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Abstract

Keywords

Micro-electron diffraction (MicroED) is an emerging technique to use cryo-electron microscope to study the
crystal structures of macromolecule from its micro-/nano-crystals, which are not suitable for conventional
X-ray crystallography. However, this technique has been prevented for its wide application by the limited
availability of producing good micro-/nano-crystals and the inappropriate transfer of crystals. Here, we
developed a complete workflow to prepare suitable crystals efficiently for MicroED experiment. This workflow
includes in situ on-grid crystallization, single-side blotting, cryo-focus ion beam (cryo-FIB) fabrication, and
cryo-electron diffraction of crystal cryo-lamella. This workflow enables us to apply MicroED to study many
small macromolecular crystals with the size of 2-10 pm, which is too large for MicroED but quite small for
conventional X-ray crystallography. We have applied this method to solve 2.5 A crystal structure of lysozyme
from its micro-crystal within the size of 10 x 10 x 10 pm?. Our work will greatly expand the availability
space of crystals suitable for MicroED and fill up the gap between MicroED and X-ray crystallography.

Cryo-electron microscopy, Cryo focused ion beam, Electron diffraction, In situ crystallization, Micro-

crystal

INTRODUCTION

In 1960, the crystal structures of myoglobin and
hemoglobin were solved (Kendrew et al. 1960; Perutz
et al. 1960) by X-ray crystallography, opening the era of
structural biology. Till now, there have been hundreds of
thousands of biomacromolecular structures that were
determined by X-ray crystallography. The size of
biomacromolecular crystal should be large enough to
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gain efficient signal-noise ratio (SNR) of diffractions.
For the home source of X-ray generated from rotating
anode, the size of crystal needs to be larger than
200 pm normally (Mizohata et al. 2018). While the
emergence of synchrotron radiation allows a brilliant
and coherent source of X-ray, which can increase SNR of
diffractions especially at the high-resolution region, thus
even a smaller crystal (ca. 50-200 um) still generate
significant diffractions for structure determination
(Mizohata et al. 2018). The emerge of the micro-focus
beamline based on the third-generation synchrotron
source has yield micro-crystallography, which made
high-resolution data collection from very small crystals
(ca. 10-50 um) possible (Smith et al. 2012). The wide-
spread use of synchrotron radiation has accelerated the
development of X-ray crystallography and structural
biology.

339 | December 2018 | Volume 4 | Issue 6


https://doi.org/10.1007/s41048-018-0075-x
http://crossmark.crossref.org/dialog/?doi=10.1007/s41048-018-0075-x&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41048-018-0075-x&amp;domain=pdf
https://doi.org/10.1007/s41048-018-0075-x

METHOD

X. Li et al.

However, many biomacromolecules could not be
crystallized into large crystals, e.g., membrane proteins
and biomacromolecular complexes. When the size of
crystal is further smaller than 10 pum, the current source
of X-ray from synchrotron radiation could not yield high
SNR diffractions. More importantly, the severe radiation
damage from high flux X-ray exposure makes it impos-
sible to collect a complete diffraction dataset from a
single crystal, even under the cryogenic condition (Jo-
hansson et al. 2017). The emerge of X-ray free electron
laser (XFEL) and the development of serial femtosecond
X-ray crystallography (SFX) provide an alternative
solution (Chapman et al. 2011). The extremely short and
highly intensive X-ray pulse makes it possible to collect
high SNR and ‘radiation damage free” diffraction data
from a single micro-crystal (ca. 1-10 pm) (Mizohata
et al. 2018). Each micro-crystal generates one frame of
diffraction image before obliterated (Neutze et al. 2000).
Tens of thousands of micro-crystals are needed to
generate a complete dataset. In recent years, SFX has
been successfully applied to solve many important and
difficult crystal structures, including the human angio-
tensin II type 1 (Zhang et al. 2015) and photon-syn-
thesis complex II (Suga et al. 2017). Furthermore, the
extremely short pulse (10-100 fs) of XFEL also enables
time-resolved SFX and people can investigate the tran-
sient structural changes of photon-synthesis complex II
upon light stimulation (Suga et al. 2017). However,
culturing tens of thousands of micro-crystals and the
limited accessibility of XFEL facility have restricted the
wide application of SFX technology.

Besides diffracting X-ray, biomacromolecular crystals
could also diffract electron, which is called electron
crystallography when 2D crystals are investigated, or
called micro-electron diffraction (MicroED) for 3D
crystals. Investigation on biological specimens by elec-
tron crystallography arguably began when Parsons and
Martius used electron diffraction to investigate the
structure of muscle fibers in 1964 (Parsons and Martius
1964). In 2005, the 2D electron crystallography has
been successfully utilized to solve the high-resolution
structure of water channel AQPO in a closed confor-
mation at 1.9 A (Gonen et al. 2005). Considering there
are only 17 plane groups allowed for 2D protein crystals
while there are 65 symmetries allowed for 3D protein
crystals (Nannenga Brent et al. 2013), it is of less suc-
cessful rate to grow a 2D crystal rather than a 3D crystal
(Martynowycz and Gonen 2018). Furthermore, the
extreme difficulty of culturing high-quality 2D crystals
of bio-macromolecules has limited the wide application
of 2D electron crystallography.

In 2013, Shi et al. first utilized MicroED to solve the
crystal structure of lysozyme at 2.9 A resolution (Shi
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et al. 2013) and later improved the data quality by
changing still diffraction mode to continuous rotation
diffraction mode (Nannenga et al. 2014b). Compared
with X-ray, electron has much larger scattering cross-
section when interacting with atoms (Henderson 2009).
Thus, the size of micro-crystal is large enough to gen-
erate high SNR diffractions by using MicroED. The size
of crystal used in MicroED experiment is within 500 nm
(Nannenga and Gonen 2014), much smaller than the
one in traditional X-ray crystallography experiments.

In recent years, MicroED has been further developed
and applied to solve the crystal structures of a-synuclein
(Rodriguez et al. 2015), prions (Sawaya et al. 2016) and
the human fused in sarcoma low-complexity domain
(FUS LC) (Luo et al. 2018) in atomic resolution. The
crystals of these successful examples were always thin
although they were long and wide. For example, the
crystals of the a-synuclein are needle-like with the
thickness of 20-50 nm (Rodriguez et al. 2015). The
thickness of the crystal directly determines the quality
of diffraction data (Nannenga and Gonen 2014) due to
the mean free path of electron. For 300 kV electron, its
mean free path for the vitrified biospecimen is
~ 350 nm, while for 200 kV electron, it is ~300 nm
(Yan et al. 2015). When the thickness of the crystal is
over beyond the mean free path of electron, multi-
scattering events will become significant and then the
diffraction pattern will become difficult to explain. As a
result, for a success of MicroED experiment, nano-
crystals not micro-crystals are actually needed.

The emergence of MicroED has provided an alterna-
tive solution to X-ray crystallography and it is possible
to solve the crystal structure of biomacromolecule using
a single nanocrystal by MicroED. However, there are still
several bottlenecks left, limiting the wide application of
MicroED. Firstly, it is difficult to grow and screen nano-
crystals. Nano-crystals are invisible under light micro-
scope and their growth process is difficult to monitor.
Transmission electron microscope is the only way to
screen the presence of nano-crystals, which is in a low
throughput. The previous trials of breaking big crystals
into tiny bricks were not successful (personal commu-
nication). Secondly, the current sample freezing proce-
dure (blotting and plunge-freezing) for single particle
analysis is not optimized for MicroED sample prepara-
tion. The viscous crystallization liquid could not be
easily blotted and the double-sided blotting step could
damage delicate crystals easily (Shian et al. 2017). In
addition, more importantly, there are many bio-macro-
molecules that can be crystallized into microcrystal with
the size of 2-10 um. These crystals could not be ana-
lyzed by traditional X-ray crystallography and even by
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SFX easily. For MicroED, the size of these crystals is also
beyond the feasible range.

The recent emergence of cryo focused ion beam
(cryo-FIB) technique (Marko et al. 2006) provides a
solution to prepare suitable size of crystal for MicroED
experiment. This technique was first applied to prepare
a cryo-lamella of bacterial cells (Marko et al. 2007) and
later to eukaryotic microbial cells (Rigort et al. 2012)
and mammalian cells (Strunk et al. 2012; Wang et al.
2012). We also developed this technique with the name
of D-cryo-FIB (Zhang et al. 2016), which has been used
to prepare cryo-lamella for subsequent cryo-electron
tomography experiment (Li et al. 2015).

Here, based on our D-cryo-FIB technique, we report a
workflow of in situ protein crystallization and fabrica-
tion for subsequent successful MicroED experiment. We
grew protein crystals on grids directly to reduce the
possibility of crystal missing during sample transfer. The
grids were blotted from back side to alleviate the crystal
damage due to blot force. Then the crystals frozen on
the grid were selected and milled into a thin lamella by
cryo-FIB. The cryo-lamella was then used to collect
electron diffraction dataset for structure determination.
We show here that we successfully solved the crystal
structure of lysozyme at 2.5 A resolution by using seven
micro lysozyme crystals within the size of
10 x 10 x 10 pm>,

RESULTS AND DISCUSSION

To set up a workflow from in situ protein crystallization,
cryo-vitrification, and cryo-FIB fabrication to the sub-
sequent cryo-electron diffraction data collection, we
selected lysozyme as the testing sample since it is well
characterized and was previously used for MicroED
experiments (Shi et al. 2013).

Originally, we followed the previously published
protocol (Shi et al. 2013) to grow lysozyme crystals by
hanging drop vapor diffusion method, and tried to add
the crystallization drop from the cover slip to the grid
for 1 min adsorption before washing and vitrification.
However, by examining in cryo-electron microscope, we
found the low successful rate of the crystal absorption
on the grid and the crystal could be easily destroyed by
the pipette during the drop transfer process. Thus, to
overcome this difficulty, we sought to try growing
crystals directly on the grid to reduce the loss of the
crystal and minimize its potential damage during sam-
ple transfer. A holy carbon coated metal grid (Fig. 1A, B)
was used in the present study. The sitting crystallization
drop was directly added to the surface of a grow-dis-
charge treated grid that is supported by a clean plastic
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micro-bridge (Fig. 1C). This experimental setup allows
the crystals to grow on the carbon surface of the grid.

Different metal grids were screened to select the
most suitable one for in situ crystallization. For the
copper grids, we found the copper is chemically reactive
in crystallization buffer and the dissolved copper ion
could denature the protein and affect the quality of the
crystal severely (see the green colored crystal in
Fig. 2A), which was subsequently proved by X-ray
diffraction experiments (data not shown here). Then the
titanium (Fig. 2B), molybdenum (Fig. 2C) and non-
magnetic nickel grids (Fig. 2D) were tested. All these
three grids could allow crystal grow on the carbon
surface. Since these grids are stainless with good
chemical inertia, there were no chemical effects
observed to decrease the crystal quality. Considering the
cost and availability, we selected the D-shaped non-
magnetic nickel grid (Fig. 2D) for the subsequent
experiment.

The crystallization drop contains 15% PEG5000MME
that has a high viscosity and is difficult to blot to get a
thin layer during cryo-vitrification process. To overcome
this difficulty, we used the washing buffer that contains
5% PEG200 instead of 15% PEG5000MME to wash the
grid before blotting, which helped to get a thin ice layer
on the grid after freezing. To optimize the washing
buffer that does not affect the quality of the crystals, we
used to pick out some crystals and transfer them to the
washing buffer and observed under a light microscope.
There should be no obvious dissolving phenomenon
appeared within one hour. After washing, the grid was
blotted for 6 s from backside using Leica EMGP and
then fast frozen in liquid ethane. The backside blotting
is also important to prevent potential crystal loss and
damage.

The vitrified D-shaped grid was transferred into the
chamber of FIB/SEM by keeping the direction of the
straight edge perpendicular to FIB (Zhang et al. 2016).
The crystals were first identified and visualized by SEM
(Fig. 3A, B). To choose the area of interest for FIB mil-
ling, there are a few criteria to be considered. Firstly, the
position of the crystal should be close to the middle of
the square. Otherwise, the metal grid bar would block
FIB, causing the trimming process not thorough. In
addition, the grid bar could also potentially block the
electron beam during diffraction data collection when
the grid is tilted. Secondly, it is important to select a
separated single crystal to avoid potential twin diffrac-
tion images during data collection. In addition, a proper
size (5-20 pum) of the crystal was selected. Smaller size
would decrease the successful rate of the cryo-lamella
production and also yield a very small area for MicroED.
Larger size would increase significantly the time of FIB
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Fig. 1 In situ on-grid protein
crystallization setup. A A
magnified SEM image of the
non-magnetic nickel grid
coated with holy carbon film.
Scale bar, 16.7 pm. B A further
magnified SEM image in

A showing the structural
details of the holy carbon film.
Scale bar, 1.7 pm. C The
schematic diagram of the
sitting drop vapor diffusion
setup for in situ on-grid
protein crystallization. The C
real photo of the micro-bridge
is shown in right. Scale bar,
0.35 mm

Fig. 2 Photographs of the lysozyme crystals growing on different
grids. A Copper grid. B Titanium grid. C Molybdenum grid. D Non-
magnetic nickel grid. Scale bar, 500 um

trimming and thus lower the throughput. After the cryo-
lamella of crystal was formed, its thickness was mea-
sured from FIB image and could be judged from the low
magnification TEM image (Fig. 3C). For a good crystal
lamella, its electron diffraction could reach to 2.0 A
resolution (Fig. 3D) with our current experiment
hardware.

During electron diffraction data collection, crystals
could be either tilted discretely or rotated continuously
in the electron beam, which yield still diffraction image
or continuous diffraction image. We wrote a simple
script of SerialEM (see Supplementary Information) to
collect tilt series of still diffraction images automatically.
We were aware of that collecting continuous diffraction
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Fig. 3 FIB fabrication of frozen lysozyme crystals on grid. A and
B SEM images (SE detector) of frozen lysozyme crystals on grid
with low magnification (A) and high magnification (B). The areas
with strong contrast indicate the positions of the crystals. The
black arrows indicate the crystals close to the grid bars and the
red arrows indicate the crystals trimmed by FIB. Scale bars,
50 um. C TEM micrograph of the FIB fabricated crystal lamella.
Scale bar, 500 nm. D Cryo-electron diffraction pattern of the FIB
fabricated crystal lamella in C

images could increase the accuracy of reciprocal spot
intensity measurement. However, for our current cam-
era setup, it was difficult to synchronize the stage
rotation with the data recording of camera due to the
imperfect mechanics of the stage and the significant lag
of camera recording system. Thus, we made an appro-
priate approach to collect continuous diffraction images.
In our approach, we utilized our script to collect tilt
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series of still diffraction frames with a very small angle
interval. In the present work, the angle interval of 0.2°
was used. The exposure time for each still diffraction
frame was properly determined to balance its SNR and
the total electron dose, and was set 0.2 s/frame in the
present work. Then, numbers of frames were simply
integrated to form a final image that approximates the
continuous diffraction one. Here, every five continuous
frames were merged into one image with a rotation
angle width of 1° (Movie S1), which was ready for the
subsequent processing in iMOSFLM (Fig. 4).

The profiles of diffraction spots suggested that the
diffraction spots can be properly indexed, predicted and
integrated (Fig. 4A). We found a significant jump of
crystal-to-detector distance at the first few frames
(Fig. 4B), which might be due to the pre-calibration
error of the camera length. While the detected varia-
tions of the crystal-to-detector distance and the crystal
orientation (Fig. 4B, C) suggest that the stability of the
microscope mechanical stage needs to be further opti-
mized for MicroED experiments. From the statistics of
the data processing (Fig. 4D), we also observed signifi-
cant shift of electron beam position, which needs to be
further investigated to find the reason. The existence of
electron radiation damage and decay of crystal lattice
could be indicated from the reduced SNR of diffraction

spots during data collection (Fig. 4E). Finally, we col-
lected seven datasets and merged into one dataset with
space group of P432,2, the resolution of 2.5 A, and the
overall cumulative completeness of 94.0% (Table 1).
The relative high Ryerge 0f 0.356 would be caused by the
inaccuracy of reciprocal spot intensity measurement,
which could be most probably due to the poor hardware
of our camera.

The final merged and scaled intensity data can be
directly used for molecular replacement with a single
significant solution. The calculated electron potential
map based on electron scattering factor and the refined
structural model shows a clear envelope of the molecule
in the crystal (Fig. 4A). The resolution and quality of the
map can further be reflected by the unambiguity of
residue assignment in Fig. 4B. The final structure was
refined to 2.5 A with Ryop Of 35.9% and Ryee Of 40.0%
(Table 1). Again, we believe that the relative high
R value is due to the inaccuracy of reciprocal spot
intensity measurement. Considering the current reso-
lution of 2.5 A, we did not intend to assign water
molecule in the map (Fig. 5).

Overall, in the present study, we developed a new
approach to efficiently prepare suitable crystals for
MicroED experiment. The in situ on-grid crystallization
method avoids the potential loss of crystals during
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Fig. 4 Statistic parameters during electron diffraction dataset processing by iMOSFLM. A A representative average spot profile of one
diffraction image (up) and a representative standard profile for different regions of the detector (down). The red line indicates the profile
is poor and averaged by including reflections from inner regions. B The crystal-to-detector distance changes with different diffraction
images. C The crystal orientation changes with different diffraction images. D The electron beam position changes with different
diffraction images. E The averaged SNR of diffraction spots changes with different diffraction images. The yellow curve represents all

partial spots and the red one for all full spots
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Table 1 Statistics of data collection, processing, and structural

refinement

Data collection
Excitation voltage (kV)
Electron source
Wavelength (A)

200
Field emission gun
0.025

Total electron dose per crystal (e~/A?) 5-9
Number of patterns per crystal 150-400
No. of crystals used 7
Nominal camera length (m) 1.35
Real (corrected) camera length (m) 2.22
Selective area aperture (um) 100
Rotation step (°) 0.2
Data processing
Resolution (A) 18.4-2.5
Space group P432,2
Unit cell dimensions
a=b(A) 77
c(h) 37
a=p=7() 90
No. of total reflections 53,003
No. of unique reflections 4235
CCy/, (overall/outer shell) 0.803/0.158
<l1/o> 55
Completeness (%) (overall/outer shell) 94.0/86.8
Multiplicity (overall/outer shell) 12.5/12.7
Rimerge 0.356
Structural refinement
Resolution (A) 18.4-2.5
Reflections in working set 4206
Reflections in test set 191
Ryork/Reree (%) 35.9/40.0
rm.s.d. bond length 0.005
rm.s.d. bond angle 0.976

Fig. 5 Electron potential map determined by molecular replace-
ment. A The overall map fitted with the whole lysozyme structural
model. B A zoomed-in view of the electron potential map around a
selected region showing the resolution and quality of the map
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sample transfer, the single-side blotting method pre-
vents the potential damage to the fragile crystals during
vitrification, and the cryo-FIB fabrication method allows
the crystals with the size of a few microns to be thinned
for MicroED experiment. Finally, the large area of crystal
cryo-lamella would yield a strong electron diffraction
with good SNR. Thus a few crystals are enough to merge
into a complete dataset for structural determination.
Our work will greatly expand the availability space of
crystals suitable for MicroED and fill up the gap
between MicroED and X-ray crystallography.

In the future, we will further systematically investi-
gate the influence of the thickness of crystal cryo-
lamella for the MicroED data quality, and study whether
the current and energy of focused ion beam would
induce observable damage of crystal, which eventually
affects the diffraction ability of the crystal.

MATERIALS AND METHODS
In situ crystallization and cryo-vitrification

Lysozyme was purchased by Sangon Biotech Company.
A 200 mg/mL solution of lysozyme was prepared in
50 mmol/L sodium acetate pH 4.5. A grow-discharge
treated nonmagnetic nickel grid with holy carbon film
was placed facing up on a micro-bridge, and the protein
was mixed 1:1 with the precipitant solution (0.35 mol/L
sodium chloride; 15% PEG5000MME; 50 mmol/L
sodium acetate pH 4.5) on the grid. Then the crystals
were grown by the sitting drop vapor diffusion method
(Fig. 1).

After the crystals formed, the grid was washed four
times by washing buffer (0.35 mol/L sodium chloride;
5% PEG200; 50 mmol/L sodium acetate pH 4.5) before
cryo-vitrification. Then the grid was blotted 6 s from the
backside where no crystals grew on, and plunged into
liquid ethane using the Leica EMGP. The frozen grids
were transferred and stored in liquid nitrogen for the
subsequent experiments.

Crystals fabrication by cryo-FIB

The frozed grid was loaded onto a home-made cryo-
shuttle (Zhang et al. 2016) and then transferred into the
chamber of a dual beam scanning electron microscope
(FEI Helios NanoLab 600i) that is equipped with a
Quorum PT3000 cryo-stage. The grid has been pre-til-
ted 45° on the shuttle. Then the grid was imaged and
examined using electron beam and the signal from
secondary electron with the following experimental
parameters, an accelerating voltage of 2 kV, a beam
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current of 0.34 nA, and a dwell time of 3 ps. The region
of interest (ROI) with crystals was identified and
marked. Then focused ion gallium beam was utilized to
perform fabrication of crystals. Before cryo-FIB milling,
a thin layer of Pt was coated using GIS system to reduce
the radiation damage during milling. The inclination
angle of the beam was kept ~10° against the grid
plane. The accelerating voltage of ion beam was 30 kV.
Considering the block shape of the crystal, a large beam
current of 0.43 nA was used to skive crystals efficiently.
When a thick slice of lamella was made, the beam cur-
rent was reduced to 80 pA for the fine trimming and
also the reduction of potential radiation damage. The
final thickness of the crystal cryo-lamella was controlled
~300 nm. Several crystal cryo-lamellas can be made in
one grid. After cryo-FIB fabrication, the grid was
transferred and kept in liquid nitrogen for the subse-
quent MicroED experiment.

Cryo-electron diffraction and data collection

Cryo-electron diffraction of cryo-FIB fabricated crystal
was collected using cryo-electron microscope FEI Talos
F200C equipped with a field-emission gun operated at
200 kV (4 =0.0251 A). And the diffraction patterns
were recorded by the FEI Ceta camera with
4096 x 4096 pixels and the physical pixel size of
14 pm. We utilized SerialEM (Mastronarde 2005) to
control the microscope and collect the diffraction
datasets.

The frozen grid was loaded into the microscope using
a Gatan cryo-transfer holder (Model 626) that was
precooled in liquid nitrogen. The straight side of the
D-shaped grid (Zhang et al. 2016) was kept parallel to
the rotation axis of the holder. ROIs that were trimmed
by cryo-FIB were located in low magnification of
SA2600X (view mode in SerialEM).

Then, at the exposure mode in SerialEM, the spot size
and the illumination area were adjusted to yield a very
low electron dose of 0.07 e~ /(A?s) for the diffraction
experiment. To measure the electron dose accurately,
the microscope should be in image mode and high
magnification so that the electron beam can spread over
the entire screen. Eventually, in our experiment setup,
the spot size was selected as nine and the excitation
level of C2 lens was kept at 45.3000%. After the elec-
tron dose was determined, the microscope was swit-
ched to diffraction mode. The nominal camera length
was set to 1.35 m that was calibrated to 2.22 m by
measuring the diffraction pattern of gold crystal. The
excitation level of objective lens was set and kept at
85.5148%. The diffraction lens was adjusted to focus
the central beam. Then, we switched back and forth
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between the image and diffraction modes to make sure
that the excitation levels of objective and C2 lens did not
change. Finally, we switched to diffraction mode and
saved all the parameters to the exposure mode in
SerialEM.

When all the parameters were setup, we moved the
cryo-FIB fabricated crystal to the center of the screen in
the view mode of SerialEM, and then chose a selective
aperture of 100 pm in diameter to just cover the area of
the crystal. Then we switched to the exposure mode in
SerialEM. A customized SerialEM script (see Supple-
mentary Information) was written to collect diffraction
data in an approximate continuous rotation mode, in
which the crystal was initially rotated to —40° (or other
degree) and then started to rotate to 40° (or other
degree). For every 0.2° increment, a diffraction frame
was recorded with the exposure time of 0.2 s and stored
in TIFF format. For the rotation angle range from —40°
to 40°, we collected 400 frames with the approximate
total dose of ~6 e /(A%s). In total, we collected mul-
tiple diffraction datasets from different cryo-FIB fabri-
cated crystals. For each crystal, the total electron dose
was kept below 9 e~ /(A%s).

Processing of electron diffraction datasets

We first exacted the dark background from every raw
diffraction image and then summed every five frames to
the final one with an “expected” oscillation angle width
of 1°. The program developed in Tamir Gonen'’s lab for
converting TVIPS camera image to the SMV format
(http://cryoem.janelia.org/pages/MicroED) was slightly
modified based on our microscope and camera system,
and then used to convert our datasets from TIFF format
to SMV format.

Then the converted diffraction datasets were pro-
cessed (index and integration) by iMOSFLM 7.2.1 (Bat-
tye et al. 2011). Different with processing X-ray
crystallography datasets, a wide rotation angle range
was used for a successful index because the Ewald
sphere in electron diffraction is very flat. Secondly, due
to the instability of microscope stage, the crystal ori-
entation and the distance from the crystal to the
detector would change during data collection, which
should be carefully considered during data integration
process. Furthermore, our camera FEI CETA was not
well characterized for electron diffraction experiment,
and the GAIN parameter defined in iMOSFLM is gener-
ally unknown. Thus, it is important and necessary to try
different GAIN values (1.5-2.5) during data integration
process.

Due to the instability of our microscope, the first
several frames of each dataset were dropped. Seven
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datasets were merged, scaled and converted to struc-
ture factor amplitudes using AIMLESS (Evans and
Murshudov 2013) to increase the completeness of
diffraction data. Then molecular replacement was per-
formed using PHASER (McCoy et al. 2007) with the
starting model (PDB code, 4AXT) of lysozyme structure.
Finally, REFMAC5 (Murshudov et al. 2007) was used to
perform structural refinement by taking electron scat-
tering factors into consideration.

The statistics of data collection, processing, and
structural refinement are summarized in Table 1.
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