy subject. There are 26 tumor subjects and 38 healthy
subjects. Dataset-3 is Multiple Myeloma (MM) cancer dataset
(GSE47552) (37) from Centro de Investigacion del Cancer
de Salamanca, Spain. It contains gene expression data of 99
subjects across 33297 probe-ids. It has data from 20 subjects
with MGUS, 33 with high-risk SMM, 41 with MM, and rest
5 were healthy subjects. Dataset-4 is Multiple Myeloma (MM)
cancer dataset (GSE125361) belonging to Indian population.
It contains gene expression data of 48 MM subjects across
58341 probe-ids.

Data was pre-processed to convert probe-ids to gene symbols
because gene vs. sample information is required for SPARROW
analysis. It was observed that several probe-ids showed same
gene names. To overcome this problem, gene expression levels
of the probe-ids corresponding to the same gene name were
averaged and gene vs. sample matrix was created. After pre-
processing, CLL dataset had 220 samples with expression values
of 23,348 genes. AML dataset had 64 samples with expression
values of 13,650 genes. MM-Spanish dataset had 99 samples with
expression values of 23,307 genes. MM-Indian dataset had 48
samples with gene expression values of 33,973 genes. Since the
range of gene expression values was very high (of the order of
106) for the CLL dataset, data was log transformed to reduce
its dynamic range and to ensure that the smaller values were

not shadowed by the higher values during the missing data
recovery method.

Xlog-transformed(i, j) = log10(Xoriginal(i, j)+ 1) (1)

Matrix imputation was carried out on the sample vs. gene
matrices. After matrix imputation, only tumor samples of both
the dataset were used for SPARROW analysis.

2.2. Method
Workflow pipeline of the proposed analysis is shown in Figure 1.
First of all, pre-processing of raw data was done as described
in the previous section. Next, missing value imputation was
carried out on four blood cancer dataset at different observability
of data using Normalized Mean Square error (NMSE) as
evaluation metric. Significance of imputation was validated by
two experiments. In the first experiment, classification of normal
vs. cancer subjects was carried out. In the second experiment,
biological significance of imputation was ascertained using
SPARROW algorithm (28) followed by KEGG and GO analysis
on the top 500 genes identified by SPARROW.

2.2.1. Proposed DSNN Method of Matrix Imputation
The proposed “Doubly Sparse DCT domain with Nuclear Norm
minimization” (DSNN) method consists of two stages. Stage-1
imputes missing values using a CS-based framework and DCT-
based sparsity, while Stage-2 removes noise from the matrix
obtained from Stage-1 by using a simple denoising framework.

2.2.1.1. Stage-1: Compressive sensing based matrix

completion
In this stage, missing value problemwas projected as compressive
sensing based reconstruction problem. To understand it better,
consider an incomplete matrix Y of size r × s, where r represents
the number of subjects and s denotes the number of genes.
Since the expression value of any gene will not vary much
across subjects, data within a column would be sparse in some
transform domain. Similarly, for a sample, gene expression levels
of the gene will also be sparse in some transform domain.
Columns and rows of the gene expression matrix were studied
in the DCT domain and were observed to be highly sparse as
shown in Figure 2. Based on this observation, Discrete Cosine
Transform was chosen as the sparsifying transform in DSNN
method because DCT acts as a KL-type basis for slow-varying
signals (25) and data is sparse in the DCT domain.

Thus, the missing data recovery problem was formulated in
a compressive sensing framework, where the sensing matrix 8

was of size r × s and had “0” entries for missing values in data
matrix Y, while rest of the entries were “1.” Corresponding to
each observed entry (that is not missing) of the ith column,
there is a row in 8i with an entry “1” for the corresponding
position and zeros in the rest of the positions. For example,

assume xmissing=
[
x1 . x3 . . x6

]T
is the observed vector where

only x1, x3, and x6 are available and, x2, x4, and x5 are missing
(denoted as “.” in the vector). Then, the vector xmissing can be
re-written as y:

y = 8x (2)
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FIGURE 1 | Workflow of the proposed analysis.

FIGURE 2 | Each curve represents DCT coefficients of a few randomly chosen columns and rows of gene expression matrices of CLL dataset.

y =



x1
x3
x6


 =



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1







x1
x2
x3
x4
x5
x6



, (3)

where the sensing matrix is written as 8 =



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1




and x is the desired vector to be recovered. This is the

standard formulation in compressive sensing literature, where
it is assumed that only few values of data are sensed. In the
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above example, these values are x2, x4, and x5. Thus, we have
recast the problem of missing values in vector xmissing as the
compressively sensed vector y. Now, the task is to recover full
data x from compressively sensed data y that will lead to missing
value recovery.

Gene expression data was interpreted as a matrix with few
observed samples, where the goal was to reconstruct the original
matrix from the observed entries using DCT-based sparsity of
gene expression data.

The following optimization problem was solved to recover the
missing values in Y

min
X̃

(||Y− 8X̃||22 + λ1||DcX̃D
T
r ||1), (4)

where Dc is columnwise DCT matrix applied on columns of the
X̃ and Dr is the rowwise DCT matrix applied on rows of the
X̃. X̃ is the matrix to be recovered. The above formulation is
also known as analysis-prior and presence of DCT matrices in
the formulation makes it non-separable. Using the orthogonal
property of DCT transform, analysis prior was transformed to
synthesis-prior formulation as

min
Z

(||Y− 8DT
c ZDr||

2
2 + λ1||Z||1), (5)

where DcX̃D
T
r = Z. The above optimization problem was solved

using the function handle and “SPGL1” solver (38, 39), where
the regularization parameter λ1 was chosen automatically by the
“SPGL1” solver.

2.2.1.2. Stage-2: denoising framework
It was assumed that the recovered X̃ from Stage-1 is the noisy
version of the original matrix X and hence, the recovered matrix
was denoised in Stage-2. Before denoising, X̃ was re-organized
into X̃rec as

X̃rec(j, i) =

{
0, if (|x̃(j, i)−mean(yi)| ≥ λ2std(yi)

x̃(j, i), otherwise
(6)

where j ranges from 1 to m (number of rows/ subjects), |.|
denotes the absolute value and, mean(yi) and std(yi) denote
the mean and the standard deviation of the ith column of the
initial observed (but incomplete) matrix Y. Parameter λ2 was
determined empirically and was set to value 0.2 for experiments
on CLL dataset, MM-Spanish dataset, and MM-Indian dataset. It
was set to 0.1 for experiments on AML dataset. Denoising was
formulated in the Split-Bregman type optimization as

min
W

(
||W||∗ + λ3||W− X̂− B||2F

)
s.t. X̂ = W, (7)

where X̂ was initialized as:

X̂ = X̃rec + X̃inv-rec ◦ rand(m, n), (8)

where “◦” represents the Hadamard product of twomatrices with
the elements of X̃inv-rec defined as

X̃inv-rec(j, i) =

{
1, if X̃rec(j, i) = 0,

0, otherwise.
(9)

Equation (5) was solved in Split Bregman type iterations as

Wk+1 = SVTλ3 (X̂
k
+ Bk), (10)

Bk+1 = X̂
k
+ Bk −Wk, (11)

X̂
k+1

= X̃rec + X̃obs ◦W
k+1, (12)

where “SVT” denotes the soft singular value thresholdingmethod
(40) and X̃obs is the observed incomplete matrix. Optimal value
of parameter λ3 was determined using grid search and was set to
100 in all experiments. The complete algorithm for the proposed
DSNN method is presented below.

Algorithm 1: Proposed DSNNMethod

1 Stage 1 - Compressive sensing based matrix recovery

Input: Y (Given incomplete matrix), φ, Discrete Cosine
Transform matricesDr ,Dc

2 Obtain Z by solvingmin
Z

(||Y− 8DT
c ZDr||

2
2 + λ1||Z||1)

using ‘spgl’ solver
3 X̃ = DT

c ZDr

Output: X̃
4 Stage 2: Nuclear-norm based denoising

Input: X̃ (Recovered Matrix from Stage-1 considered as the
noisy matrix)

5 X̃rec(j, i) =

{
0, if (|x̃(j, i)−mean(yi)| ≥ λ2 std(yi)

x̃(j, i), otherwise,

6 X̂ = X̃rec + X̃inv-rec ◦ rand(m, n)
7 while converge:

8 Wk+1 = SVTλ3 (X̂
k
+ Bk)

9 Bk+1 = X̂
k
+ Bk −Wk

10 X̂
k+1

= X̃rec + X̃obs ◦W
k+1

11 end while
Output: X̂ (Recovered Matrix)

3. RESULTS

3.1. Evaluation
For assessing the performance of the proposed DSNN method,
some data were dropped randomly to create incomplete matrices
with available data ranging from 10 to 90%. Next, incomplete
matrices were imputed using the DSNN method. Results were
simultaneously generated using three state-of-the-art matrix
completion methods for comparative analysis. Normalized mean
squared error (NMSE) was used as the evaluation metric and was
calculated between the original and the recovered matrix. NMSE
is defined as:

NMSE =
||X(original)− X̂(recovered)||2F

||X(original)||2F
. (13)
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Semi-log plots of NMSE at different stages are shown in
Figure 3. Stage-1 results were obtained when missing values
in data matrix were imputed using compressive sensing based
matrix completion, where double sparsity in DCT domain was
exploited. Stage-2 results were obtained when only nuclear norm
minimization was used for matrix imputation. DSNN method
combined both these stages. Results clearly indicated that the
performance of imputation has improved with the two successive
stages of DSNN. DSNN method also worked better than the
existing methods even at high missing rates of 10% as shown
in Figure 4. NMSE reported in the figures is averaged over 30
iterations. For CLL dataset, highest NMSE reported was 0.09 at
10% observed data and lowest NMSE was 0.004 at 90% observed
data. For AML dataset, highest NMSE was 0.013 at 10% observed
data and lowest NMSE was 0.00056 at 90% observed data. For
MM-Spanish dataset, highest NMSE reported was 0.005 at 10%
observed data and lowest NMSE was 0.00039 at 90% observed
data. For MM-Indian dataset, highest NMSE was 0.0122 at 10%
observed data and lowest was 6.25E-04 at 90% observed data.

3.2. Validation
In order to determine the significance of the DSNN method,
two separate experiments were carried out on the original data,
incomplete data, and imputed data matrices. In experiment-
1, classification of normal vs. cancer subjects was carried
out. In experiment-2, biological significance of imputation was
ascertained by first identifying top candidate tumor drivers from

SPARROW algorithm, followed by gene enrichment analysis on
the top-ranked genes using web based application Enrichr.

3.2.1. Experiment 1: Classification
Simulation results on missing value recovery were validated
by performing classification on original matrices, matrices with
random missing values, and imputed matrices of the CLL
and AML dataset. Classification can be either supervised or
unsupervised depending on the availability of ground truth
labels. In these dataset, ground truth labels were available. Hence,
supervised classification was performed to distinguish between
two classes, normal and cancer using two different classifiers:
linear Support Vector Machine (SVM) and k nearest neighbor
(KNN) method with k = 3. Both the dataset had large
number of features, therefore, feature reduction was performed
to extract important features from the data. Three different
methods of feature reduction were used, Mutual Information
criterion, Principal Component Analysis (PCA) and Chi-square
method. Optimal number of features in each method were
estimated by grid search. Further, five-fold cross validation
was performed and average accuracy over 20 iterations was
reported. Experiments were performed in Python 3 environment
with Sklearn 0.20 library. Classification code was written in
Python programming language. Scikit-learn is a Python module
for machine learning and contains various algorithms related
to regression, classification, and clustering. Examples of these
algorithms are support vector machines (SVM), random forest

FIGURE 3 | Semi-log plots show NMSE after imputation on (A) CLL, (B) AML, (C) MM-Spanish, and (D) MM-Indian dataset using Stage-1 only, Stage-2 only, and

Proposed DSNN method (Stage-1 + Stage-2).

FIGURE 4 | Small Semi-log plots showing comparison of the proposed DSNN method with the three state-of-the-art methods in terms of NMSE for (A) CLL, (B)

AML, (C) MM-Spanish, and (D) MM-Indian dataset.
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(RF), k-means. Classification accuracy and F1 score were
calculated at different sampling ratios from 10 to 90%. The
accuracy and F1 score are defined as

Accuracy =
1

M

M∑

i=1

1(xi = x̃i), (14)

and F1 =
2× precision× recall

precision+ recall
, (15)

where M is the total number of samples in the dataset, xi is the
ground truth class label of the ith sample, and x̃i is the predicted
class label. Weighted F1 score was used in order to account for
label imbalance arising out due to unequal number of tumor
and normal samples. CLL dataset had 188 tumor and 32 normal
samples and AML dataset had 26 tumor samples and 38 normal.
Tables 2, 3 clearly indicate that values of classification accuracy
and F1 scores for incomplete matrices are low as compared
to the values obtained on imputed matrices. Classification
accuracy and F1 scores were also computed on imputed matrices
obtained from the three existing methods on both the dataset

and compared with the results of DSNN method as shown in
Figures 5, 6. Classification was also performed on MM-Spanish
dataset (Results are shown in Table T1). Classification could not
be performed on MM-Indian data because it was a single class
data, i.e., of tumor samples only.

3.2.2. Experiment 2: Biological Validation
For biological validation of the results, SPARROW was
applied on the original matrix, incomplete matrices, and
imputed matrices to identify top candidate tumor driver genes.
SPARROW (SPARse selected expRessiOn regulators identified
With penalized regression) was proposed by Logsdon et al. (28)
and aims to find out candidate tumor drivers from the “selected
expression regulators” (SERs). It defines SERs as the genes that
drive dysregulated transcription leading to carcinogenesis. In this
method, variational Bayesian spike regression model has been
used to fit the following model,

ym,n =
∑

xm,kβk,n + em,n, (16)

TABLE 2 | Classification accuracy and F1 score for CLL dataset at varying sampling ratios (FR, feature reduction; SR, sampling ratio; Obs., observed; Rec., recovered

using DSNN method.

Classification accuracy

FR PCA Chi-Square method Mutual info method

KNN Linear SVM KNN Linear SVM KNN Linear SVM

SR Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec.

10% 0.71 0.87 0.73 0.77 0.84 0.96 0.85 0.97 0.86 0.96 0.89 0.98

20% 0.71 0.87 0.75 0.78 0.80 0.97 0.84 0.98 0.86 0.98 0.87 0.99

30% 0.79 0.89 0.77 0.81 0.85 0.97 0.84 0.98 0.85 0.99 0.87 0.99

40% 0.79 0.89 0.81 0.91 0.85 0.98 0.85 0.98 0.86 0.99 0.88 0.99

50% 0.80 0.89 0.85 0.97 0.86 0.99 0.85 0.98 0.88 0.99 0.90 0.99

60% 0.78 0.92 0.87 0.97 0.85 0.99 0.85 0.98 0.90 0.99 0.92 0.99

70% 0.83 0.90 0.90 0.97 0.86 0.99 0.86 0.98 0.93 0.99 0.96 0.99

80% 0.83 0.91 0.96 0.98 0.86 0.99 0.87 0.98 0.98 0.99 0.99 0.99

90% 0.85 0.91 0.97 0.97 0.87 0.98 0.91 0.98 0.99 0.99 0.99 0.99

F1 score

FR PCA Chi-Square method Mutual info method

KNN Linear SVM KNN Linear SVM KNN Linear SVM

SR Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec.

10% 0.72 0.86 0.72 0.72 0.78 0.96 0.79 0.96 0.79 0.95 0.85 0.98

20% 0.72 0.85 0.74 0.72 0.77 0.97 0.78 0.98 0.79 0.98 0.81 0.98

30% 0.78 0.88 0.77 0.77 0.79 0.97 0.78 0.97 0.79 0.99 0.82 0.99

40% 0.78 0.86 0.80 0.90 0.79 0.98 0.79 0.98 0.79 0.99 0.85 0.99

50% 0.80 0.88 0.84 0.96 0.80 0.99 0.79 0.98 0.84 0.99 0.87 0.99

60% 0.78 0.90 0.86 0.96 0.79 0.99 0.79 0.98 0.88 0.99 0.90 0.99

70% 0.82 0.89 0.90 0.97 0.80 0.99 0.80 0.98 0.92 0.99 0.96 0.99

80% 0.82 0.90 0.96 0.98 0.80 0.98 0.82 0.98 0.98 0.99 0.99 0.99

90% 0.84 0.91 0.97 0.97 0.82 0.98 0.89 0.98 0.98 0.99 0.99 0.99
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TABLE 3 | Classification Accuracy and F1 score for AML dataset at varying sampling ratios (FR, feature reduction; SR, sampling ratio; Obs., observed; Rec., recovered

using DSNN method).

Classification accuracy

FR PCA Chi-Square method Mutual information method

KNN Linear SVM KNN Linear SVM KNN Linear SVM

SR Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec.

10% 0.55 0.84 0.54 0.83 0.60 0.86 0.86 0.96 0.76 0.91 0.96 0.98

20% 0.50 0.98 0.50 0.98 0.97 0.97 0.98 0.98 0.73 0.99 0.91 0.99

30% 0.45 0.99 0.45 0.99 0.97 0.97 0.98 0.98 0.76 1.0 0.91 0.99

40% 0.53 0.99 0.59 0.99 0.95 0.99 0.99 1.0 0.71 1.0 0.86 1.0

50% 0.54 0.98 0.56 0.99 0.96 0.96 0.99 0.99 0.77 1.0 0.83 0.99

60% 0.63 0.98 0.70 0.99 0.98 1.0 0.99 1.0 0.75 1.0 0.93 1.0

70% 0.63 0.96 0.67 0.99 0.98 0.98 0.99 1.0 0.82 1.0 0.96 0.99

80% 0.75 0.96 0.77 0.99 0.99 0.99 0.96 1.0 0.87 0.98 0.96 1.0

90% 0.80 0.94 0.87 0.99 0.99 0.99 0.96 0.99 0.94 0.99 0.97 0.99

F1 score

FR PCA Chi-Square method Mutual information method

KNN Linear SVM KNN Linear SVM KNN Linear SVM

SR Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec. Obs. Rec.

10% 0.53 0.83 0.54 0.83 0.48 0.85 0.86 0.95 0.76 0.91 0.96 0.98

20% 0.49 0.98 0.50 0.98 0.97 0.97 0.98 0.98 0.73 1.0 0.91 0.99

30% 0.45 1.0 0.46 0.99 0.97 0.97 0.98 0.99 0.76 1.0 0.91 0.99

40% 0.52 0.99 0.60 1.0 0.96 0.99 1.0 1.0 0.72 1.0 0.86 1.0

50% 0.53 0.98 0.57 0.99 0.96 0.96 0.99 0.99 0.78 1.0 0.82 0.99

60% 0.64 0.97 0.70 0.99 0.98 1.0 0.99 1.0 0.75 1.0 0.93 1.0

70% 0.64 0.97 0.68 1.0 0.98 0.98 0.99 1.0 0.82 1.0 0.96 0.99

80% 0.73 0.96 0.77 0.99 0.98 0.99 0.96 1.0 0.87 0.98 0.96 1.0

90% 0.77 0.93 0.87 0.98 0.99 0.99 0.96 0.99 0.94 0.99 0.97 0.99

FIGURE 5 | Comparison of different methods in terms of classification accuracy and F1 score at varying sampling ratios on CLL dataset.

where ym,k is the value of expression of the nth gene for the mth
subject, em,n is a normally distributed error, xm,k is the value of
expression of the kth SER for the mth subject and βk,n is the

additive effect of the expression of the kth SER on the expression
of the nth gene. m ranges from 1.....M, where M is the total
number of subjects and n ranges from 1........N, where N is the
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FIGURE 6 | Comparison of different methods in terms of classification accuracy and F1 score at varying sampling ratios on AML dataset.

total number of genes. Total SERs used in the analysis were
around 3,400 and they were downloaded from the link provided
in the original paper. This algorithm provides a rank to each
SER based on the gene expression values of the samples. The
top-ranked genes from the list can be further studied by gene
enrichment analysis.

For finding top 500 candidate driver genes, only the tumor
samples from the data matrices were considered for SPARROW
analysis. Algorithm was applied on original complete data
matrices of all the dataset to identify the top-ranked candidate
tumor drivers. This served as the ground truth for our analysis.
Further, SPARROW was applied on incomplete and imputed
data matrices of both the dataset at sampling ratios of 50 and
70%. Top-ranked candidate drivers from the incomplete and
imputed data matrices were obtained. Gene enrichment analysis
was performed on top 500 genes. KEGG and GO pathways
were studied using web based application, Enrichr, developed,
and maintained by Chen et al. (34) and Kuleshov et al. (35).
KEGG pathways obtained from gene lists of original dataset were
the ground truth. It was observed that when KEGG pathway
analysis was done for incomplete matrices, these were not able to
predict cancer pathways with a higher significance (low p-value)
whereas for imputed matrices, cancer pathways were predicted

with a higher significance due to decrease in p-value. Results

from KEGG analysis on all dataset are presented in tabular
form showing the p-values, combined score for original data
and the incomplete and complete matrices in tabular form in
Tables T2–T5. p-value was computed from the Fisher exact test.
Fisher test was run on random gene sets and ranks were derived
at each run. Mean rank was calculated from the different runs
and standard deviation of the rank obtained from the expected
rank was also calculated for each term in the gene-set library.
Finally, a z-score was calculated to estimate the deviation from
the expected rank. z-score and p-value were used to compute
combined score which is obtained by multiplying z-score with
the logarithm of p-value. A detailed analysis for CLL dataset
consisting of z-score and combined score has also been shown
in Tables T6, T7. Similarly, GO pathways were obtained from

the Enrichr and bubble plots were constructed from GO tables
as shown in Figures S5–S12.

4. DISCUSSION

4.1. Importance of the Proposed DSNN
Method
DSNN, a two stage method proposed for matrix recovery in the
paper, was based on Compressive Sensing Framework. In Stage-
1, it utilized column and row sparsity of the gene expression

matrix in DCT domain for missing value imputation, while in

Stage-2, it exploited low rank nature of the matrix for denoising.
Expression values of any particular gene would vary slowly
across subjects, thereby, exhibiting sparsity in columns in some
transformed domain. Similarly, expression values of a subject
for most of the genes will also be slowly varying, thereby,
exhibiting sparsity in the rows. Since there is a high inter-
dependence between the expression levels of the genes, one may
consider gene expression matrix as a low rank matrix. Thus,
as discussed earlier, both the assumptions used in Stage-1 (of
sparsity in DCT domain) and Stage-2 (low rank of matrix)
hold true for the given gene expression data. The concept of
DCT-based sparsity was recently applied on biological data
in methods, TV-DCT (26) and CT-NNBI (27), although only
column sparsity in the DCT domain was used. On the other
hand, this work utilizes double sparsity, i.e., sparsity on both
the columns and the rows. Most of the imputation algorithms
developed for missing value imputation such as KNN, LSimpute,
LLSimpute, BPCA etc. work at high observability of data, while
the proposed DSNN method worked well even when data had
very high missing rates of 10–40%. The proposed DSNNmethod
performed better than the othermatrix completionmethods at all
sampling ratios. The state-of-the-art matrix imputation methods
that have been used for performance comparison in this work
required a lot of parameter tuning for optimal performance,
while DSNN method did not require parameter tuning to such
a great extent.
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4.2. Improvement in Classification
Accuracy
It was evident from the results shown in Tables 2, 3 that the
classification accuracy and F1 scores reduced as the number
of missing values increased. There were 220 samples in CLL
dataset and 64 samples in AML dataset. For smaller dataset
like AML, missing values affected the classification accuracy
and F1 scores greatly. Thus, it is necessary to impute missing
values in gene expression data to prevent incorrect downstream
analysis of the data. When the classification was performed
on the imputed data, there was considerable improvement in
the classification accuracy, thereby, validating our hypothesis.
Classification accuracy and F1 scores calculated on original
complete data matrices (100% sampling ratio) were considered
as ground truth values. For CLL dataset, ground truth values

of classification accuracy and weighted F1 score were 0.99 and

0.99, respectively, as shown in Figure 5. For KNN classifier and

Chi-square feature selection approach, classification accuracy

and F1 score obtained for 50% observed data was 0.86

and 0.80, respectively as shown in Table 2. After imputation,
values improved significantly to 0.99 and 0.99. For AML
dataset, ground truth values of classification accuracy and F1
score were 1.0 and 1.0, respectively as shown in Figure 6.
Similarly for Linear SVM classifier and PCA feature selection
approach, classification accuracy and F1 score for 50% observed
data was 0.56 and 0.57, respectively, as shown in Table 3.
After matrix imputation, classification accuracy and F1 score
improved considerably to 0.99 and 0.99, respectively. For every
sampling ratio, consistent results were obtained that validates
our method.

FIGURE 7 | Few important KEGG pathways at 70% observed and imputed data for CLL data. Adjusted p-values are shown in brackets.

FIGURE 8 | Few important KEGG pathways at 70% observed and imputed data for AML data. Adjusted p-values are shown in brackets.
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4.3. Improvement in Functional Enrichment
Analysis for KEGG Pathways
KEGG and GO enrichment analysis was performed on the
top 500 ranked genes obtained from SPARROW algorithm to
biologically validate our results. As mentioned earlier, KEGG
pathways obtained by the top-ranked genes of original matrices
were considered the ground truth values. Pathways with p-value
< 0.05 were only considered. When KEGG analysis was done on
top-ranked genes from incomplete matrices, there was significant
decrease in the p-value of the most significant pathways. “Wnt
signaling pathway” (41, 42) and “Notch signaling pathway”
(43, 44) are important pathways in CLL cancer. An important
observation was that p-value for “Notch signaling pathway” was
2.00E-01 at ground truth and it was 5.76E-02 at 70% observed

data for CLL dataset. Values were insignificant in both the cases.
However, after imputation, p-value became significant with value
1.56E-02 which was <0.05 as shown in Figure 7.

Similarly, p-value for “Wnt signaling pathway” was 8.33E-05

on original dataset, as shown in Figure S1. At 50% observed

data p-value for “Wnt signaling pathway” was 3.10E-02 which

was less significant than the ground truth value at 50% observed

data. After matrix imputation, p-value became significant with
value 2.13E-03. Similarly, p-value became 1.90E-05 after matrix
imputation on 70% observed data which was more significant
than the p-value 6.66E-5, observed at 70% data. “Fc epsilon
RI signaling pathway” is an important pathway in AML cancer
(45). This pathway was insignificant for original data with p-
value-2.12E-01. At 70% observed data, p-value was 9.40E-02

FIGURE 9 | Few important KEGG pathways at 70% observed and imputed data for MM-Spanish data. Adjusted p-values are shown in brackets.

FIGURE 10 | Few important KEGG pathways at 70% observed and imputed data for MM-Indian data. Adjusted p-values are shown in brackets.
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which was again greater than 0.05. After matrix imputation,
the value became significant at 2.75E-02, which was less than
0.05 as shown in Figure 8. Similarly, ‘Ras signaling pathway”
is activated in Multiple Myeloma cancer (46). For MM-Spanish
data, “Ras signaling pathway” was significant with p-value-0.0052
for original data but became insignificant with p-value-0.23 when
70% data was observed as shown in Figure 9. After matrix
imputation, significance of the pathway was restored with p-value
0.04. For MM-Indian dataset,“Transcriptional misregulation in
cancer” was found to be insignificant with p-value 0.47 as shown
in Figure 10. After imputation, p-value decreased to 1.37E-03
and became more significant than ground truth p-value, 7.8E-03.
Additional KEGG analysis results on the dataset CLL, AML and
MM Spanish data are provided in the Figures S2–S4.

Thus, DSNN method not only imputed missing entries
but also performed some denoising to improve the results.
It is quite evident from the analysis that gene enrichment
analysis results were partially inaccurate due to incomplete
matrices. This was because the genes identified as top-ranked
genes by performing SPARROW analysis on complete data
matrix were not identified in the top-ranked list obtained
from incomplete data matrix. However, when the incomplete
matrix was imputed using the proposed DSNN method,
top-ranked list of genes obtained from SPARROW analysis
was quite similar to the ground truth. Our observations
demonstrate the importance of imputing missing values in gene
expression data.

5. CONCLUSION

Microarray data generally has a lot of missing values that can
adversely influence the downstream analysis. In this paper, a
new method, namely DSNN, is proposed that imputes missing
values in the gene expression data using discrete cosine transform
based double sparsity and nuclear norm minimization. Method

was also validated quantitatively based on the application of
classification approach as well as biologically by performing
pathway enrichment analysis and showed consistent findings.
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