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Abstract

Photoreceptor degeneration is a common feature of ciliopathies, owing to the importance of the 

highly specialized ciliary structure of these cells. Absence of AHI1, which encodes a cilium-
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localized protein, has been shown to cause a form of Joubert syndrome highly penetrant for retinal 

degeneration1,2. We show that Ahi1 knockout mice fail to form outer segments (OS), and show 

abnormal distribution of opsin throughout photoreceptors. Apoptotic cell death occurs rapidly 

between 2-4 weeks of age and is significantly delayed by reduced dosage of opsin. This phenotype 

also displays dosage-sensitive genetic interactions with Nphp1, another ciliopathy gene. Although 

not a primary cause of retinal blindness in humans, an allele of AHI1 modifies the relative risk of 

retinal degeneration greater than 7 fold within a nephronophthisis cohort. Our data support 

context-specific roles for AHI1 as a contributor to retinopathy and may explain a proportion of the 

variability of retinal phenotypes observed in nephronophthisis.

Ciliopathies comprise an increasingly diverse group of genetic disorders, united by their 

connection to primary cilia and/or basal body dysfunction3. Because of the pervasiveness of 

this organelle, these disorders manifest in numerous organs. Joubert syndrome (JS, i.e. 

cerebellar hypoplasia), Leber congenital amaurosis (LCA, i.e. congenital retinal blindness) 

and nephronophthisis (NPHP, i.e. fibrocystic renal disease) primarily affect three organs 

frequently diseased in ciliopathies, namely cerebellum, retina and kidney. These diseases are 

highly genetically heterogeneous and are sometimes variable even within single families, 

undermining the predictive value of diagnostics and genetic counseling. Though many 

causative genes have been identified for these Mendelian disorders, our current 

understanding of the genetics and potential mechanisms is insufficient to explain this 

variability, and suggests involvement of genetic modifiers.

Mutations in AHI1 are identified in 12% of patients with JS and 20% of patients with JS + 

LCA1,2,4,5, though AHI1 mutations are not known to cause non-syndromic LCA. AHI1 

protein, or jouberin, contains an N-terminal coiled-coil region, seven WD40 repeats and an 

SH3 domain6 and interacts with nephrocystin-1 (NPHP1)7, the gene for which is the most 

commonly mutated in juvenile NPHP8,9. To study AHI1 in ciliopathogenesis, we generated 

targeted conditional and null alleles of murine Ahi1, flanking exons 6-7 with loxP sequences 

(Supplementary Fig. 1a). Homozygous germline mutants were runted and exhibited high 

mortality (Supplementary Fig. 1c,d). Brain morphology was grossly preserved and neuronal-

specific conditional knockouts (Ahi1 Nestin cKO) showed nearly Mendelian ratios at 

weaning age (data not shown), suggesting effects outside of the nervous system on survival.

Histological analysis of the retina revealed rapid loss of the outer nuclear (photoreceptor) 

layer with few nuclei remaining by age one month in Ahi1 germline null mice (Ahi1−/−, Fig. 

1a). As early as P10, transmission electron microscopy showed complete absence of both 

rod and cone outer segments (OS, specialized disk-shaped membranes of photoreceptor 

cilia, Fig. 1b, and Supplementary Fig. 2a). This well-preceded the initiation of apoptotic cell 

death, apparent by ~3 weeks of age, as indicated by activated caspase-3 expression (Fig. 1c). 

Photoreceptor ciliary axonemes were intact and had normal 9+0 microtubule doublet 

configuration (Fig. 1b, Supplementary Fig. 2b), arguing against a role in axonemal 

development. Dark-adapted electroretinograms (ERG) from Nestin-Cre conditional mutants 

(Ahi1 Nestin cKO) and controls preceding cell loss confirmed absence of activity (Fig. 1d). 

Consistent with its putative role in cilia function, we found Ahi1 was enriched at the 

connecting cilium and basal body, and overlapped with centrin-2 (centriole/transition zone 
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marker10,11) transgene expression (Fig. 1e). This expression pattern was reminiscent of 

ciliary transport molecules such as Ift8812 and also other ciliopathy-associated molecules 

like Nphp113. These results reveal specific defects of OS morphogenesis and photoreceptor 

survival associated with absence of Ahi1.

Rhodopsin (rod opsin and cofactor, retinal), responsible for initiating the first steps in light-

dependant signal transduction, is also necessary for OS formation14-17. Disruptions of genes 

required for ciliary transport result in mislocalized opsin and OS defects12,18-20, prompting 

us to test for opsin localization in Ahi1−/− retina. We found severely disturbed opsin 

distribution as early as P10 (Fig. 2a). We quantified this in immunogold-labeled sections, 

which showed significantly increased inner segment labeling in mutants, both in the 

cytoplasm (IS) and particularly, along inner segment plasma membranes vs. controls (PM, 

Fig. 2b and Supplementary Fig. 2c). This difference was ~10-fold for both IS and PM (P= 

8.0E-06 and 2.2E-07, respectively). Some other proteins implicated in OS morphogenesis 

appeared grossly intact (Supplementary Fig. 2d). We conclude opsin is significantly mis-

accumulated in Ahi1−/− mice at an early stage of OS morphogenesis.

To further test for cell-type-specific requirements for Ahi1 in opsin distribution, we used 

Ahi1flox/flox mice in a series of retinal in vivo electroporation experiments performed at P0 

(Supplementary Fig. 3a). The pCAG-Cre:GFP vector drives Cre:GFP under the constitutive 

chick beta-actin promoter, and was used with pDsRed-CALNL recombination reporter21,22. 

Photoreceptors with evidence of Cre recombination based upon expression of DsRed also 

showed recapitulation of the opsin redistribution phenotype by one month of age 

(Supplementary Fig. 3b), indicating a requirement for Ahi1 in photoreceptors. To test for 

temporal-specific requirements for Ahi1, these experiments were repeated using instead 

pCAG-ERT2CreERT2, which activates Cre under control of 4-hydroxytamoxifen (4-

OHT)22. Following 4-OHT dosage at P14, after the peak of OS development, we did not 

detect opsin accumulation at 2 and 4 weeks past Cre induction, despite evidence of 

recombination based upon expression of DsRed (n=2, Supplementary Fig. 3c,d). We 

conclude Ahi1 displays temporal specificity in its function in photoreceptors, possibly akin 

to the time dependance reported for ciliary transport machinery in kidney phenotypes23. 

These data also suggest other factors might be contributing to OS developmental defects in 

this model.

Mislocalized opsin is frequently associated with retinal degeneration in animal models19,24, 

and has been indicated as a major cause of photoreceptor cell death in the absence of 

heterotrimeric kinesin-2 function (D. Jimeno, V.S. Lopes, K. Khanobdee, X. Song, B. Chen, 

S. Nusinowitz, D.S. Williams, unpublished data). Because of the striking accumulation of 

opsin in Ahi1−/− mice, we hypothesized this might similarly contribute to cell death in 

Ahi1−/− photoreceptors. To test this directly, we reduced opsin levels in Ahi1−/− mice by 

introducing a rod opsin null allele15 into the Ahi1−/− background. Rho+/− photoreceptors 

have approximately 40-50% reduction in opsin content15,25. Reduction in opsin dosage did 

not affect OS formation, showing similar absence of OS in Ahi1−/−Rho+/− compared to 

Ahi1−/− (Supplementary Fig. 4), but significantly delayed the cell loss seen in the Ahi1−/−. 

We found nearly complete rescue of cell numbers at three weeks of age (n=3-7, P=0.00175) 

and partial rescue at one month (Fig. 3, n=3-4, P=0.00613). These data support the 
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hypothesis that abnormal accumulation of opsin contributes to the loss of Ahi1−/− 

photoreceptors.

Mutations in NPHP1 cause juvenile nephronophthisis with partially penetrant retinopathy. 

To study Nphp1 in the mouse, we generated a targeted disruption of Nphp1 by insertion of a 

neobpA cassette into exon 4, generating a null allele, and confirmed absence of Nphp1 

expression (Supplementary Fig. 5a,b,c). The photoreceptors of Nphp1neo/neo mice (hereafter 

denoted as Nphp1−/−) formed OSs but underwent gradual retinal degeneration, slightly 

evident at 2 months (Supplementary Fig. 5d). This was milder than an independently 

targeted Nphp1 mutant reported to show failure of OS formation followed by retinal 

degeneration26. Since both Nphp1 alleles are predicted to function as nulls, this difference in 

severity of retinal phenotypes suggests the influence of genetic modifiers.

To test whether genetic interaction of Ahi1 and Nphp1 can influence phenotypic expression 

in vivo, we examined double mutant combinations of Ahi1 and Nphp1, ranging from single 

heterozygotes to knockout; heterozygote combinations, for outer nuclear layer (ONL) 

thickness and for mislocalized opsin. To efficiently obtain genotypes homozygous null for 

Ahi1, we used the Ahi1flox allele and the distal (peripheral) retina-specific Pax6α-Cre 

transgene27 to circumvent the lethality issues associated with Ahi1−/−. We observed trends 

of increasing severity of cell loss and opsin redistribution with additional deleterious alleles, 

with the Ahi1 null allele showing a stronger effect (Fig. 4a). Specifically we found 

significantly decreased ONL thickness and increased ONL-localized opsin when we 

compared Nphp1−/−Ahi1+/− against Nphp1−/− and Ahi1+/− controls at P21 (Fig. 4b). The data 

suggest dosage sensitive genetic interactions between Ahi1 and Nphp1 in retinal 

development.

Based on the pronounced retinopathy in Ahi1−/− mice, we next tested whether AHI1 was 

mutated in humans with isolated LCA. In a screen of AHI1 coding exons from well-

characterized LCA patients (US, Canada, Netherlands, Spain, prescreened for known genes; 

n=176), no homozygous or compound heterozygous deleterious changes were identified, but 

one variant, p.R830W/c.C2488T, heterozygous in 9 independent cases, was of particular 

interest, though not significantly enriched (data not shown). In addition to conservation of 

p.R830 throughout vertebrate homologs, a change from arginine to tryptophan (from a polar 

basic residue to a nonpolar hydrophobic residue) is predicted to be damaging (Polyphen28, 

SNPs3D29). This coupled with its position within the WD40 repeat domain (between two 

blades of its predicted propeller structure, Supplementary Fig. 6a,b) suggests this mutation 

may interfere with the function of AHI1, perhaps in protein-protein interactions.

To test whether this change altered sedimentation of AHI1 complexes in vitro, we expressed 

GFP-AHI1R830W, GFP-AHI1WT or GFP-EV (empty vector) in HEK293T cells with 

untagged human rhodopsin30 (RHO) and assayed lysates by sucrose density gradients 

(Supplementary Fig. 6c). We identified two distinct sedimentation peaks containing AHI1 

which appeared at lower intensity for GFP-AHI1R830W transfected cells, suggesting 

underrepresentation of p.R830W in complexes, despite comparable total expression levels of 

p.R830W in HEK293T cells (Supplementary Fig. 6d). Furthermore, opsin was shifted 

towards lower density complexes in cells expressing p.R830W vs. those expressing wildtype 
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AHI1 or empty vector. This supports potentially hypomorphic effects of p.R830W, perhaps 

in complex stability or formation. This variant has been mentioned as a polymorphism in 

several AHI1 studies1,2,31,32, but the effect of this change on retinal disease has not been 

explored. Due to the genetic interaction of Ahi1 and Nphp1 in mouse, and the variable 

association of retinal degeneration (RD) with nephronophthisis (Senior-Løken syndrome, 

SLSN33), we hypothesized that AHI1 p.R830W might contribute to the risk of retinopathy in 

nephronophthisis patients.

We thus genotyped 153 independent nephronophthisis cases from Italy (of which 16 have 

RD), and 306 ethnically-matched healthy controls for the p.R830W (c.C2488T) change. We 

found the T allele frequency was significantly higher in patients with NPHP+RD versus 

NPHP patients excluded for RD (25% vs. 1.8%, P=5.36E-06, Table 1) and versus controls 

(25% vs. 2.8%, P=9.03E-06, Table 1). This translated to a relative risk of 7.5 (95% CI 

4.0-11.2) associated with AHI1 p.R830W for retinal degeneration within NPHP patients. To 

determine if this association depended upon the primary gene mutation, we repeated this 

analysis after subdividing cases into those with NPHP1 mutations (either homozygous 

deletion or compound heterozygous mutation) vs. those without NPHP1 mutations. 

p.R830W continued to be significantly associated with NPHP+RD irrespective of the 

primary mutation (Table 1).

To test for population stratification, we also examined transmission of p.R830W in this 

cohort34 by genotyping parents of 117 available trios. We found 17 informative trios where 

one parent was heterozygous for c.C2488T. Although this sample size was too limited for 

full TDT analysis, we found the T allele was over-transmitted to NPHP+RD patients. 

Specifically, T was transmitted 100% of the time to NPHP+RD patients (n=7, P<0.01, chi-

squared), but only 50% of the time to NPHP patients without RD (n=10, no significant 

difference from the null hypothesis). This association was apparent when evaluating single 

families; for example, in one family with three NPHP affecteds33, p.R830W segregated only 

with the sibling displaying absent ERG response, while the others retained visual function. 

Our results support the role of AHI1 as a modifier of retinal degeneration in the context of 

mutations leading to NPHP.

That this AHI1 allele is associated with retinal disease in as much as half of SLSN patients 

in this Italian population, suggests other rarer mutations of AHI1 may behave similarly. 

Results from the mouse model support a role for Ahi1 in cilia-associated trafficking 

mechanisms, consistent with those of a recent study describing Ahi1 in cultured cells35. We 

also identify a new role for Ahi1 in photoreceptor development and demonstrate the utility 

of mouse genetic interaction in identifying loci conferring high risk alleles for disease. A 

similar effect was presented with one variant of RPGRIP1L36, supporting the role of 

modifiers in phenotypic expressivity of ciliopathies. Given the complexity of ciliopathy 

phenotypes, it is likely other variable phenotypes could also be explained by modifiers. 

Intriguingly, a population of JS patients (n=155) did not reveal a significant difference in 

frequency of p.R830W although it was slightly higher relative to controls. These patients 

were ascertained for phenotypes associated with a specific constellation of midbrain-

hindbrain malformations, but also variably present with renal and/or retinal dysfunction. 

Lack of significant association within JS may reflect more complex interactions at the 
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molecular level, requiring specific disruptions to alter phenotypic expression. Future 

screenings at other loci may help elucidate these distinct but overlapping mechanisms. Our 

example within the ciliopathies shows that mutational analysis of other causative genes from 

the broader clinical spectrum can yield substantial insight into the genetics and pathogenesis 

of heterogeneous syndromic disorders.

Online Methods

Subjects and mutational screening

Subjects were ascertained from populations of European ancestry (Italian, French/French 

Canadian, Spanish, Dutch) based on clinical features specific to LCA, NPH, and JSRD 

(exception of NPH group, mostly Italian). In particular, NPHP patients were ascertained 

over 15 years at the Nephrology Center of the G. Gaslini Childrens Hospital (Genoa, 

Italy)37. Diagnosis of NPHP was based on bio-clinical tests, kidney and liver ultrasound, 

ophthalmologic examination, and molecular tests (for NPHP1 deletion and/or mutations). 

All patients showed clinical and laboratory signs of NPHP, including urinary concentration 

defect, increase of serum creatinine levels above the normal range for age, and small 

hyperechoic kidneys without cortico-medullary differentiation. >70% patients had already 

developed ESRF (End-Stage Renal Failure) and most with ESRF had been transplanted. 

Patients with possible neurological involvement underwent detailed neurological testing, 

including brain MRI and EEG. JSRD patients were ascertained through the International 

JSRD Study Group, referring patients from several countries worldwide. The clinical 

diagnosis was confirmed by brain neuroimaging showing the typical “molar tooth sign”. A 

standardized clinical questionnaire was obtained to assess extent of multiorgan involvement. 

Control subjects were drawn from the same populations and represent healthy subjects with 

respect to the clinical signs of interest. Informed consent was obtained for all subjects 

according to approved institutional human subjects protocols (Human Research Protection 

Program Committees of UCSD, La Jolla and CSS-Mendel Institute, Rome).

Exons were PCR-amplified and sequenced using BigDye Terminator chemistry (ABI Prism 

3100), and chromatograms were analyzed visually; or PCR fragments were analyzed on a 

DHPLC-based WAVE DNA Fragment Analysis System (Transgenomic, Crewe, United 

Kingdom). Samples with abnormal elution profiles underwent direct bidirectional 

sequencing as above. Primer sequences were published previously1.

Knockout and transgenic mice

Animals were used in compliance with approved Institutional Animal Care and Use 

Committee protocols.

Generation of Ahi1 mutant mice—Ahi1 conditional (“flox”) and null allele mice were 

generated by targeted homologous recombination. The floxed region (containing exons 6-7), 

and flanking homology arms of Ahi1 were PCR-amplified from 129/SvJ genomic DNA; 

flanked with SalI, BamHI, and XhoI restriction sites; and subcloned into the modified pflox 

vector38(J. Marth) containing PGKneobpA (positive selection) and HSV-TK (negative 

selection). This was linearized with SbfI and transfected into 129SvJ-derived ES cells. G418 
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and gancyclovir resistant clones were selected, 9 correctly recombined ES clones were 

identified by Southern blot with two distinct probes, and two clones were injected into 

C57Bl/6 blastocysts. High percentage chimeras were bred to C57Bl/6 for germline 

transmission and to EIIa-Cre to generate mosaic Cre recombinants. Mosaics were bred to 

C57Bl/6 to isolate null and conditional alleles. Mice were genotyped by PCR in a multiplex 

reaction, amplifying a 206bp (null allele), a 297bp (wildtype) and/or a 399bp (conditional) 

product (Supplementary Table 1).

Generation of Nphp1 mutant mice—To clone the mouse Nphp1 locus, a 129/Ola 

genomic cosmid library (obtained from the Resourcenzentrum Berlin) was probed using the 

mouse cDNA. A single cosmid clone was purified, and a 10 kb SacI and 12 kb EcoRI 

fragment harboring the exon 4 region of the Nphp1 transcription unit were subcloned and 

characterized by restriction mapping. To generate targeting construct for Nphp1, a 12.5 kb 

genomic fragment derived from the two subfragments was modified by inserting a floxed 

PGK-neobpA cassette (pMC1-neo-polyA) into an unique NheI site. The targeting vector was 

linearized at a unique SalI site and introduced into E14 ES cells39. 159 G418-resistant 

colonies were screened by Southern blot analysis and four correctly targeted ES cell lines 

were identified. Nphp1neo/+ ES cells (129/Ola) were microinjected into NMRI albino mouse 

blastocysts to generate chimeras. Males with high degree of chimerism were mated to NMRI 

females for germline transmission. F1 heterozygous males were crossed to NMRI females, 

and heterozygous offspring were intercrossed.

Mice were genotyped by Southern blotting using a BamHI RFLP with the floxed neo-

cassette (wildtype allele: 40 kb, mutant: 20 kb), or by PCR, with primers amplifying a 120bp 

fragment (wildtype) and a 1600bp fragment (mutant) (Supplementary Table 1).

Rhodopsin null mice were obtained from Janis Lem15. The following transgenic mouse lines 

were used: EIIa-Cre40, Nestin-Cre (Jax: 00377141), Pax6α-Cre27 and GFP-Centrin210. Ahi1 

alleles were denoted as follows: Ahi1−/−, Ahi1+/− (homozygous germline null, germline 

heterozygote: used for all experiments except where indicated otherwise), Ahi1 Nestin cKO 

(Ahi1flox/−Nestin-Cre+: used for ERGs), Ahi1 Pax6α cKO (Ahi1flox/−Pax6α Cre+, only 

more peripheral region analyzed: used for generating double mutants with Nphp1). All 

animals were from mixed backgrounds (C57Bl/6, SvJ129, 129/Ola) and compared to 

littermate or age-matched sibling controls.

Dark-adapted ERG

Mice were tested using previously described methods42. Mice dark-adapted overnight were 

kept under low red lighting and anesthetized by intraperitoneal (IP) injection (10mg/ml 

ketamine, 1mg/ml xylazine at 0.1ml/10g body weight), dilated with phenylephrine HCl and 

tropicamide, and kept on a warm pad. Gold loop electrodes on the cornea were referenced to 

needle electrodes under the cheek, while electrodes clipped to ears served as grounds. 

Responses were elicited by high intensity flashes (averaged over n=5) at one second 

intervals over a time base of 500 ms in a Ganzfeld dome with a photostimulator (Model 

PS22, Grass instrument company, Quincy, MA).
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Antibodies and fluorescence microscopy

Mice were anesthetized by isoflurane inhalation and perfused, or eyes were immersed in 4% 

paraformaldehyde/PBS. 10-25μm cryosections sections corresponding to a medial position 

(intersecting optic nerve) were stained for immunofluorescence per standard protocols 

except where noted. We used the following primary antibodies: rabbit anti-Ahi143 (1:250, 

after antigen retrieval by microwaving slides for 15 minutes in 10mM sodium citrate, pH 

6.0), mouse anti-acetylated tubulin (Zymed, 6-11B-1, 1:1000), rabbit anti-RPGR (T. Li, 

1:1000 on barely fixed tissues as previously described)44, chicken anti-RP145 (1:2000, E.A. 

Pierce), mouse anti-opsin (1:250, Chemicon). We used Alexa Fluor dyeconjugated 

secondary antibodies (1:750, Invitrogen/Molecular Probes) and Hoescht 33342 (1:10,000) 

nuclear dye. Images were obtained on a Fluoview1000 Spectral Deconvolution Confocal 

microscope (Olympus), under the same parameters/experiment.

Opsin immunofluorescence measurements were determined from raw images using NIH 

ImageJ software (“Measure RBG” plugin). ONL values were normalized to values from the 

apical region encompassing IS and OS. Measurements were made on comparable regions of 

the retina (minimum two/section, from central and peripheral and averaged together, with 

exception of Pax6a-cre cKOs, for which all measurements were from peripheral/distal 

regions).

Histology and electron microscopy

For conventional EM, samples were fixed with 2% paraformaldehyde/2% glutaraldehyde/

0.1M cacodylate buffer and embedded in propylene oxide:Epon 812 resin. Semithin (0.7μm) 

sections were stained with toluidine blue (0.25% toluidine blue+0.25% sodium borate in 

water) for light microscopy. Ultrathin sections (70nm) for electron microscopy were 

collected on copper grids and stained with saturated uranyl acetate and lead citrate solution 

prior to imaging on a Phillips electron microscope (model 208).

For immuno-electron microscopy, mice were perfused with 4% paraformaldehyde and 

samples were immersed overnight in 0.1% glutaraldehyde/4% paraformaldehyde/0.1M 

cacodylate buffer, and embedded in LR White resin (EMS, USA). 70nm sections were 

etched with saturated sodium periodate and blocked with 4% bovine serum albumin. 

Sections were incubated with anti-opsin (1D4) primary antibody and with goat anti-rabbit 

IgG secondary conjugated to 12nm gold (EMS, USA). Sections were subjected to osmium 

vapour and stained with uranyl acetate and lead citrate. Negative control sections were 

processed simultaneously and included sections not incubated with primary antibody. Cilia 

were randomly selected for imaging on a TEM microscope (Zeiss).

In vivo electroporation and 4-OHT treatment

Retinal in vivo electroporation at P0 was performed as previously described21,22 using 

5μg/μl total plasmid DNA with 0.01% Fast Green tracer at 0.5μl/eye at the following mass 

ratios: pCAG-Cre:GFP/pCALNL-DsRed (1:1), and pCAG-ERT2CreERT2/pCALNL-

DsRed/pCX-EGFP (2:1:1), but with a modification: DNA solutions were injected through 

glass micropipets pulled from capillary tubes (World Precision Instruments, TW150F-3). 

Plasmids were from C. Cepko through Addgene. For ERT2Cre induction, 4-OHT (Sigma, 

Louie et al. Page 8

Nat Genet. Author manuscript; available in PMC 2010 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



H7904) was prepared in corn oil (Sigma, C8267) at 2mg/mL and IP injected (400μl/2 week 

old mouse).

Cell culture and transfection

HEK293T (human embryonic kidney) cells were seeded on 10cm plates and transfected at 

90-95% confluency by Lipofectamine2000 (Invitrogen) using 24μg total DNA/plate. Cells 

were lysed 24 hours later for analysis.

Western blotting and sucrose fractionation

Western blotting was performed on lysates prepared in modified RIPA buffer using the 

following antibodies: rabbit anti-Ahi1, mouse anti-GFP (Covance, B34), mouse anti-α-

tubulin (Sigma, T-6074), and mouse anti-rhodopsin (Chemicon, MAB5316). All antibodies 

were diluted 1:1000 in 4% milk. Secondary detection was performed using HRP-conjugated 

anti-mouse or anti-rabbit antibodies (1:20,000, Zymax) in 4% milk. For sucrose 

fractionation, modified RIPA lysates were loaded onto step-wise gradients from 5% to 60% 

sucrose followed by ultra-centrifugation overnight at 100,000 g force. Fractions were 

collected from the top and protein was precipitated using trichloro-acetic acid followed by 

SDS-PAGE and western blotting.

Statistics

For the association studies, two-tailed P values were computed using Fisher’s exact test by 

http://www.langsrud.com/fisher.htm using the sum of small P values method. The TDT (chi-

squared) statistic34 was computed manually with P value assigned for 1 degree of freedom. 

Relative risk and confidence intervals were computed by http://statpages.org/ctab2x2.html 

based on a general method46. For other studies, data were expressed as means +/− S.E.M. 

Two-tailed P values were calculated by Student’s t-test. Values less than 0.05 were 

considered statistically significant for all tests.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Degeneration of photoreceptor cells following failed outer segment development in Ahi1−/− 

mouse retina. (a) Semi-thin sections of retina stained with toluidine blue from P10 to adult 

(10 wks) showing acute loss of the outer nuclear layer (ONL) between P21 and P30. 

Scale=20μm (b) Transmission electron microscopy from P10. Outer segments (OS, 

brackets) are present in Ahi1+/−, but not in Ahi1−/−. Connecting cilia (CC, arrowheads) 

present in both. Scale=0.5 μm (c) Photoreceptor cell death is evident before three weeks of 

age, indicated by activated caspase-3 immunofluorescence (green) from 20μm cryosections. 

Nuclei are stained with Hoescht 33342 (blue). Shown are representative images from P19 

mice, scale=20μm. (d) Full field dark-adapted electroretinograms (ERGs) from P19 

Ahi1flox/−; Nes-Cre+ (Ahi1Nestin cKO) and Ahi1 heterozygous control mice. Shown are 

representative waveforms from n=3-4 mice/genotype. (e) Endogenous Ahi1 localization 

(red) to base of photoreceptor connecting cilium (acetylated-tubulin: green) in Ahi1+/− 

section is absent in Ahi1−/− cilium. Ahi1 distribution overlaps with centrin-2 (green) in GFP-

Cetn-2 transgenic mouse retina. Arrowheads indicating example GFP-centrin2 labeled 

connecting cilia, 10μm cryosections, scale=5μm. Ahi1 immunoelectron microscopy from 

P10 retina, showing particles at the basal body (BB) and along the cilium (CC), 

scale=0.25μm

Louie et al. Page 12

Nat Genet. Author manuscript; available in PMC 2010 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Opsin accumulation in Ahi1−/− photoreceptors (a) Opsin immunofluorescence (green) at 

P10 in Ahi1+/− and Ahi1−/− retina from cryosections. Nuclei are stained with Hoescht 33342. 

Scale=20μm (b) Opsin immunoEM and quantification of immunogold labeling from 

ultrathin sections of P10 Ahi1+/− and Ahi1−/− retina, n=20-23 photoreceptor connecting cilia/

genotype. Data are expressed as number of gold particles per μm2 area within the inner 

segment (IS, defined as within inner segment and at least 30nm away from PM, P=8.0E-06), 

and as number of particles per μm length of inner segment membranes (PM, dashed lines, 

P=2.2E-07). Black arrowheads indicate examples of abnormally localized opsin, 

CC=connecting cilium, scale=0.5μm, error bars represent s.e.m.
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Figure 3. 
Opsin contributes to cell death in Ahi1−/− mice. 10μm cryosections from P21 and P30 retina 

showing delay of cell loss associated with reduced opsin dosage (Ahi1−/−Rho+/−), measured 

as average number of cells/column (nuclei were stained with Hoescht 33342 and counts 

expressed as average of three counts across each section). Asterisk in top panel denotes 

significant difference from both control and rescue, n=3-7, P=0.00175 (P21) and 0.00613 

(P30), scale=10μm, error bars represent s.e.m.
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Figure 4. 
Genetic interaction of Ahi1 with Nphp1. (a) Increased cell loss and redistribution of opsin 

with increased load of deleterious Ahi1 and Nphp1 mutations in mouse retina. Quantification 

of opsin immunofluorescence(green) from ONL (outer nuclear layer, normalized as ratio of 

ONL:apical region encompassing IS and OS), and quantification of outer nuclear layer 

(ONL) thickness, expressed as averaged number of nuclei/column (indicated by Hoescht 

33342 staining) from 10μm cryosections from indicated genotypes at P21. (b) From part (a), 

Ahi1 null allele modifies the Nphp1−/− phenotype, with Nphp1−/−Ahi1+/− showing increased 

opsin accumulation and decreased thickness of the ONL versus Nphp1−/− and Ahi1+/− 

controls. Asterisk denotes significant difference from both Ahi1+/− and Nphp1−/−, n=6-7, 

P(ONL thickness)=0.00315 and 0.000106, respectively; and P(fluorescence)=0.0454 and 

0.0141, respectively, scale=20μm, error bars represent s.e.m.
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