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Skeletal muscle is a dynamic tissue, crucial for whole-
body functioning due to its role in both locomotion and 
metabolism. To meet such multifunctional demands, skel-
etal muscle is highly adaptable and undergoes structural 
and metabolic remodelling. Exercise is a well-established 
physiological stimulus for inducing skeletal muscle re-
modelling which maintains function. One of the key 
molecular drivers for promoting skeletal muscle remod-
elling is protein turnover. Protein turnover is essential for 
preventing the accumulation of damaged and misfolded 
proteins, which when impaired contributes to ageing and 

disease.1 Therefore, understanding the underlying mech-
anisms by which exercise induces protein turnover will 
be beneficial for developing new therapeutics to maintain 
skeletal muscle health.

Post-translational modifications (PTMs), such as pro-
tein ubiquitylation and phosphorylation, are signalling 
messengers that regulate biological processes, such as pro-
tein turnover, in cells and tissue including skeletal muscle. 
However, research over the last few decades has primar-
ily focused on protein phosphorylation. Accordingly, we 
now have considerable knowledge of protein kinase- and 
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Abstract
Physical activity or regular exercise provides many beneficial effects towards 
human health, helping prevent and ameliorate metabolic diseases. However, 
certain molecular mechanisms that mediate these health benefits remain poorly 
understood. Parker et al. provided the first global analysis of exercise-regulated 
ubiquitin signalling in human skeletal muscle, revealing post-translational modi-
fication cross-talk. As a result of their analysis, NEDDylation is thought to pro-
mote ubiquitin signalling for the removal of damaged proteins following exercise. 
The proteomic dataset generated from their study is invaluable for researchers 
in this field to validate new mechanistic hypotheses. To further reveal molecular 
mechanisms regulated by exercise, future research could employ more sensitive 
mass spectrometry-based workflows that increase the detection of both ubiquity-
lated sites and peptides and subsequently identify more exercise-regulated ubiq-
uitin signalling pathways.
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phosphatase-dependent signalling pathways. In contrast, 
protein ubiquitylation remains poorly studied, especially 
in relation to exercise.

Ubiquitylation is most known for its role in protein 
degradation. The addition of ubiquitin to proteins by 
ubiquitin-activating (E1), -conjugating (E2) and -ligating 
(E3) enzymes can signal for degradation via the protea-
some. For this to occur, a specific ubiquitin modification 
must be formed. Ubiquitin can be bound to substrates as a 
monomer on a signal site (monoubiquitylation) or multi-
ple sites (multi-monoubiquitylation). Alternatively, ubiq-
uitin can be polymerised to form a chain on the substrate 
(polyubiquitylation).3 Polyubiquitination can be classified 
into eight different chain types depending on the ubiq-
uitin linkage site (K6, K11, K27, K29, K33, K48, K63 and 
M1). While certain ubiquitin chain types signal for non-
degradative processes, K48- and K11-linked ubiquitin 
chains are known to signal for protein degradation via the 
proteasome.4

Due to its well-known role in degrading proteins, 
ubiquitylation is thought to be important for removing 
damaged myofibrillar proteins after exercise. Previous 
studies have shown that exercise promotes muscle protein 
breakdown.5,6 However, the underlying molecular mech-
anisms responsible are not fully understood. Support for 
ubiquitin-mediated protein degradation comes from in-
creased proteasome activity and subsequent decreases 
in K48-linked ubiquitin chains following a single bout 
of high-intense endurance exercise.7 These findings have 
meant that ubiquitin is often described as a ‘death marker 
protein’. Over the last few years, accumulating evidence 
has indicated that protein ubiquitylation is involved in 
many other biological regulations beyond protein degra-
dation in skeletal muscle. For example, nonproteolytic 
ubiquitylation has shown to stabilise proteins required 
for sarcomeric integrity.8 Furthermore, while many ubiq-
uitylated proteins are degraded by the proteasome, their 
removal can regulate non-degradative signalling events 
such as myogenesis and insulin signalling.9 However, due 
to the lack of comprehensive research, the role of protein 
ubiquitylation in skeletal muscle following exercise re-
mains incompletely understood.

A recent publication by Parker et al., is the first study 
to provide a global analysis of exercise-regulated protein 
ubiquitylation in skeletal muscle.10 They found that a 
single bout of high-intense endurance exercise alters 391 
ubiquitylated peptides in 160 different proteins, revealing 
several ubiquitin-mediated signalling pathways during ex-
ercise. Furthermore, they demonstrated that high-intense 
exercise leads to dynamic changes in the abundance of 
each lysine-linked polyubiquitylated chain. Overall, this 
study has provided a valuable resource of candidate pro-
teins and ubiquitin modifications to assist future research 

into exercise-regulated protein ubiquitylation, opening a 
multitude of avenues to be explored in greater depth.

In support of the notion that exercise promotes protein 
degradation through ubiquitylation, K48-linked ubiquitin 
chains were rapidly restored to baseline levels following 
an immediate decrease during exercise.10 The authors 
proposed that NEDDylation is responsible for promoting 
ubiquitin-mediated protein degradation following exer-
cise. NEDDylation is a ubiquitin-like PTM, important for 
activating Cullin-RING type E3 ligases through NEDD8 
conjugation.11,12 Cullin-RING E3 ligases are the largest 
family of E3 ligases that can generate signals for protein 
degradation.13 Parker et al. found that NEDD8 protein 
levels are increased during exercise and remain elevated 
during the recovery period. Interestingly, they showed 
that when NEDD8 is inhibited, protein ubiquitylation 
levels are not restored after cAMP stimulation (a signal-
ling messenger often increased by exercise). These ob-
servations led them to hypothesise that exercise-induced 
NEDDylation promotes protein ubiquitylation by activat-
ing Cullin-RING E3 ligases which enhances the removal 
of damaged proteins.

To analyse global changes in exercise-regulated pro-
tein ubiquitylation, Parker et al. used quantitative mass 
spectrometry. In order to detect these changes, they used 
diglycine (diGLY) antibody-based immunoprecipitation 
to enrich ubiquitylated substrates at the peptide level. 
This approach uses monoclonal antibodies (K-ε-GG) 
which bind to diGLY remnants present on ubiquitylated 
peptides digested by trypsin.14 It is worth noting that the 
diGLY remnant is also a product of trypsin digested pep-
tides modified by ubiquitin-like modifications such as 
NEDDylation and ISGylation; however, the vast major-
ity of diGLY enriched peptides are ubiquitylated.15 Once 
enriched, these modified peptides were then eluted and 
labelled using the isobaric chemical tandem mass tag 
(TMT) to enable precise quantification following mass 
spectrometry. This ubiquitin enrichment technique not 
only enhances the detection ubiquitylated peptides but 
also facilitates the identification of specific amino acid 
sites modified by ubiquitin.16 This technique has been 
used to identify ubiquitylated peptides and sites in sev-
eral different cells15,17 and a few rodent tissues.18 Within 
rodent skeletal muscle, employing diGLY antibody-based 
immunoprecipitation has advanced our understanding of 
molecular signalling during atrophy.19-21 Parker et al. are 
the first to implement this technique in human skeletal 
muscle in the context of exercise.

The study by Parker et al. has provided a great platform 
for future research to employ recently developed tech-
niques within the context of exercise to increase the depth 
of ubiquitylation profiling. Revealing ubiquitylation pro-
filing in more depth will help towards understanding 
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the role of regulatory proteins, for example the targets of 
exercise-regulated E3 ligases, bridging existing knowledge 
in exercise-induced PTMs and molecular signalling. This 
information will aid the discovery of exercise biomarkers 
and is useful for developing therapeutics to recapitulate 
certain benefits of exercise. With the continuous develop-
ment of mass spectrometry-based techniques, there is an 
opportunity to utilise highly sensitive methods to identify 
more ubiquitylated proteins and sites following exercise.

Udeshi et al. has developed an approach named 
UbiFast to improve the detection of ubiquitylated pro-
teins by mass spectrometry.22 This approach uses diGLY 
antibody-bound TMT labelling to ensure diGLY remnants 
are not labelled. TMT reagents are amine-reactive and so 
bind to the amine present on diGLY remnants,16 which 
hinders the detection of diGLY-modified peptides during 
mass spectrometry.22 When comparing this approach to 
the conventional labelling method employed by Parker 
et al., UbiFast detects a greater level of both total ubiquityl-
ated peptides and their relative abundance.22 Importantly, 
UbiFast identified ~10,000 ubiquitylation sites from only 
500  μg of peptides per sample derived from human tu-
mour tissue.22 This demonstrates the high sensitivity of 
UbiFast for protein ubiquitylation profiling, which is ben-
eficial when analysing small amounts of primary tissue 
samples such as human skeletal muscle.

To enhance ubiquitylation profiling, one could also con-
sider directly enriching ubiquitin-conjugated substrates 
at the protein level. Affinity enrichment of ubiquitylated 
proteins has been widely used prior to mass spectrometry 
by taking advantage of ubiquitin binding domains, such 
as Tandem ubiquitin-binding entity (TUBE). TUBE con-
tains a tetra-ubiquitin binding domain structure that has a 
high affinity for all linkage types of polyubiquitin chains.23 
However, TUBE-based affinity enrichment of ubiquityl-
ated proteins has limitations for use in mass spectrometry 
because TUBE itself will be digested during proteolysis. 
This creates excessive noise signals (peptides from TUBE) 
that mask the detection of ubiquitylated peptides. To over-
come this problem, a trypsin-resistant TUBE (TR-TUBE) 
has been developed.24 TR-TUBE was applied in cell to cap-
ture ubiquitylated proteins before diGLY antibody-based 
immunoprecipitation prior to mass spectrometry. This 
dual enrichment approach improved the ratio of ubiqui-
tylated peptides to total peptides detected compared to 
when only enriched at the peptide level, without reduc-
ing the total number of ubiquitylated peptides.24 Despite 
this, it is likely that the capture of mono and multi-
monoubiquitylated proteins was lower due to the selective 
binding of TR-TUBE towards polyubiquitylated chains.23 
This selective approach introduces bias towards profiling 
mainly polyubiquitylated proteins. To address this issue, 
one could employ MultiDsk instead of TUBE which has 

shown to effectively enrich both polyubiquitylated and 
monoubiquitylated proteins.25 Nevertheless, these find-
ings provide clear evidence that this dual enrichment ap-
proach improved the purification of ubiquitylated peptides 
by reducing (non-ubiquitylated) peptide background. Due 
to the complex protein biochemistry in skeletal muscle, 
it is important to remove non-ubiquitylated proteins and 
peptides. Therefore, employing TR-TUBE prior to diGLY 
antibody-based immunoprecipitation may enhance the 
sensitivity of ubiquitylation profiling in skeletal muscle. 
We recommend applying this dual-enrichment process 
with the UbiFast method (Figure 1).

Another approach that could be taken to enhance our 
understanding of exercise-induced ubiquitylation is to 
investigate specific ubiquitin chain type signalling. As 
mentioned previously, different ubiquitin chain types can 
signal for different biological processes.26 Therefore, iden-
tifying which chain type is present on ubiquitylated pro-
teins is important for understanding the functional role 
of ubiquitylation. There are different TUBE-like enrich-
ment tools that are capable of purifying specific ubiqui-
tin chain types.27 As such, these tools would be useful for 
investigating chain-specific substrates following exercise. 
In fact, the importance of chain specificity has been high-
lighted in the Parker et al.’s study showing that K27-linked 
ubiquitin chains increased during high-intense exercise.10 
More recently, advances in ubiquitin chain type screening 
methods have revealed that K33-linked ubiquitin chains 
are highly enriched in skeletal muscle relative to other 
tissues.28 These findings suggest that atypical ubiquitin 
chains such as K27 and K33-linked ubiquitin chains may 
have a unique role to play in skeletal muscle. Investigating 
different ubiquitin chain types in more detail will help 
discover new regulatory aspects of exercise-induced ubiq-
uitylation. Notably, not all chain types currently have an 
effective tool for enrichment, meaning only a select few 
can be analysed in this manner.27 Therefore, this is an area 
that requires further development.

Alongside sample preparation, the method to which 
data is acquired from the mass spectrometer can also alter 
the sensitivity of detecting ubiquitylated peptides. There 
are different quantitative methods that can be employed 
in mass spectrometry, discussed in more detail in other re-
view papers.29,30 Typically, quantitative mass spectrome-
try is performed using data-dependent acquisition (DDA) 
which detects peptides through intensity-based selection. 
Parker et al. employed this technique by comparing the 
relative ion intensities between TMT-labelled peptides. 
Despite the high spectral quality, this selective approach 
has been known to cause stochastic peptide selection and 
chemical noise production.31,32 As a result, this form of 
data acquisition can lead to missing values and a reduced 
dynamic detection range. Alternatively, data-independent 
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acquisition (DIA) identifies peptides simultaneously 
within a fixed mass-to-charge range. This method has 
proven to increase signal-to-noise ratio and peptide se-
lectivity resulting in more sensitive and accurate quanti-
fication.31 Recently, The DIA approach has been able to 
identify up to 70,000 ubiquitylated peptides from as lit-
tle as few hundred µg to 1 mg of protein obtained from 
human non-muscle cell lines.33,34 However, obtaining 
such a comprehensive ubiquitin profile requires a project-
specific peptide spectral library or leveraging a neural 
network prediction for identification and subsequent 
quantification. Moreover, TMT labelling is not suitable for 
DIA-based quantification and so this method would not 
be compatible with the UbiFast approach. Nonetheless, 
with sufficient sample availability and the available skills 
for analysing the complex MS/MS spectra, this highly sen-
sitive DIA-based approach could be considered to increase 
the detection of ubiquitylated peptides in exercised skele-
tal muscle.

In conclusion, the study by Parker et al. has provided 
advanced insights into exercise-regulated ubiquitin sig-
nalling, revealing its dynamic nature and the potential 
regulatory role of NEDDylation in skeletal muscle. In 
addition to validating the newly identified ubiquitin sub-
strates, future work can implement more sensitive mass 
spectrometry-based workflows to improve the detection of 

ubiquitylated sites, peptides and specific chain types. This 
will advance our understanding of the exercise-regulated 
ubiquitin signalling network, revealing molecular mecha-
nisms that control structural and metabolic skeletal mus-
cle functioning.
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F I G U R E  1   Schematic of proposed ubiquitin enrichment workflow for analysing exercise-regulated ubiquitylation in skeletal muscle. 
Dual enrichment process whereby ubiquitylated substrates are first enriched at the protein level using TR-TUBE pull-down (1) and then 
enriched at the peptide level using diGLY antibody-based immunoprecipitation (2). To enable quantification of the ubiquitylated peptides, 
isobaric TMT labelling is performed while peptides are bound to the diGLY antibody. Labelled peptides are analysed by LC–MS/MS (3). 
Created with BioRender.com
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