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Abstract
Targeted cancer therapies have revolutionized treatment but their efficacies are limited by the development of
resistance driven by clonal evolution within tumors. We developed “CAPTURE”, a single-cell barcoding approach to
comprehensively trace clonal dynamics and capture live lineage-coupled resistant cells for in-depth multi-omics
analysis and functional exploration. We demonstrate that heterogeneous clones, either preexisting or emerging from
drug-tolerant persister cells, dominated resistance to vemurafenib in BRAFV600E melanoma. Further integrative studies
uncovered diverse resistance mechanisms. This includes a previously unrecognized and clinically relevant mechanism,
chromosome 18q21 gain, which leads to vulnerability of the cells to BCL2 inhibitor. We also identified targetable
common dependencies of captured resistant clones, such as oxidative phosphorylation and E2F pathways. Our study
provides new therapeutic insights into overcoming therapy resistance in BRAFV600E melanoma and presents a platform
for exploring clonal evolution dynamics and vulnerabilities that can be applied to study treatment resistance in other
cancers.

Introduction
Despite the success of targeted therapies in cancer

treatment, complete cures are difficult to achieve due to
the emergence of resistance. Although emerging evidence
suggests that both preexisting intratumor heterogeneity
and ongoing diversification of reversible drug-tolerant
persister during therapy could enable some tumor cells to
survive treatment and relapse1,2, the ability to both
monitor clonal evolution trajectories and identify under-
lying resistance mechanisms or vulnerabilities remains
largely limited.

Melanoma is the most lethal form of skin cancer3.
Nearly half of melanomas harbor mutations of the v-raf
murine sarcoma viral oncogene homolog B (BRAF) gene,
leading to activation of the mitogen-activated protein
kinase (MAPK) signaling pathway4. The majority of these
mutations occur at codon 600, resulting in a valine sub-
stitution that is most commonly with glutamine
(BRAFV600E). Therapies targeting toward mutant BRAF
provide substantial benefits to patients. Nevertheless,
these responses are not durable and a number of
mechanisms have been identified that lead to treatment
resistance5. Despite this knowledge, there continues to
exist an urgent need to identify new mechanisms of tumor
cell resistance and to develop new therapeutic strategies
to overcome this resistance.
A variety of approaches have been developed to study

cellular heterogeneity, perform lineage tracing and con-
duct functional screening. Single-cell sequencing is
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powerful to study cellular heterogeneity by obtaining a
snapshot of thousands of cells6–8; however, it remains
challenging to track individual cells at a multi-omics scale
with high precision and to isolate phenotype-associated
subclones in heterogeneous cell populations for func-
tional validation. Cellular DNA barcoding approaches
have been reported to efficiently and cost-effectively label
and track thousands to millions of cells at the single-cell
level9–13. However, despite many powerful applications,
these methods are incapable of capturing live clonal
subpopulations from heterogeneous pools for further
validation and study. Genome-scale gene perturbation
screens, including CRISPR-based gene deletion or acti-
vation screens14,15, have emerged as a robust functional
screening strategy for mapping potential phenotype-
associated genes. These approaches provide genotype-
phenotype associations, but do not inform the temporal
evolution and mechanism by which genes are altered
physiologically in the development of the phenotype (e.g.,
resistance). Understanding what these alterations may be
and how and when they arise may provide important
insights into therapeutic strategy and drug development.
Hence, capturing live lineage-coupled subpopulations
from heterogeneous samples for integrative analysis and
functional study is critical for understanding clonal evo-
lution regulatory events and vulnerabilities.
New techniques aimed to enable clonal capture have

been reported recently16–19; however, these approaches
were either CRISPRa and miniCMV based or wild-type
Cas9 based, with semi-random guide RNA (gRNA) target
sites, which limits the control on inter-barcode and across
genome off-target effects and on-target efficiency (see
Discussion). Here, we developed a unique approach that
allows the full design of each barcode for optimal off- and
on-target control without sacrificing high barcode com-
plexity using a Cas9D10A and paired-gRNA targetable
unique reporter (CAPTURE) single-cell barcoding library.
We demonstrated an integrative application of CAPTURE
to reveal clonal dynamics of BRAFV600E melanoma cells’
response to vemurafenib and identify private and com-
mon druggable vulnerabilities of resistant cells.

Results
Establishment of the CAPTURE barcoding system
Semi-random sequences were used by other gRNA-

based targetable barcoding approaches16–19 to reach high
complexity, however, the gRNA sequences were known to
be critical for on-target activity and off-target effects20. To
develop a targetable barcoding system with high com-
plexity and fully-designed sequences, we proposed a
barcode design (Supplementary Fig. S1a) based on the
Cas9D10A nickase, which requires two gRNAs to induce a
DNA double-strand break21,22. The use of two gRNAs per
barcode allows us to achieve millions of unique barcodes

combinatorically using only thousands of fully-designed
high-quality gRNAs (Supplementary Fig. S1b) and mini-
mizes potential off-target effects induced by wild-type
Cas9. To improve the targetability of the design, we
constructed an all-in-one lentiviral backbone (Supple-
mentary Fig. S1c) to deliver Cas9D10A and two gRNAs
with previously optimized gRNA structure23,24. We then
set out to determine the targetability of our barcode
design by testing the enhanced green fluorescent protein
(eGFP) switching efficiency of a set of barcodes that were
placed upstream and fused in-frame with eGFP (Supple-
mentary Fig. S1a). The eGFP switching efficiency was
determined by delivering Cas9D10A and 2 gRNAs targeting
each corresponding barcode. Each barcode carried a pair
of reverse-oriented gRNA target sites separated by a short
offset (15-bp or 9-bp was used based on previous pub-
lications21,22) flanked by two reverse-oriented protospacer
adjacent motifs (PAMs). We tested eight barcodes carry-
ing six pairs of gRNA-targeting sites (Supplementary Fig.
S1a) in the human embryonic kidney (HEK) 293T cells.
After transduction at a low multiplicity of infection (MOI
< 0.3) followed by antibiotic selection for 7 days, CRISPR-
Cas9D10A and the corresponding paired gRNAs sig-
nificantly silenced eGFP fluorescence (Supplementary Fig.
S1d). Flow cytometry results (Supplementary Fig. S1e)
demonstrated that all barcodes were successfully targeted
to switch the fluorescent signal, and the 15-bp offset
(Supplementary Fig. S1a, BC5-6 vs BC7-8) resulted in
higher efficiency. These results supported the targetability
of our barcode design by Cas9D10A and the corresponding
paired gRNAs. Meanwhile, low-level, spontaneous eGFP
silencing was also observed in the cells absent of targeting
(Supplementary Fig. S1e, Cas9D10A only cells), suggesting
that simple eGFP could not be a good reporter of tar-
geting due to the background.
To obtain a reporter that avoids spontaneous silencing

effects, we optimized the barcode structure by adding an
upstream red fluorescent protein (RFP) in-frame with the
fused barcode region and downstream of eGFP (Fig. 1a).
With this design, the example workflow was as shown in
Fig. 1b. Barcoded cells are eGFP and RFP double-positive
(RFP+/eGFP+) and targeted cells are RFP positive but
eGFP negative (RFP+/eGFP–). In contrast, spontaneously
silenced cells are negative for both reporters and easily
distinguished (Fig. 1b). We first confirmed the paired-
gRNA requirement for eGFP targeting and validated the
correction of spontaneous eGFP silencing by upstream
RFP (Supplementary Figs. S1f–h). We then determined
the sensitivity in isolating cells with specific barcodes
using the optimized approach. Briefly, barcoded pools
with differing percentages of barcode BC1-carrying cells,
ranging from 0.1% to 100%, were subjected to isolation
using BC1-targeting gRNAs followed by fluorescence-
activated cell sorting (FACS). Flow cytometry analysis
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Fig. 1 (See legend on next page.)
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(Fig. 1c) demonstrated that the CAPTURE system was
capable of isolating the targeted barcoded cells at a fre-
quency as low as 0.1% using the optimized vector. A
similar efficiency of isolation was validated by isolation of
barcode BC2 (Fig. 1d). The purity of isolated subpopula-
tions was determined by amplification and sequencing of
barcodes and showed that isolation purity was at least
91.6% when barcode frequency was > 1%, and 48.7% when
barcode frequency was 0.1%, indicating the ability to
isolate barcoded cells at a frequency as low as 0.1% with
the CAPTURE approach (Fig. 1d). Editing nucleotide
distribution outcomes from deep sequencing of the bar-
code region in the isolated populations demonstrated
deletions and indicated successful targeting (Fig. 1e and
Supplementary Table S1). Together, these results
demonstrate the efficiency and sensitivity of the optimized
CAPTURE design.
Having established the optimized vector capable of

capturing unique barcodes, we then set out to engineer a
CAPTURE barcoding library with tens of millions of
barcodes to permit unique tagging of individual cells in
complex cell populations, such as tumors. To ensure that
the barcodes are highly targetable, we designed 12,000
highly active gRNA targets (Supplementary Table S2)
based on two criteria. First, the gRNAs excluded stop
codons in the barcodes to avoid interrupting the RFP-
eGFP fusion. Second, the gRNAs were selected for high
on-target scores20, maximizing targetability and specifi-
city. Based on the existence of a complementary pairing
region at the 3′ ends between the top and bottom oli-
gonucleotides, synthesized oligonucleotides were
annealed, followed by PCR extension and amplification.
The amplification products were assembled with the
linearized backbone (Fig. 1f). Amplicon sequencing was
then employed to determine library complexity and
quality. From a depth of approximately 144 million
sequencing reads (Fig. 1g), more than 21 million unique
barcodes were detected. The library did not show sig-
nificant bias with > 95% of the observed barcodes
detected by < 15 sequencing reads. As expected, the

library-transduced cells were both RFP and eGFP posi-
tive (Fig. 1h).

CAPTURE barcoding reveals the clonal evolution landscape
of BRAFV600E inhibition in melanoma
We applied the CAPTURE approach in the human

melanoma cell line A375 to study treatment resistance
using vemurafenib (also known as PLX4032, or PLX
hereafter), which is used in the treatment of BRAFV600E-
mutant melanoma. We transduced 3 million A375 cells at
low MOI (< 20% transduced) to uniquely barcode the
cells. The cells were then subjected to blasticidin selection
followed by FACS to remove the non-barcoded cells. The
founder-barcoded cells were then expanded to ensure
sufficient barcode coverage (> 100×) prior to treatment to
minimize the stochastic loss of barcodes. Barcoded cells
were divided into a parallel control (treated with DMSO
only for 40 days) group, to assess baseline barcode dis-
tribution, and five replicate groups treated with PLX
(maintained at 2 µM for 40 days) (Fig. 2a).
As anticipated, only a small subpopulation of barcoded

cells, mainly those with visible morphology changes, sur-
vived the initial treatment and resistant cells emerged after
prolonged treatment. After 40 days of treatment, many
individual clones and local confluent areas were obviously
presented, indicating the emergence of resistant cells. The
emerging cells were expanded for several additional pas-
sages and split into two halves (one for barcode analyses,
the other frozen viably for downstream analyses). Barcode
distribution analysis showed that a subset of barcodes in
each PLX treatment group was highly enriched when
compared to the control group (Fig. 2b; Supplementary
Fig. S2a and Table S3). Cumulative analysis (Fig. 2c)
revealed that the top ten most abundant barcodes of each
of the PLX treatment groups accounted for > 75% of the
final resistant pools, indicating that a small number of
clones (founder cells each with a unique barcode and their
offspring cells (subpopulations)) dominated the resistant
cell population. Interestingly, in all the replicates, the most
abundant barcode clone accounted for > 40% of the final

(see figure on previous page)
Fig. 1 Optimized barcoding strategy and construction of the CAPTURE library. a Diagram of the optimized barcoding backbone and how the
barcodes were targeted. When Cas9 nickase and a pair of gRNAs that target a corresponding barcode are delivered, ~2/3 of the targeted barcode will
lead to frameshift and silencing of eGFP. b Schematic illustration of the CAPTURE workflow. Barcoded cells will be eGFP and RFP double positive.
Founder-barcoded cells are then expanded and divided into control and treatment groups. After phenotypic clonal evolution, lineages of interest are
determined by next-generation sequencing (NGS) of barcode distribution. Meanwhile, cryogenic stocks of the cell populations are made to isolate
lineages of interest. By delivering paired gRNAs, which target the corresponding barcodes, to the cell populations one at a time, lineages of interest
can be isolated by FACS. c Efficiency of fluorescence switching of BC1-barcoded cells with various percentages in the pool. The numerical values for
each gated population are in percent, and the total numbers of cells analyzed for each experiment were 12,562, 24,078, 20,959, 18,131, 24,185, and
24,196, respectively. d The purity of isolated cells is determined by NGS. The percentages of sorted cells from c and 100% BC2 groups that were
targeted by corresponding gRNAs. e Nucleotide position distribution, modified from CRISPResso2 analysis, showing editing outcomes of BC1
targeting. f Approach to achieve high-complexity (36 million barcodes) CAPTURE library using ~12,000 oligonucleotides. g Plot of barcode
distribution and cumulative barcode percentage. The barcode distribution in the library is plotted in blue. The cumulative distribution of the unique
barcodes is shown in red. h Microscopic view of the cells barcoded by CAPTURE. Scale bar, 50 µm.
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resistant pools. Several hundred additional barcodes
showed relative enrichment after treatment, but existed at
a low frequency in the resistant pool, suggesting compe-
tition among the resistant subpopulations. To identify
enriched barcodes for each treatment replicate, general-
ized log2 fold change (GFOLD)25, an algorithm developed
for assigning reliable statistics based on the posterior dis-
tribution of log2 fold change for single replicate count data,
was employed (Supplementary Fig. S3a, b). Using a
threshold of GFOLD > 4, we identified a mean number of
enriched barcodes per replicate of 44 (ranging from 38 to
50 across the five replicates) and a total of 157 unique
enriched barcodes from all replicates combined (Fig. 2d
and Supplementary Table S3). Given the detected barcode
complexity of 0.23 million, the 157 enriched barcodes
indicate that ~0.07% of clones in the founder population
contribute to PLX resistance. These data suggest that a
small number of competitive clones in the overall popu-
lation are the primary contributors to resistance.
Based on the similar concept of Clontracer9, analysis

was performed to determine the likelihood of the origin of

resistance. We compared the top 50 most enriched bar-
codes across the five PLX-treated replicates, and found
that 34%–66% of the enriched barcodes were observed in
a single replicate (Fig. 2d). Although we cannot com-
pletely exclude the possibility of a stochastic loss of some
barcodes during the experiment, it is more likely that
these clones arose from drug-tolerant persister cells by
acquiring de novo resistance alterations (late-emerging).
One representative example of this late-emerging clonal
variation is the barcode bc2-1 labeled cell, which con-
stituted 84.2% of the replicate 2 (R2) resistant pool but
was not observed enriched in any other replicates. Only 3
enriched barcodes (bc51234, bc41235, and bc41235-1)
were shared by all replicates, indicating that these clones
were most likely carrying preexisting resistance because
the barcode-complexity adjusted possibility of a resistant
barcode enriched in all five replicates by chance (not
preexisting) was extremely low (3.86 × 10−11, see Mate-
rials and methods for calculation). Although these clones
may have been present in the original pretreatment pool,
their contribution to resistance varied in different

Fig. 2 CAPTURE barcoding demonstrates the evolution of PLX-resistant subclones. a Schematic outline of the experimental design. b Heatmap
of enriched barcodes (GFOLD log2 fold change > 4) from all replicates compared with vehicle control group. c Cumulative plot of barcode
percentages. The shift of the PLX-treated groups represents the enrichment in a subset of barcodes. d Percentage of enriched barcodes in each
replicate that were also found in other replicates. e Model demonstrating both selection of preexisting resistance cells and late-emerging resistance
cells from drug-tolerant persister cells fuel BRAFi resistance in BRAFV600E melanoma.
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replicates. For example, barcode bc51234 accounted for
0.25%, 1.09%, 0.034%, 13.90%, and 41.74% of resistant
cells in the five replicates, respectively. This indicated that
resistant clones may fit differently regardless of the origin
of the resistance. The late-emerging resistant clone with
barcode bc2-1 outperformed the preexisting bc51234 in
R2. Importantly, the high percentage (34%–66%) of
unique enriched barcodes for each replicate indicates a
degree of randomness of acquired resistance from drug-
tolerant persister cells. Together, these data suggest that
both preexisting drug-resistant cells and random, late-
emerging resistant cells from drug-tolerant persisters
contributed to PLX resistance in A375 (Fig. 2e) and the
preexisting ones do not necessarily confer a growth
advantage.

Capturing BRAFV600E inhibitor-resistant subclones
We subsequently used CAPTURE system to capture

cells with defined enriched barcodes (Supplementary
Table S4 and Fig. S2b) for downstream analysis and
validation. Based on the interest in resistance mechanisms
and the sensitivity of cell isolation, we focused on isolating
resistant barcoded cells from BRAF inhibitor (BRAFi)
treated replicates that were at least ~0.1%. Briefly, we
made all-in-one constructs for delivering Cas9D10A and
paired-gRNA targeting to each of the cells with defined
enriched barcodes (Supplementary Table S4). Lentiviral
particles encoding each pair of gRNAs were used to infect
the resistant pool cells at MOI of ~0.3 followed by 10 days
of puromycin selection. The captured subclones (sorted
single-cell clones from subpopulations, each with a
unique barcode) were named by the barcode ID, source
ID, and clone ID (Fig. 3a). Cells were captured by FACS
for the RFP+/eGFP– cells (Fig. 3b and Supplementary Fig.
S4a) which were further visualized by fluorescent micro-
scopy (Supplementary Fig. S4b).
To compare different subclones with the same barcode

within a replicate, we analyzed two subclones with the
same barcode for three of the barcodes studied. To
compare preexisting subclones with the same barcode,
we selected two of the three barcodes that were enriched
in all the replicate pools and, for each, captured them
from the top two pools with the greatest frequency of
each of those barcodes. Captured subpopulations showed
heterogeneous cellular characteristics, including mor-
phology (Supplementary Fig. S4b) and proliferation rates
(Fig. 3c). To determine whether the subpopulations still
retained PLX resistance, colony formation assays were
performed to assess the PLX sensitivity of the parental
A375 and each of the captured subclones. The cells
showed very different plating efficiencies and PLX
responses (Fig. 3d and Supplementary Fig. S4c). Cell
toxicity was assayed (Fig. 3e) to further validate the PLX
sensitivity of the captured resistant clones. Moreover,

different subclones with the same barcode (e.g., bc2-1-
R2a and bc2-1-R2b) showed similar phenotypes, indi-
cating the stability of the subpopulation. Subclones with
the same barcode from different replicates (e.g., bc51234-
R4 and bc51234-R5) also showed similar phenotypes,
confirming that these subclones were preexisting in the
population prior to treatment.

Integrated analysis of captured subclones identifies
resistance-associated genetic alterations
We hypothesized that captured subclones would har-

bor genetic and/or epigenetic alterations associated with
PLX resistance. All captured subclones were evaluated
by whole-exome sequencing (WES), transcriptome
sequencing (RNA-seq), and methylome profiling (Infi-
nium MethylationEPIC DNA bead chip arrays, EPIC
array) analysis. To assess heterogeneity among resistant
subclones with identical barcodes, we compared sub-
clones with identical barcodes from within the same
replicate pool (bc2-1-R2a vs bc2-1-R2b, bc12-1-R1a vs
bc12-1-R1b, bc435-1-R4a vs bc435-1-R4b) and sub-
clones with the identical barcodes from different repli-
cate pools (bc41235-R4 vs bc41235-R5 and bc51234-R4
vs bc51234-R5). Both the parental A375 and the parallel
DMSO-A375 cells were included as control cells. Prin-
cipal component analysis (PCA) and clustering analysis
(Supplementary Fig. S5) incorporating WES, RNA-seq,
and EPIC array data showed that subclones with the
same barcode were clustered closer than those with
different barcodes, indicating that the alterations were
relatively stable and capturable within a specific bar-
coded subpopulation.
WES was employed to explore the genetic alterations of

each PLX-resistant subpopulation. Copy number varia-
tions (CNVs) occur commonly in the human genome and
are more likely to have larger phenotypic effects, therefore
we first evaluated CNVs from WES data. We identified
both shared (i.e., common among multiple barcode sub-
populations) and private (i.e., limited to a particular bar-
code subpopulation) gains and losses of focal or sub-
chromosomal regions (Supplementary Table S5 and Fig.
S6). A regional gain on the chromosome (chr) 18q21,
which contains the BCL2 gene (among others), was shared
by bc51234-R4, bc51234-R5, bc41235-R4, bc41235-R5,
bc45-R4, and bc5-2-R5. In addition, the gain of the EGFR
gene located on chr 7p (bc51234-R4 and bc51234-R5) and
gain of the ETS2 gene located on chr 21q (bc2-1-R2a and
bc2-1-R2b) were identified. Consistently, these CNVs
were congruent with RNA-seq results and validated by
genome DNA qPCR (Fig. 4a; Supplementary Fig. S7a and
Table S6). Increased mRNA and protein levels of BID and
BIM, two BCL2 family members, were found in patients
treated with another BRAFV600E inhibitor (PLX4720) and
related to its resistance26. BCL2 family proteins regulate
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apoptosis induced by BRAFi and inhibition of the BCL2
family increase sensitivity to mutant BRAF inhibition27,
indicating that our finding of chr 18q gain may serve as a
novel mechanism of BCL2 upregulation and PLX resis-
tance. Reversible and adaptive upregulation of EGFR has
been recognized to confer PLX resistance in BRAFmutant
melanoma28,29. ETS2 is a major downstream effector of
the MAPK pathway, and overexpression or mutation of
ETS2 has been shown to confer PLX resistance30,31. The
mRNA expression of these genes was validated by RT-
qPCR (Supplementary Fig. S7b).
Some of the subpopulations did not show significant

CNVs (e.g., bc12-1, bc345-1, bc345-2, and bc534-2).

Somatic alterations (SAs), including single nucleotide
variations (SNVs) and small insertions/deletions, are
another source of genetic variation that drive clonal
evolution32. We identified PLX resistance-associated SAs
from WES data and filtered for variants observed in the
vehicle-treated A375 cells (Supplementary Table S7).
Between 22 and 68 SAs were detected in each captured
subpopulation, of which more than half were nonsynon-
ymous mutations (Fig. 4b). We also investigated the SNV
pattern within subpopulations and noted that all sub-
populations, including both preexisting (e.g., bc51234 and
bc41235) and late-emerging (e.g., bc2-1 and bc5-2)
resistance, demonstrated similar mutational signatures

Fig. 3 Capture of PLX-resistant subclones. a Diagram of captured subclone naming scheme. A captured subclone name is composed of a barcode
ID (referring to the carrying barcode), a source ID (capital letter “R” followed by a number to indicate from which replicate the cells were captured)
and an optional clone ID (lower case letters). b Representative flow cytometry plot showing barcode isolation. c Cell growth curves of the captured
subclones. Error bars represent the standard deviation of three technical replicates. d Colony formation assay showing the PLX resistance of captured
barcoded subpopulations. Representative image of three independent replicates. e Cell viability of the captured clones in response to PLX. Error bars
represent the standard error of the means of three technical replicates.
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(Supplementary Fig. S8), indicating that the SNV patterns
are not driven by PLX. To nominate promising resistance-
associated genes (Fig. 4c), we generated a prioritization

score (see Materials and methods) for each alteration
using a similar strategy33. The highest-ranking SAs
(Supplementary Fig. S9) included those previously

β

Fig. 4 (See legend on next page.)
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reported as PLX resistance-associated, such as NRASQ61K

(barcode subpopulations bc345-1 and bc345-2) and
NRASQ61R (barcode subpopulation bc12-1). NRASQ61K

and NRASQ61R have been reported as important drivers of
PLX resistance34–37, highlighting that the CAPTURE
approach is capable of identifying endogenous resistance-
associated gene mutations. Moreover, the bc345-1 and
bc345-2 subpopulations were very similar in all omics
analyses (Fig. 4c and Supplementary Fig. S5), indicating
that they were offspring cells of a common ancestor clone
with NRASQ61K that was preexisting in the parental
cell line.
We also identified other SAs of genes that have been

reported as associated with PLX resistance (Fig. 4c and
Supplementary Fig. S9), including mutations of the
MAP3K11, GPS1, GMIP, and NOTCH1 genes. MAP3K11
is a mixed lineage kinase that activates MEK indepen-
dently of RAF to mediate resistance to RAF inhibitors38.
GPS1 is a suppressor of MAPK signaling39, the principal
pathway involving BRAF. GMIP regulates RhoA whose
activation contributes to PLX resistance40,41. NOTCH1 is
downregulated in melanoma cell lines with intrinsic and
acquired resistance to BRAF inhibition42.

Integrated analysis of captured clones reveals resistance-
associated epigenetic alterations
In addition to genetic alterations, heterogeneity of DNA

methylation has also been demonstrated to contribute to
clonal evolution43. We compared PLX-resistant captured
clones to control cells (the parental A375 and the parallel
DMSO-A375) by EPIC array and identified hundreds to
thousands of differentially-methylated positions (DMPs)
(Supplementary Fig. S5 and Table S8). Differentially-
methylated genes (DMGs) in the resistant clones were
further identified (Supplementary Table S9) by methy-
lated CpG set enrichment analysis (mCSEA)44. The cor-
relation between gene promoter DNA methylation and
gene silencing has long been recognized45. We next
identified a list of genes (Fig. 4d and Supplementary Table
S10) whose promoter methylation status was correlated

with gene expression regulation by integrating methyla-
tion data with RNA-seq data. Among the genes identified,
the promotor of SOX10 was hypermethylated with the
corresponding underexpression of the gene in the bc435-
1 subpopulation (Supplementary Fig. S10a). Loss of
SOX10 expression has been reported as a mechanism of
adaptive resistance to mutant BRAF inhibition28,46 and
our study further showed that this could result from
promoter hypermethylation, consistent with the finding of
SOX10 methylation and silencing47. Interestingly, another
SRY family gene, SOX11, was hypermethylated and
underexpressed in the bc41235 subpopulation (Supple-
mentary Fig. S10b). The promoter of NEK9, whose
silencing is associated with mutant BRAF inhibition48,
was hypermethylated and the gene was underexpressed in
bc345-1 and bc345-2 (Supplementary Fig. S10c).
In addition to downregulated targets, promoters of

EPHA3 and SPP1 (Fig. 4e and Supplementary Fig. S10d)
were hypomethylated and these genes were overexpressed
in bc5-2 and bc534-2, respectively. EPHA3 is a member of
the Ephrin family of receptor tyrosine kinases, members
of which have been shown to have a role in escaping
BRAF inhibition49. EPHA3 has also been shown to be
regulated by DNA methylation50. EPHA2 is a mediator of
vemurafenib resistance and a novel therapeutic target in
melanoma51. SPP1 was found to stimulate preneoplastic
cellular proliferation through activation of the MAPK
pathway52.
Together, these data demonstrate that both the pre-

existing and late-emerging genetic and epigenetic
alterations fuel clonal evolution. These alterations, and
the clones that harbor them, can be isolated and iden-
tified using the CAPTURE approach, highlighting the
application of this technology for integrative clonal
characterization.

PLX-resistant clones with chr 18q gain are vulnerable to
BCL2 inhibition
In addition to known mechanisms of PLX resistance

(e.g., NRAS mutation and SOX10 downregulation), chr

Fig. 4 Multi-omic analysis of PLX-resistant clones. a Circos plot showing the CNVs and RNA expression change of genes located on chr 7, chr 18,
and chr 21. The outer circle shows the CNVs, which are represented with normalized copy number profiling of PLX-resistant clones versus control
from Control-FREEC analysis. Gene expression (Gene Expr) change was represented by log2 fold change (log2FC) between PLX-resistant clones and
controls from DESeq2 analysis. For better color representation, a few extreme CNV values > 5 were truncated to 5; and a few extreme positive and
negative log2FC with absolute value > 2 were shrunk to 2 and –2, respectively. b A summary of mutation types (mut.type) of coding SNVs and small
indels in each sample compared with parallel control (DMSO-A375). c Heatmap comparing the alternative allele frequency (Alt Allele Freq) of all
coding SNVs or small indels identified in all the PLX-resistant clones. d Heatmap comparing the gene promoter methylation status and gene
expression change. Promoter methylation statuses were represented with normalized enrichment scores (NES) between controls (parental control
and parallel control) and the PLX-resistant clones from mCSEA analysis. Gene expression changes were represented with log2FC between controls
and the PLX-resistant clones from DESeq2 analysis. Genes with FDR < 0.2 from mCSEA analysis and q value < 0.05 from DESeq2 analysis are shown.
For better color representation, three extreme log2FC values that were < –3 were adjusted to –3. e Hypomethylation of the EPHA3 promoter in the
bc5-2 subpopulation. Each point represents the methylation of each sample. Lines link the mean methylation of each group. The
Kolmogorov–Smirnov (KS) test leading edge panel marks with green bars indicating those CpGs contributing to the enrichment score (ES) and with
red bars indicating those not contributing. This plot was obtained using the mCSEA package.

Zhang et al. Cell Discovery           (2022) 8:102 Page 9 of 23



18q gain is a previously unreported mechanism of PLX
resistance that was observed in four of the barcoded
subpopulations from our CAPTURE analysis. Among
each of the replicate pools, barcoded subpopulations with
chr 18q gain accounted for a mean of 22% of all resistant
cells. Of all the genes at this locus, we focused on BCL2
due to the reported implication of BCL2 family proteins in
PLX sensitivity26,27,53. To evaluate the effect of BCL2
inhibition, we treated cells with the BCL2 inhibitor
ABT263 and performed a cell viability assay. The parental
A375 and parallel control (DMSO-A375) cells were
insensitive to ABT263 treatment with half-maximal
inhibitory concentrations (IC50) of > 3 µM (Fig. 5a, b),
consistent with a previous report53. Conversely, all sub-
populations with chr 18q gain were sensitive to ABT263
treatment with a > 10-fold decrease in IC50 (Fig. 5a, b and
Supplementary Table S11), indicating a strong depen-
dency of these cells on BCL2 for survival. Interestingly, all
the other PLX-resistant clones were also relatively sensi-
tive to ABT263 compared to control cells (Fig. 5a, b),
indicating that other PLX-resistant clones may also ben-
efit from BCL2 inhibition, albeit with lower sensitivity
than those with chr 18q gain. Similar results were con-
firmed by colony formation assays (Fig. 5c and Supple-
mentary Fig. S11a). Moreover, inhibition of BCL2 by low
dose (100 nM) ABT263 re-sensitized the chr 18q gain
resistant subpopulations, but not the parent cells or other
subpopulations without chr 18q gain, to BRAF inhibition
(Supplementary Fig. S11b, c).
Clinically, a trend towards higher BCL2 mRNA

expression in the BRAFi-resistant samples compared with
pretreatment samples was observed (Fig. 5d) by analyzing
a published cohort of BRAFi-treated melanoma patients54.
Notably, the expression of BCL2 was similar to and
positively correlated with other genes at chr 18q21.33 (but
not randomly chosen genes from other genomic loci) (Fig.
5e and Supplementary Fig. S12a) in this BRAFi patients
data set, indicating that genes of this chromosome locus
had either undergone the same DNA copy number
changes or common transcriptional control. The strong
positive correlation of BCL2 expression with chr 18q21.33
genes was not observed in a non-BRAFi data set (Sup-
plementary Fig. S12b), which ruled out the possibility of
common transcriptional control of genes from this locus.
Hence, chr 18q gain was at least partially involved in the
upregulation of BCL2 and resistance of BRAFi-treated
patients. Consistently, BCL2 expression of pretreatment
samples was negatively correlated with the degree of
tumor regression (Fig. 5f) and progression-free survival
(PFS; Fig. 5g). In an additional published cohort55, the
Bcl2 expression level was higher in most (13 out of 17) of
the PLX-resistant samples when compared to the
matching initial sensitive biopsies (Fig. 5h). Moreover, we
performed western blot to examine Bcl2 protein

expression in three additional BRAF-mutant melanoma
cell lines that were selected for resistance by treating with
vemurafenib for about 40 days (a similar treatment time
to the A375 study); and higher Bcl2 expression was
observed in two of the three cell lines (Fig. 5i). Taken
together, these results reveal a previously unrecognized
and clinically relevant mechanism, whereby BCL2 upre-
gulation resulting from either preexisting or acquired chr
18q gain confers PLX resistance, which can be overcome
by BCL2 inhibition. Importantly, these discoveries illus-
trate the potential utility of the CAPTURE approach to
identify and test clonal vulnerabilities.

Identification of potential common transcriptional
dependencies of BRAFi-resistant clones
Since diverse alterations can fuel clonal evolution along

with the stochastic development of late-emerging resis-
tance, it might be impossible to overcome resistance by
targeting a single mechanism alone. Thus, we set out to
explore potential common transcriptional programs
shared by the captured resistant cells carrying different
resistance mechanisms. Transcriptomic analysis (Fig. 6a
and Supplementary Fig. S13a) identified a set of com-
monly differentially expressed genes (DEGs) shared by all
the captured clones that account for ~70% of the resistant
cells. A gene signature comprised of the 30 upregulated
genes among resistant cells negatively correlated with PFS
(Fig. 6b), indicating the potential relevance of upregulated
genes to BRAFi response. Interestingly, among the top
upregulated genes, CDYL2 was previously identified as a
melanoma accelerator in a BRAFV600E model56. CDYL2 is
potentially druggable57, as well as some other upregulated
genes (e.g., PPP1R15A, CD274, and HDAC9), providing
potential therapeutic opportunities. Furthermore, gene set
enrichment analysis (GSEA) also identified commonly
enriched pathways of captured resistant clones (Fig. 6c).
Among these pathways, the oxidative phosphorylation
pathway has been reported to be related to BRAFi
response and resistance, leading to oxidative metabolism
dependence of resistant cells in BRAFV600E mela-
noma58,59, although there was a discordance (whether the
regulation was PGC1α dependent or not) between the two
studies. Consistently, the captured resistant cells were
more sensitive to an oxidative phosphorylation inhibitor
compared to parental control cells (Fig. 6d). Intriguingly,
our clonal resolution results further revealed that PGC1α
was only upregulated in some of the clones (e.g., bc41235)
but not in others (Fig. 6e), indicating that both PGC1α
upregulation-dependent and -independent signals were
involved in regulating oxidative metabolism, which may
account for the discordance between the two studies58,59.
Another commonly enriched pathway of the captured
clones, the MYC target pathway, was previously reported
as a major targetable pathway activated by diverse
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pathways that drive BRAFi resistance in BRAF-mutant
melanoma60. In addition to these dependencies, our
results revealed the E2 factor (E2F) target pathway as
another common pathway enriched in the captured

resistant clones (Fig. 6c). These clones were more sensi-
tive to E2F inhibition by YKL-5-12461 (Fig. 6f, g and
Supplementary Fig. S13b). Collectively, these findings
demonstrate integrative usage of CAPTURE to identify

  −    

−

  −    

−

−−−

Fig. 5 (See legend on next page.)
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potential common vulnerabilities and provide potential
therapeutic opportunities for more broadly overcoming
resistance in BRAFV600E melanoma.

Potential single-cell application and upgradability of
CAPTURE
Although the enriched cells could be captured by

CAPTURE as shown in the above studies, single-cell
technologies remain powerful complementary approaches
for studying the rare cells (limited by the throughput and
sensitivity of cell isolation) in the population. However,
single-cell sequencing coverage may be biased towards
more abundant clones in the population studied. There-
fore, we next set out to explore a potential indirect
application of the CAPTURE to reduce this bias. In our
application of CAPTURE to study BRAFi resistance, for
example, bc2-1 accounted for 84% of resistant cells in our
replicate 2 pool. To determine whether CAPTURE could
be used to filter out dominant clones and improve cov-
erage of rare clones for single-cell sequencing, three
populations were analyzed, including (1) the DMSO-
treated A375 cells (DMSO-A375); (2) the PLX-resistant
replicate pool 2 cells (A375-R2); and (3) A375-R2 cells
with the dominant bc2-1 barcoded cells removed by
application of CAPTURE and sorting for RFP+/GFP+

cells (A375-R2-Δbc2-1). Populations were multiplexed by
hashing with barcoded antibodies62 for 10× Genomics
single-cell RNA sequencing. Approximately 17,908 reads
were obtained per cell, which generated a median of 8016
unique molecular identifiers per cell, 2548 expressed
genes per cell, and more than 22,000 total genes detected
in the population.
Projection of cells in a t-distributed stochastic neighbor-

embedding (t-SNE) analysis provided a visual repre-
sentation of cell clustering based on transcriptomic pro-
files. The first two-dimensional t-SNE projection
segregated cells into 20 major clusters of transcriptomes
by unsupervised clustering (Fig. 7a), demonstrating
intercellular heterogeneity. Cells from each sample were
highlighted by the expression of corresponding hashing

oligonucleotides in the t-SNE projections, respectively
(Fig. 7b–d). Compared to DMSO-A375 cells, a highly
enriched population was shown on the t-SNE plot for the
PLX-resistant cells (A375-R2), consistent with the
enrichment of the barcode bc2-1 population in this
sample. Interestingly, this population included three
clusters (clusters 2, 5, and 11), indicating heterogeneous
subpopulations within the bc2-1 lineage and suggesting
further clonal evolution. The bc2-1 cell population was
effectively depleted (from 51.89% to 3.96%) by comparing
these clusters of the A375-R2 and A375-R2-Δbc2-1 (Fig.
7c, d). Importantly, coverage of the remaining sub-
populations within A375-R2-Δbc2-1 improved as
demonstrated by the mutually exclusive pattern of t-SNE
projections between A375-R2 and A375-R2-Δbc2-1. For
example, coverage of subpopulations of clusters 0, 3, and
6 were all increased by ~5-fold after depletion of bc2-1 by
CAPTURE (Fig. 7c, d). The presented data here support
the CAPTURE barcoding system as an effective upstream
tool in the application of single-cell technologies to
improve the coverage of rare clones.
Another potential way to study rare cells is to increase

the sensitivity of cell capture. Outlier events due to
fluorescence anomalies have been an issue with flow
cytometry63,64 and limit the sensitivity for rare cell sorting.
Taking advantage of the frameshifting feature of CAP-
TURE, which allows simultaneously shift-off and shift-on
markers, we next set out to explore its upgradability to a
system that shifts one marker for background elimination,
one for pre-enrichment, and a third marker for sorting.
The reporter of CAPTURE version 1 (v1) was replaced by
a polycistronic reporter linked using 2 A self-cleaving
peptides to construct the v2 (Fig. 7e). On the basis of the
barcode-controlled GFP-RFP fusion, we added a P2A
peptide linked in-frame blasticidin selection marker
(BSD), following which an HA-tagged puromycin selec-
tion marker (PuroR) was linked by a+ 1 bp frameshifted
T2A peptide. With this reporter, unique marker combi-
nations could be used to differentiate different cell events
at both barcoding and capturing stages (Fig. 7f). During

(see figure on previous page)
Fig. 5 Chr 18q gain is a clinically relevant BRAFi resistance mechanism by BCL2 upregulation, resulting in vulnerability to BCL2 inhibitor.
a Cell viability of the captured clones in response to ABT263. Results are representative of two independent experiments with three technical
replicates per experiment, and error bars represent SEM. b Heatmap showing the IC50 of cells treated with ABT263. c Colony formation assay of cells
treated with the indicated drugs. Representative image of three independent replicates. d A violin plot with integrated boxplot showing mRNA
expression of BCL2 of BRAFi pre- and post-treatment resistant samples from a published cohort54. e Heatmap showing cluster and expression of BCL2
and genes from chr 18q21.33 (labeled in red) or randomly chosen genes from other genomic loci. f, g Pearson correlations of BCL2 expression with
the degree of tumor regression (Response Evaluation Criteria in Solid Tumors (RECIST)) or progression-free survival (PFS) from reanalysis of a
published cohort54. h A boxplot showing Bcl2 expression (FPKM) of paired PLX-treated tumor biopsies (Initial vs Progressed) from a published
cohort55. i Western blot results showing Bcl2 protein expression of three BRAF mutant melanoma cell lines that were selected for resistant cells by
PLX treatment (2 µM for WM2664, 2 µM for SK-MEL-5, and 5 µM for A2058) for 40 days. P parental cells, R1 replicate 1 of PLX-treated cells, R2 replicate
2 of PLX-treated cells. The numbers showing the relative quantification of Bcl2 bands intensity normalized to a housekeeper (tubulin) and referred to
the parental sample of each cell line.
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Fig. 6 Identification of potential common transcriptional dependencies of BRAFi-resistant clones. a Heatmap comparing the gene expression of
controls (parental control and parallel control) and the PLX-resistant clones. Top 100 DEGs were shown. Genes that consistently up- and down-regulated
in all captured clones were highlighted in red and blue, respectively. b Kaplan–Meier curves for PFS of patients from a published cohort54 with high or
low resistant gene signature score (res_score). The dashed lines indicate median PFS. c Dot plot showing the comparison of gene set enrichments from
each captured lineage, only pathways enriched (FDR < 0.25) in at least five lineages are shown. Dots represent term enrichment with color coding from
red (lowest FDR) to blue (highest FDR). The sizes of the dots represent the NES value, which is also the x-axis value for better spacing of dots. The
commonly enriched pathways are highlighted in red. d Cell viability curves of the captured clones in response to an oxidative phosphorylation inhibitor
IACS-010759. e Bar chart showing PGC1α expression (FPKM value) of parental A375, parallel A375 control cells and captured clones. The blue dashed line
indicates the average PGC1α expression of control cells. f Cell viability curves of the captured clones in response to an E2F targets inhibitor YKL-5-124.
g Colony formation assay of cells treated with the indicated drugs. Representative image of three independent replicates.
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Fig. 7 (See legend on next page.)
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barcoding, BSD selection could help to remove the
imperfectly barcoded cells. During capturing, puromycin
selection could be applied to enrich target cells to mini-
mize the influence of outlier events during sorting. To
ensure the performance, the codons of the reporter were
optimized so that no stop codons would be induced by –1
frameshifting and no –1 ribosomal frameshifting sites
would be present. We then tested the puromycin selection
of CAPTURE-v2. Barcoded cells without CRISPR target-
ing were totally sensitive to puromycin, while a portion of
barcoded cells with anti-barcode CRISPR targeting were
resistant to puromycin (Fig. 7g). Consistently, barcoded
cells with CRISPR targeting showed PuroR-HA expres-
sion, which was strengthened after puromycin selection
and was undetectable in non-targeted barcoded cells (Fig.
7h). These results indicate that barcode targeting did
induce frameshifting leading to PuroR-HA expression and
puromycin resistance. Next, we determined the sensitivity
by capturing cells carrying a barcode (BC2-v2) at different
percentages (10%–0.001%). Flow cytometry analysis
showed that puromycin selection indeed significantly
enriched RFP+/GFP– cells at all percentages without
decreasing performance at a low percentage (Fig. 7i).
Moreover, amplicon sequencing of the pre-enriched and
sorted cells confirmed the purity of captured cells was
~90% in all groups (Fig. 7j), without a decrease in lower
percentage groups. These data indicate that by modifying
the reporter, CAPTURE-v2 allows pre-enrichments for
sorting, enabling the capture of rare cells comprising
< 0.001% of the population.

Discussion
In this study, we identify a novel mechanism of BRAFi

resistance and uncover private and common vulner-
abilities of resistant cells in BRAFV600E melanoma using
an integrative methodology for investigating drug resis-
tance and clonal evolution. This method relies on a

Cas9D10A and paired-gRNA targetable unique reporter
(CAPTURE) single-cell barcoding approach. Studies of
clonal evolution using barcoding libraries have been
previously reported; however, our method makes sig-
nificant improvements over prior approaches that facil-
itate the discovery of novel resistance mechanisms. For
example, in contrast to the previously reported Clon-
Tracer barcode system9, an important advance provided
by CAPTURE is the ability to specifically capture
phenotype-associated clones from heterogeneous pools
and link them to their clonal trajectories. This permits
application to a broad range of integrated investigations to
identify drivers and/or vulnerabilities.
During our manuscript preparation and submission,

several conceptually similar approaches have been pub-
lished16–19, emphasizing the importance of lineage-
specific isolation. Compared to all these approaches
(Supplementary Fig. S14), CAPTURE is the only one with
the capability to obtain tens of million fully-designed (not
semi-random) barcodes using tens of thousands of precise
synthetic oligos, due to the use of an off-target minimizing
paired-gRNA barcode design and Cas9 nickase system21.
Hence, CAPTURE has the optimal control of the overall
library functionality by controlling the off-target effects
(either inter-barcode or across the genome) and on-target
efficiency of each gRNA used for library construction,
which is critical for CRISPR-based technology20. More-
over, COLBERT19, CaTCH16, and B-GLI18 were all based
on miniCMV, which was known for its leakiness17,65,
especially when some of the semi-random sequence bar-
codes may also serve as binding elements of endogenous
transcription factors that could be highly active during the
clonal evolution (e.g., two GATA-1 sites and others were
found in CaTCH BC1 by PROMO66 analysis) and lead to
another source of potential off-target activation. Clone-
Sifter17 utilized semi-random sequence gRNA barcodes
targeted by wild-type Cas9 that was known for its off-

(see figure on previous page)
Fig. 7 Potential single-cell application and upgradability of CAPTURE. a t-SNE projection plot showing 20 major clusters by GRAPH-based
classification. b–d t-SNE projection plots highlighting cells from DMSO-A375 (b), A375-R2 (c), and A375-R2-Δbc2-1 (d). The red dotted lines outline
representative clusters of enrichment. e Diagram of CAPTURE-v2 (version 2), which was upgraded from version 1 by upgrading the reporter to a 2 A
peptides linked polycistronic reporter so that barcode frameshifting will switch different markers simultaneously. msfGFP monomeric super-folder
GFP, PuroR puromycin resistance gene, HA hemagglutinin tag. f Schematic illustration of the reporter outcomes of CAPTURE-v2 at different stages.
During barcoding, only the perfect barcoded (without frameshifting background) cells will be resistant to blasticidin selection, which will minimize
the possible background. During capturing, only –1 frameshifted barcodes will simultaneously frame out GFP and frame in PuroR-HA, which will
make the cells resistant to puromycin to enable pre-enrichment for sorting. Additionally, detecting the PuroR-HA fusion expression using an anti-HA
antibody by western blot helps confirm this outcome. BOI, a cell with barcode of interest. g Testing the puromycin sensitivity of CAPTURE-v2
barcoded cells with or without CRISPR targeting. Parental A375 cells were also included as a control. 1000 cells were seeded each well of the 24-well
plate one night before adding puromycin at the indicated concentrations. h Determination of HA-PuroR expression by western blot. CAPTURE-v2
barcoded A375 cells with the indicated treatments were subjected to western blot. Tubulin was used as loading control. The asterisk indicated the
position of full length of –1 frameshifted expression product; the arrow indicated the T2A-cleaved PuroR-HA. i Enrichment of RFP+, GFP– cells in
CAPTURE-v2 barcoded cells with indicated ratio spike-in of barcode of interest (BOI, here is BC2-v2) after CRISPR targeting and puromycin selection
determined by flow cytometry. j The purity of isolated cells is determined by NGS. Cells isolated from spike-in experiments of i were subjected to
amplicon sequencing of the barcode region. The targeted cell percentages were inferred by targeted read percentages.
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target20, especially with semi-random gRNAs. Most of the
sorting-based approaches17–19 have a sensitivity of ~0.1%,
perhaps due to the background signal and flow outlier
that are often observed63,64; surprisingly, CaTCH had a
sensitivity of 0.001%, which may be because its barcoded
cells “were sorted for low GFP (CaTCH reporter)
expression” before the clonal isolation experiment.
Although it did not have miniCMV-related leakiness, our
CAPTURE version 1 (v1) was also sorting-based and
showed sensitivity at ~0.1%. Taking advantage of the
frameshifting capability, we also explored the upgrad-
ability of CAPTURE to simultaneously shift-off a fluor-
escent reporter and shift-on an antibiotic selection
marker, which minimizes the background and flow-
outlier noise by antibiotic pre-enrichment. This upgra-
ded version, CAPTURE-v2 showed a sensitivity of <
0.001%. Moreover, most other approaches (CaTCH, B-
GLI, and CloneSifter) require pre-transduction of Cas9-
related components (dCas9-VPR or tetR-Cas9), which
may introduce more artificial effects due to the selection
of pre-transduced cells and more lentiviral integrations.
COLBERT does not require pre-transduction because it
utilizes transfection, which would limit its usage for hard-
to-transfect cells. CAPTURE does not require pre-
transduction or transfection. Due to the involvement of
cell freezing and thawing, we would also like to note one
potential common limitation of all these clonal isolation
approaches, including CAPTURE, that could miss certain
unstable non-genetic mechanisms, although they are
usually less important because resistant cells with non-
persist mechanisms might easily become sensitive again
after a drug holiday. Overall, CAPTURE provides a dis-
tinctive barcode tracing and isolation approach that is
highly specific, sensitive, and controllable.
Applying CAPTURE, we demonstrated that a small

number of single-cell clones, from preexisting resistant
clones or drug-tolerant persister cells, dominated resis-
tance to vemurafenib in BRAFV600E melanoma. The
emergence of resistance from persister cells was sto-
chastic, making any strategy to target resistant cells a
major challenge. These findings suggest that an ideal
treatment strategy to delay or even prevent resistance
should both target preexisting resistant cells and drug-
tolerant persister cells, especially the cycling ones67.
Integration of multi-omics analyses led to the identifica-
tion of potential resistance-associated alterations,
including SAs, CNVs, DEGs, and DMPs. For example,
NRAS mutations (Q61R and Q61K) have been validated
as a major BRAFi resistance mechanism34–36, highlighting
the ability of CAPTURE to identify resistance drivers.
Additionally, CAPTURE further provided evidence for the
selection of preexisting NRASQ61K mutant subpopulations
from the parental bulk in response to therapeutic stress.
SOX10 downregulation has been known to play a critical

role in PLX resistance28,46 and we used CAPTURE to
reveal the clonal epigenetic (promoter methylation)
adaption of SOX10. Moreover, chr 18q amplification
arising from both preexisting and late-emerging evolution
paths was identified as another major novel mechanism in
several captured clones by upregulating BCL2 expression.
Chromosomal instability, including chr 18 gain, was
recently observed to be involved in anti-cancer therapies
resistance68. Clinically, a reanalysis of a published
cohort54 demonstrated the involvement of chr 18q gain in
BRAFi resistance of patients. Chr 18q gain was also
detected in cutaneous melanoma69,70, supporting the
possibility of preexisting this alteration in patients.
Importantly, we also demonstrated that resistant clones
with 18q gain were vulnerable to and re-sensitized by
BCL2 inhibition. These discoveries expose a vulnerability
of a previously unrecognized but clinically relevant
resistance in BRAFV600E melanoma.
Since various genetic and/or epigenetic alterations,

either preexisting or acquired, can fuel clonal evolution
and resistance, another consideration for more broadly
overcoming resistance is whether these cells with diverse
resistance exhibit convergent resistance, which may lead
to common vulnerabilities of resistance by different
mechanisms. Interestingly, we identified several targetable
common dependencies of our captured cells. Our finding
of oxidative phosphorylation and MYC pathways as
common addictions are consistent with and provides
additional evidence for previous observations58–60. Addi-
tionally, we identified the E2F pathway as another novel
druggable vulnerability of BRAFi resistance, and our
observation of potential targetable commonly upregulated
genes may also provide additional therapeutical oppor-
tunities. The molecular mechanisms by which these
pathways and genes are regulated by the diverse pathways
of resistance in melanoma are therefore important areas
for future study.
In addition to the direct applications to the captured

clones, by sorting out the dominant subpopulations,
CAPTURE can be used to enrich rare subpopulations and
improve the detection of rare events by standard
sequencing71 or the coverage of single-cell sequencing
technologies, as evidenced by our single-cell RNA
sequencing of a CAPTURE-filtered sample. Furthermore,
future work may enable the combination of CAPTURE
with 10× Genomics feature-barcoding technology to allow
profiling of gene expression in conjunction with the
CAPTURE barcode sequence from the same single cell
that would enable capturing lineages with the tran-
scriptome of interest.
In this study, we prioritized the SAs by integration of

multi-omic data, alteration pathogenicity, clinical rele-
vance, and CRISPR functional screen scores. In more
complex systems with large numbers of candidate SAs,

Zhang et al. Cell Discovery           (2022) 8:102 Page 16 of 23



SAs identified by CAPTURE could be validated by
saturation genome editing technology72. CAPTURE also
lends itself to functional genomic screening14,15 of cap-
tured clones, particularly when there is little a priori
information about the possible mechanism involved in the
specific phenotype being studied. Indeed, CAPTURE
allows specific identification of vulnerabilities to reverse
the phenotype of interest of captured clonal populations.
This functional approach is exemplified by the identifi-
cation of chr 18q gain in captured PLX-resistant clones,
which led to the discovery of a vulnerability to BCL2
inhibition. The editing outcomes of captured clones might
be useful in the future as a secondary source of infor-
mation about within-clone diversity. Although we have
demonstrated the use of CAPTURE in studying the clonal
response to drug treatment in vitro, we anticipate that
CAPTURE will be applicable to a broad range of biolo-
gical and technological settings and should provide
insights into clonal dynamics and regulatory events in
heterogeneous cell populations.

Materials and methods
Vector construction
The constructs used in this study were generated using

standard molecular cloning technologies, including PCR,
restriction enzyme digestion and ligation. Custom oligo-
nucleotides (Supplementary Table S12) were purchased
from Sigma-Aldrich. Sequences of the constructs were
verified with Sanger sequencing. Lenti-CMV-BC-eGFP
vector was modified from pHAGE-CMV-MCS-PGK-
puro73 with multiple modifications. The puromycin
(Puro) resistance gene was replaced with the blasticidin
(BSD) resistance gene, which was amplified from Lenti-
Cas9-2A-Blast (Addgene, #73310)74. Then, eGFP, ampli-
fied from EGFP-C1 (Clontech), was inserted. The CAP-
TURE vector (Lenti-EFL-RFP-BC-eGFP) was modified
from Lenti-CMV-BC-eGFP with two additional mod-
ifications. CMV was replaced with EF1-α intron A pro-
moter, which was amplified from pHAGE-EF1alphaL-
hAAT-W (Addgene, #24527)75. RFP was amplified from
pL-CRISPR.EFS.tRFP (Addgene, #57819)76. Individual
barcodes were constructed by insertion of annealed oli-
gonucleotides into MluI/BamHI restriction sites of Lenti-
CMV-BC-eGFP or the CAPTURE vector. CAPTURE-v2
was constructed by replacing the reporter of CAPTURE-
v1. The lenti-CRISPR-V2-Cas9D10A-U6-optimized-
gRNA vector was modified from lenti-CRISPR v2
(Addgene, #52961)77 by introducing the D10A mutant of
Cas9 through site-direct mutagenesis and replacing the
original gRNA scaffold with an optimized version syn-
thesized from Genscript. Each gRNA was cloned by
inserting annealed oligonucleotides into the lenti-
CRISPR-V2-Cas9D10A-U6-optimized-gRNA vector at
the Esp3I restriction site. A second PCR-amplified U6-

optimized-gRNA was inserted into EcoRI/NheI sites to
make lenti-CRISPR-V2-Cas9D10A-2×U6-optimized-
gRNA (Supplementary Fig. S1c).

Cell culture, transfection, lentivirus production, and
transduction
HEK 293T (ATCC) cells were cultured in DMEM with

10% fetal bovine serum (FBS) (Sigma). A375 (ATCC) cells
were cultured in RPMI-1640 medium supplemented with
10% FBS (Sigma). WM2664, SK-MEL-5, and A2058 cells
were gifts from Dr. Michael Davies (the University of
Texas MD Anderson Cancer Center) and were cultured
under the same condition as A375 cells. LookOut®
Mycoplasma PCR Detection Kit (Sigma) was used to
confirm that our cells were negative for mycoplasma
contamination. Transfections were performed using
Lipofectamine 3000 Reagent (Thermo Fisher) according
to the manufacturer’s instructions. The CAPTURE or
CRISPR plasmids were co-transfected with psPAX2
(Addgene, #12260) and pMD2.G (Addgene, #12259) at a
ratio of 2:2:1 into HEK 293T cells. The supernatant
containing the lentivirus was harvested 72 h after trans-
fection and filtered with a 0.45 µm filter (Millipore).
Appropriate amounts of lentivirus were added to cells
supplemented with 8 µg/mL polybrene (Millipore) to
transduce the cells. To achieve an MOI < 0.3, the amount
of lentivirus resulting in a transduction efficiency of < 30%
was used. Forty-eight hours after transduction, cells were
subjected to blasticidin (5 µg/mL) or puromycin (2 µg/
mL) selection for 10 days.

Flow cytometry analysis of eGFP targeting and assessment
of barcode capturing sensitivity
HEK 293T cells were transduced with barcodes

(BC1–BC8 in Lenti-CMV-BC-eGFP vector) carrying len-
tivirus as described above to barcode the cells. Barcoded
cells were then targeted by Cas9D10A and a pair of gRNAs
corresponding to each of the barcodes. The eGFP tar-
geting efficiency was determined by the Gallios flow cyt-
ometer (Beckman Coulter). Similarly, HEK 293T cells
were barcoded with BC1 and BC2 contained within the
optimized Lenti-EFL-RFP-BC-eGFP vector. BC1-
barcoded cells were pooled with BC2-barcoded cells at
the following percentages: 100%, 10%, 1%, and 0.1%.
Similar experiments were performed for CAPTURE-v2 at
ratios from 0.001% to 10%. Cas9D10A and paired-gRNA
targeting the barcodes were delivered to the pools. Pur-
omycin (1 µg/mL) selection was carried out for
CAPTURE-v2 pre-enrichment. RFP+/eGFP– cells were
sorted using MoFlo Astrios with BSLII hood (Beckman
Coulter) or SY3200™ highly automated parallel sorting
(HAPS) cell sorters. DNA was extracted from the sorted
cells, followed by amplicon sequencing of the barcode
region to confirm specific targeting by Cas9D10A.
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Cytometry data was analyzed using FlowJo V10; a repre-
sentative gating strategy was shown in Supplementary Fig.
S15.

Barcode amplicon sequencing and analysis
TruSeq-style primers (Supplementary Table S12) were

synthesized to amplify the amplicon library for Illumina
sequencing. The P5 primer pool consisted of the P5 primer
sequence combined with a staggering region of various
lengths (0–8 bp) to increase the sequence diversity of the
resulting library. Each P7 primer included an index of 8
bases for multiplexing samples in a sequencing lane. DNA
from the CAPTURE library or barcoded cells, which
represent > 20-fold barcode coverage, was used as the
template to amplify the barcode region using the P5 primer
pool and P7 primer with a specific sample index. The PCR
was performed using ExTaq (Clontech) with the following
thermal cycling parameters: 95 °C 1min, 26 cycles of (95 °C
10 s, 54 °C 30 s, 72 °C 30 s), 72 °C 5min. The PCR products
were size-selected using a 2% agarose gel and purified using
the QIAquick Gel Extraction kit (Qiagen). A secondary
purification was performed using a 1× SPRIselect reagent
(GE Healthcare, B23317). The purified products were
quantified using KAPA Library Quantification Kit (Roche).
10% PhiX was included when loading the libraries to an
appropriate Illumina sequencer based on required coverage
and library size. For counting the barcodes and their frac-
tions in each sample, FASTQ files were generated from the
sequencing runs. Reads were trimmed for quality with
Trimmomatic version 0.3678 and then Unix Grep and Regex
were used for those matching the CGTCCG(N20)
GCCACCATGGTCGAC(N20)CGGTAG motif. To keep
only the barcode sequence, flanking bases were trimmed
using the UNIX cut command. The barcodes were mapped
to the reference sequences using the UNIX awk command.
A combination of UNIX sort and uniq commands were used
to count the barcodes. After these steps, barcodes that were
100% matched to reference were counted. The barcode
count matrix was imported into R (version 3.5.1) for
counting the barcode fraction and downstream analyses.
The GFOLD (generalized fold change)25 algorithm was
employed to produce reliable statistics based on the pos-
terior distribution of log2 fold change following the manual.
The possibility of a resistant barcode enriched in any r
number of replicates out of the total five replicates by chance
was estimated using the formula C (5, r) * Pr * (1–P)5–r,
where P was the possibility that one barcoded population
was selected as resistance (~0.0007 in this study, based on
the 157 enriched barcodes out of the total detected barcode
complexity of 0.23 million). Hence, the possibility of a
resistant barcode enriched in all five replicates by chance
(not preexisting) was extremely low (1.68 × 10−16). Con-
sidering the barcode complexity of 0.23 million, the adjusted
possibility of a resistant barcode enriched in all five

replicates by chance (not preexisting) was still extremely low
(3.86 × 10−11). The R package pheatmap was used to gen-
erate heatmaps. CRISPResso279 was employed to analyze
editing outcomes of targeted barcodes from amplicon
sequencing.

CAPTURE library construction
Oligonucleotides (Supplementary Table S2) were syn-

thesized on a CustomArray 12 K array (CustomArray Inc)
and the assembled oligonucleotide pool was amplified by
PCR using Phusion HS Flex (NEB) and primers LibF and
LibR (Supplementary Table S12) with the following
thermal cycling parameters: 98 °C 30 s, 25 cycles of (98 °C
10 s, 55 °C 30 s, 72 °C 20 s), 72 °C 5 min. The PCR pro-
ducts were size-selected using a 2% agarose gel and pur-
ified using the QIAquick Gel Extraction kit (Qiagen). The
CAPTURE backbone was linearized with MluI and
BamHI digestion and treated with FastAP before gel
purification. Linearized vector (200 ng) and inserts (50 ng)
were assembled in a 50 µL reaction using Gibson
Assembly Master Mix (NEB). The assembled product was
desalted by drop dialysis using a Type-VS Millipore
membrane (Millipore). The desalted product was elec-
troporated using 20 reactions of Lucigen electro-
competent cells (Endura) following the manufacturer’s
suggested parameters and protocol. The transformation
reactions were pooled. Diluted products (104-, 105-, and
106-fold dilution) were plated for calculating transfor-
mation efficiency to ensure the coverage of complexity.
The remainder of the transformation was seeded into four
250mL Erlenmeyer flasks containing 80mL Luria broth
(LB) liquid media with 100 µg/mL carbenicillin and cul-
tured at 30 °C overnight. The CAPTURE library plasmid
was extracted using the ZymoPURE Plasmid Maxiprep
Kit (Zymo Research). The CAPTURE library was
sequenced by amplicon sequencing described above to
evaluate the barcode distribution of the library.

Clonal tracking and capturing of A375 in response to
PLX4032
A375 cells (~3 million) were transduced with CAP-

TURE carrying lentivirus at a transfection rate < 20% by
monitoring the fluorescent signal to ensure MOI of < 0.3
as described above. A larger barcode library was used to
transduce a much small number of cells, which is
important in order to avoid having more than one founder
cell with the same barcode. To remove the non-barcoded
cells, the cells were then subjected to blasticidin (5 µg/mL)
selection for 10 days, followed by sorting for RFP+/eGFP+

cells. The founder-barcoded cells were then expanded to
ensure sufficient cell number coverage of each barcode at
the start of treatment (> 100× coverage for each treat-
ment) and to minimize the stochastic loss of barcodes.
Barcoded cells were divided into a barcode baseline
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distribution control group (DMSO-A375), which was
treated with DMSO in parallel with five replicate treated
pools (R1 through R5), each treated with 2 µM PLX. Cells
were refreshed with the vehicle- or drug-containing
medium every two days and passaged as needed. Forty
days after the initial treatment, the cells were harvested
and split into two halves. One was subjected to barcode
amplicon sequencing for tracking barcode distribution,
the other was expanded and frozen for downstream use.
Barcode amplicon sequencing and analysis were per-
formed as described above. To capture cells with a bar-
code of interest, each pair of gRNAs targeting the barcode
were prepared in the lentiviral backbone. Cells were
transduced with barcodes targeting CRISPR/Cas9D10A as
described above. RFP+/eGFP– cells were sorted into a 96-
well plate at one cell per well. The fluorescent signal was
confirmed by fluorescence microscopy.

Colony formation assay, cell viability assay, and cell
proliferation assay
Colony formation assays were performed in 12-well

plates by plating 5000 cells (A375-bc41235) and 1500 cells
(all others). Treatment of cells with the appropriate drugs
began the next day. Drugs were renewed every 2–3 days.
Plates were stained with crystal violet (1% dissolved in
10% ethanol and 90% water) between 8 and 10 days after
the start of the experiment. The crystal violet staining of
the colonies was extracted with 10% acetic acid and
quantified by measuring the absorbance of the extracted
dye at 590 nm. For the cell viability assay, cells were plated
in triplicate into 96-well plates at a density of 5000 cells
per well. Sixteen hours after cell seeding, cells were
treated with appropriate drugs at the indicated con-
centration. All the drugs were purchased from Med-
ChemExpress (PLX4032 (HY-12057), ABT263 (HY-
10087), IACS-010759 (HY-112037), and YKL-5-124 (HY-
101257)). Vehicle (DMSO) was used as needed to equalize
the solvent concentration. After 2 days of treatment, cell
viability was measured using Cell Counting Kit-8 (CCK-8,
Dojindo Molecular Technologies, Inc.) or Deepblue
(Biolegend) according to the manufacturer’s instructions.
For cell proliferation assays, 1000 cells were seeded in 96-
well plates and CCK-8 was used to measure the cell
proliferation on day 0 (start point), day 2, day 4, and day 6.
Prism 9 (Graphpad) was used to analyze cell viability and
proliferation data.

WES and analysis
Exome sequencing was performed on two control cells

(the parental A375 and the vehicle-treated parallel
DMSO-A375) and 15 captured PLX-resistant clones
(bc12-1-R1a, bc12-1-R1b, bc2-1-R2a, bc2-1-R2b, bc345-
1-R3, bc345-2-R3, bc45-R4, bc435-1-R4a, bc435-1-R4b,
bc41235-R4, bc41235-R5, bc5-2-R5, bc534-2-R5,

bc51234-R4, and bc51234-R5). Genomic DNA was
extracted using AllPrep DNA/RNA Mini Kit (Qiagen).
Exomes were captured using the Illumina Nextera Flex
kit (45 Mb exonic content) according to the manu-
facturer’s instructions and sequenced on an Illumina
NovaSeq6000 sequencer with paired-end 100-bp reads.
The average coverage was between 50- and 98-fold for
the samples. Sequencing reads were trimmed for adap-
ters and quality with Trimmomatic version 0.3678, and
aligned to the human genome (hg19) using BWA-MEM
version 0.7.1780 with default parameters. Duplicate reads
were removed using Sambamba version 0.6.881, and
BAM files were further processed with GATK version
3.882 and LoFreq version 2.1.283 for realignment around
indels and base quality score recalibration. SAs, includ-
ing point mutations and small indels, were called by
GATK HaplotypeCaller and LoFreq. CNV analysis was
performed on recalibrated BAM files using Control-
FREEC version 11.384 following the manual with all
default WES setting and “sex=XX” to exclude chr Y
from the analysis. With either control cells as “normal”,
the MuTect2 variant caller from GATK was used to call
clonal specific SAs and the Control-FREEC was used to
call clonal CNVs. Very similar results were obtained
using either control cells and the results using “DMSO-
A375” as the control was presented (Supplementary
Tables S5, 7). Mutational signatures of the samples were
analyzed with MutationalPatterns 3.685 from Variant
Call Format (VCF) files following the package vignette.
Downstream analysis and visualization were performed
in R (version 3.5.1). WES data has been submitted to
Sequence Read Archive (SRA) under accession code
PRJNA565471.

RNA-seq and analysis
Total RNA was extracted using AllPrep DNA/RNA

Mini Kit (Qiagen), and RNA-seq libraries were prepared
with the Illumina TruSeq Stranded mRNA kit according
to the manufacturer’s instructions. Paired-end reads
(PE50) were sequenced on an Illumina HiSeq4000
sequencer. Reads were trimmed for adapters and quality
with Trimmomatic version 0.3678 and aligned to the
human reference genome (hg19) with STAR version 2.586

using standard settings. A genes-to-samples count matrix
was generated using featureCounts87 with standard set-
tings. DEGs were analyzed with DESeq288. The top 30
upregulated genes (CNST, MYH16, SMG1P1, ADAMTS6,
STARD13, FGF5, PPP1R15A, CRYBG3, RGMB, CD22,
NUDT11, CD274, MME, PCDHA4, SHANK1, HIVEP2,
SCHIP1, CDYL2, MGLL, ABCC9, GAREM1, ARHGAP22,
ADAMTS18, ABL2, SERPINB7, HDAC9, DTNA, GEM,
GPR176, and MIR222HG) between captured resistant
clones and control cells (the parental A375 and the
vehicle-treated parallel DMSO-A375) by DESeq2 analysis

Zhang et al. Cell Discovery           (2022) 8:102 Page 19 of 23



were chosen as signature to calculate resistant gene sig-
nature score (res_score). Transcriptional levels were
quantified as Fragments Per Kilobase of exon per Million
fragments mapped (FPKM). PCA was conducted to
investigate the relationship between samples. GSEA was
performed using GSEA89. RNA-seq data have been sub-
mitted to the Gene Expression Omnibus (GEO) reposi-
tory (GSE137309). RNA-seq data and clinical information
from a cohort of BRAFi-treated patients were kindly
shared by the authors54. Single-sample GSEA (ssGSEA)
based signature score was analyzed using corto90.

Genome-wide DNA methylation analysis
Genomic DNA was extracted using AllPrep DNA/

RNA Mini Kit (Qiagen), and bisulfite conversion was
performed using EZ DNA Methylation-Gold Kit (Zymo
Research). Genome-wide DNA methylation analysis was
performed using InfiniumEPIC DNA Methylation Bead
Chip arrays (Illumina) to determine the methylation
status at 853,307 CpG sites. Illumina intensity data
(IDAT) files from the arrays were further processed
using the ChAMP91 pipeline following the vignette. DNA
methylation level was reported as β value, ranging from
zero to one, where zero represents non-methylated and
one represents fully methylated, for every CpG site.
Differentially-methylated CpG sites (Supplementary
Table S8) were identified when β difference > 0.4 and
adjusted P value (Benjamini–Hochberg method, FDR)
< 0.05. Methylation array data were deposited into GEO
under accession code GSE137452.

Multi-omic integrative analysis
To determine the effect of CNVs, the CNV profiling

results were integrated with RNA-seq data by checking
whether the CNVs led to expected expression changes of
genes located in the corresponding chromosomal regions.
Non-expressed genes (the genes whose FPKM values were
< 0.1 in all samples) were excluded, and OmicCircos92 was
employed to visualize the mRNA levels and CNV profiles
of genes located on corresponding chromosomal regions.
BiomaRt93 was used to derive gene annotations.
To prioritize coding SNVs and small indels, the results

were integrated with multiple lines of evidence to assign
each alteration a priority score (PS) for generating a
ranked list of mutations (Supplementary Table S7). To
exclude mutations that are likely passengers, genes that
were not expressed were scored “0”. The remaining
mutations were evaluated based on a computation that
integrated alternative allele frequency, the likelihood of
deleterious alteration, CRISPR screen functional score,
and clinical relevance. To score alternative allele fre-
quency, the frequencies were multiplied by 100 so that the
alternative score (AS) ranged from 0 to 100. To evaluate
the likelihood of deleterious alteration, CADD94, SIFT95,

and PROVEAN96 were used. Frameshift deletion, stop
codon gain mutation, and splicing could not be scored by
the tools and were assigned with the maximum score
because these alterations may introduce larger effects.
Other alterations that could not be scored were assigned
with the median value. Scores from each computational
tool were scaled to a range of 0–100. The average of the
scores from these three tools (CADD, SIFT, PROVEAN)
was used as the deleterious score (DS). To obtain a
CRISPR screen functional score (CS), raw counts were
obtained from a previous publication14. The data were
analyzed using MAGeCK97, and mutations were scored by
the gene’s log2 fold change, which was also scaled to a
range of 0–100. To score the clinical relevance, the
genetic landscape of clinical resistance was obtained from
a prior publication37. A gene score (GS) of “100” was
assigned to the mutation of any gene observed in the
published landscape; otherwise, the gene was scored as
“0”. Similarly, mutations that were reported in the land-
scape were assigned a mutation score (MS) of “100”;
otherwise, the mutation was scored as “0”. Finally, the PS
was calculated based on these scores, by taking the
average of AS, DS, CS, GS, and MS. PS also ranged from 0
to 100, with a higher score indicating the higher possi-
bility of the alteration being associated with resistance.
To identify gene promoter methylation that affected

gene expression, the DNA methylation matrix was ana-
lyzed by mCSEA44 to identify DMG promoters in PLX
resistance subpopulations compared with controls (FDR
≤ 0.25). The DMGs were then mapped with the RNA-seq
DEG results (using q value < 0.05) as described above to
obtain a list of genes potentially regulated by methylation
(Supplementary Table S9).

Single-cell sequencing and analysis
PLX replicate pool 2 resistant A375 (A375-R2) cells

were transduced with bc2-1 targeting lentivirus to turn off
the eGFP fluorescence of the cell subpopulation carrying
bc2-1. Replicate 2 resistant A375 cells without bc2-1
subpopulation (A375-R2-Δbc2-1) were collected by sort-
ing for RFP+/eGFP+ cells using an SY3200 cell sorter
(SONY). A375-R2, A375-R2-Δbc2-1, and DMSO-A375
cells were subjected to single-cell RNA sequencing.
Single-cell sequencing was performed as described

previously62. Briefly, cells were labeled with hashtags
(TotalSeq-A0007 for DMSO-A375, TotalSeq-A0132 for
A375-R2 and TotalSeq-A0125 for A375-R2-Δbc2-1) from
Biolegend. Single-cell samples were processed with Single
Cell 3′ Reagent Kit V2 (10× Genomics) following the
manufacturer’s protocol up to the cDNA amplification
step. Additive primers (Supplementary Table S12) were
added at the cDNA amplification step to increase the yield
of hashtagged product. After amplification, RNA-derived
cDNA and hashtag DNA were separated using a 0.6×
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SPRIselect reagent (GE Healthcare, B23317). RNA-
derived cDNA was eluted from the beads to prepare a
cDNA library according to the 10× Genomics protocol.
Hashtag DNA was purified from supernatant to prepare
the hashtag library by second amplification and purifica-
tion. The cDNA and hashtag libraries were pooled and
loaded onto an Illumina NovaSeq6000 sequencer. Single-
cell RNA expression raw reads were de-multiplexed and
mapped to the hg19 reference genome by 10× Genomics
Cell Ranger version 3.0.0 using default parameters to
generate an expression matrix and the hashtag raw reads
were analyzed and generated a count matrix using CITE-
seq-Count98. All downstream single-cell analyses were
performed using Seurat99. The top 25 aligned correlated
components were used as input for t-SNE dimension
reduction and clustering analysis.

Western blot and qPCR
The whole-cell lysate was extracted using RIPA buffer,

and a western blot was performed following standard
protocol. Primary antibodies anti-HA-tag (Cat# 2367) and
anti-Bcl-2 (Cat# 4223) were from Cell Signaling Tech-
nology, and anti-tubulin (Cat# 12004166) was from
BioRad. The results were developed using ChemiDoc MP
Imaging System (BioRad) and quantified using Image Lab
(BioRad). PowerUp™ SYBR™ Green Master Mix (Thermo
Fisher, A25741) was used for qPCR using an Applied
Biosystems ViiA 7 real-time PCR system. Primers were
included in Supplementary Table S12.

Statistical analysis
Survival curve, Pearson correlation analysis, violin plot,

paired-sample boxplot, and the relative statistical analysis
were performed using R (version 3.5.1). All other statis-
tical analyses were performed using Prism 9 software
(GraphPad). Data were presented as means ± standard
deviation (SD) or standard error of the mean (SEM) with
statistical significance determined by tests as indicated in
figure legends.
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