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Vascular toxicity is a frequent adverse effect of current anticancer chemotherapies and

often results from endothelial dysfunction. Vascular endothelial growth factor inhibitors

(VEGFi), anthracyclines, plant alkaloids, alkylating agents, antimetabolites, and radiation

therapy evoke vascular toxicity. These anticancer treatments not only affect tumor

vascularization in a beneficial manner, they also damage ECs in the heart. Cardiac

ECs have a vital role in cardiovascular functions including hemostasis, inflammatory

and coagulation responses, vasculogenesis, and angiogenesis. EC damage can be

resulted from capturing angiogenic factors, inhibiting EC proliferation, survival and signal

transduction, or altering vascular tone. EC dysfunction accounts for the pathogenesis

of myocardial infarction, atherothrombosis, microangiopathies, and hypertension. In this

review, we provide a comprehensive overview of the effects of chemotherapeutic agents

on vascular toxicity leading to hypertension, microvascular rarefaction thrombosis and

atherosclerosis, and affecting drug delivery. We also describe the potential therapeutic

approaches such as vascular endothelial growth factor (VEGF)-B and prokineticin

receptor-1 agonists to maintain endothelial function during or following treatments with

chemotherapeutic agents, without affecting anti-tumor effectiveness.
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INTRODUCTION

Anticancer chemotherapies target the vasculature of both tumor and unfortunately other organs.
Additionally, mechanism-independent (“off-target”) effects of chemotherapies also account for
the development of the vascular toxicity. Vascular toxicity occurs during acute chemotherapeutic
regimen, and after once treatments have ceased, persists into survival. The susceptibility to
develop vascular complications following chemotherapeutics also relates to many factors such as
cardiovascular risk and pre-existing vascular diseases, as well as genetic predispositions.

Chemotherapeutics-mediated vascular toxicity often results from loss of endothelial cell (EC)
functions (1). ECs sense hemodynamic changes, and accordingly respond to stimuli by the
release of vasoactive substances like vasorelaxants such as nitric oxide, (NO), prostacyclin, (PGI2),
vasoconstrictors such as endothelin-1, (ET-1), anti-thrombotic (plasminogen activators), and
angiogenic factors such as vascular endothelial growth factor (VEGF) (2) and prokineticins

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2021.694711
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2021.694711&domain=pdf&date_stamp=2021-07-27
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nebigil@unistra.fr
https://doi.org/10.3389/fcvm.2021.694711
https://www.frontiersin.org/articles/10.3389/fcvm.2021.694711/full


Hsu et al. Vascular Toxicity and Chemotherapeutics

(3). Disturbance of NO/ET-1 balance is a characteristic of
endothelial dysfunction and play an important role in the
progression of vascular diseases.

Chemotherapeutics-mediated EC dysfunction in the heart is
initially asymptomatic. The long-term consequences of cancer
treatments can lead to the onset of cardiovascular disorders
such as hypertension, coronary artery disease, and heart failure.
Indeed, progressive EC damages make ECs more vulnerable
to chronic inflammatory stressors and hyperlipidemia insults
(4). EC dysfunction further promotes thrombus formation,
and inflammation by releasing plasminogen activator inhibitor
1 (PAI1), platelet-activated factor 4 (PF-4), and interleukins
(IL-1 and IL-6) to accelerate atherosclerosis formation.
Chemotherapeutics can also have direct pro-coagulant,
anti-angiogenesis, and vasoconstriction effects (Figure 1).

Vascular damage in the cardiovascular system can be caused
not only by anti-angiogenic chemotherapy (inhibitors of vascular
endothelial growth factor (VEGFi), but also by anti-tumor
antibiotics (bleomycin and anthracyclines) (5, 6). The first line of
treatments includes monoclonal antibodies (e.g., bevacizumab),
and multiple kinase inhibitors such as sunitinib, a multi-targeted
inhibitor, or sorafenib (7). In addition, plant alkaloids (taxanes,
vinca alkaloids), alkylating agents (cisplatin, cyclophosphamide),
antimetabolites (5-fluorouracil), and radiation therapy also foster
vascular damages (8) (Figure 2).

Hereafter, we concentrate on these anti-cancer drugs-
mediated vascular damages that evoke cardiovascular diseases
and impair drug delivery.

Anticancer Therapy-Mediated Oxidative
Stress and Vascular Injury
Many chemotherapeutics induce accumulation of the reactive
oxygen species (ROS) products (9) that disrupt intracellular
homeostasis and damage proteins, lipids, and DNA in the
vascular cells. ROS such as superoxide radical anions (O2.

−),
lipid radicals (ROO.−), hydroxyl radicals (HO.−), and nitric
oxide (NO) are formed by all vascular layers, including
endothelium, smooth muscle, and adventitia (10). ROS induces
VEGF expression in vascular endothelial and smooth muscle
cells by upregulating hypoxia-inducible transcription factors
(HIF-1). VEGF further stimulates the accumulation of ROS
through activation of NADPH oxidase (11). The NO itself
has a cardiovascular protective properties (12). However, when
NO combines with ROS, it generates peroxynitrite radicals
(ONOO.−) that promote inflammation, apoptosis, necrosis, and
ultimately toxicity (13).

A high production of ROS is also a major promoter for
the lipid peroxidation of unsaturated fatty acids, leading to
apoptosis, autophagy, and ferroptosis (14). Lipid peroxidation
followed by the activation of phospholipase A2 initiates the
activation of arachidonic acid (AA) pathway. Thus, lipid
peroxidation is not only responsible for the generation of
prostaglandins, but also for the induction of inflammation and
apoptosis in vascular ECs (14). ROS also promotes peroxidation
of a mitochondrion-specific inner membrane phospholipid,
cardiolipin to activate intrinsic apoptosis (15). Lipid peroxidation

products can bind to specific mitochondrial and autophagy-
related proteins driving autophagic cell death (16). Elevated
intracellular iron concentration elevates ROS levels that cause
lipid peroxidation and consequently to ferroptosis-mediated cell
death (17).

Reactive nitrogen species (RNS) are formed by the reaction
between ROS and NO that damage mitochondrial DNA.
Excessive ROS also induces senescence in endothelial, vascular
smooth muscle cell (VSMC), and endothelial progenitor cells
(18). Indeed, accumulation of ROS and oxidative stress reduces
NO bioavailability and consequently results in development of
hypertension (19) (Figure 2).

Anticancer Therapy-Mediated Endothelial
Dysfunction and Hypertension
Approximately 25% of cancer patients develop hypertension
due to adverse effects of VEGFi, TKI, anthracyclines, alkylating
agents, and antimetabolites (20). The pathophysiology of
hypertension induced by these agents is not fully elucidated.
Several mechanisms have been proposed based on the
preclinical and clinical studies, including; (1) increased total
peripheral resistance induced by endothelial dysfunction due
to predominantly the reduced production of vasodilators (NO
and PGI2), the increased production of vasoconstrictors (ET-1)
and the reduced nitric oxide bioavailability, (2) increase in
vascular tone, (3) vascular rarefaction, (4) and renal thrombotic
microangiopathy, leading to proteinuria and hypertension,
(5) natriuresis and impaired lymphatic function could also
contribute to development of hypertension (21).

Inhibitors of VEGF (VEGFi) or Tyrosine Kinase (TKI)
Approximately 80% of patients treated with VEGFi or
TKI manifest hypertension (22). VEGF signaling promotes
production of NO and the vasodilatory prostanoid prostacyclin
(PGI2) through activation of phospholipase A2 via PLCγ/PKC
pathways (23). After VEGF binding, VEGF receptor (VEGFR)
activates phosphoinositol-3 kinase (PI3K)/serine-threonine
protein kinase B (Akt) survival pathway in ECs. Thus,
interruption of the VEGF signaling pathway by anticancer
drugs leads to development of hypertension. Similarly,
the VEGF trap aflibercept promotes hypertension (24),
interrupting VEGF-mediated vasodilatory, and survival
signaling (25). VEGFi-induced vascular toxicities can also be due
to accumulation of ROS and down-regulation of nuclear factor
erythroid 2-related factor 2 (Nrf2) that regulates antioxidant
genes (26). Prohypertensive effects of VEGFi can also be
promoted by microparticles of injured ECs (27).

TKIs stimulate ROS accumulation and reduce NO levels
(28). For example, vatalanib or sunitinib increases ROS
accumulation in both VSMCs and ECs by inhibiting NO
synthase (NOS) thereby reducing NO levels and decreasing
endothelium-dependent vasorelaxation (29). Sunitinib-induced
hypertension may not depend on endothelium, but may be due
to decreased arterioles diameters. Indeed, it inhibits platelet-
derived growth factor receptor (PDGFR) that causes coronary
microvascular dysfunction due to loss of pericytes, leading to the

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 July 2021 | Volume 8 | Article 694711

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Hsu et al. Vascular Toxicity and Chemotherapeutics

FIGURE 1 | Summary of chemotherapy-associated vascular toxicity. Vascular toxicity can be attributed to four main mechanisms (vasomotor alterations, endothelial

cell (EC) dysfunction, anti-angiogenesis, pro-thrombosis), which induce hypertension, ischemia and thromboembolism, and damage heart functions. The red arrows

highlight direct effects of some of the chemotherapeutics.

mechanical instability of the capillary wall in cardiac and other
tissues (30).

Anthracyclines
They cause ≈20% increase in carotid artery stiffness in
patients. Anthracyclines also led to a 3-fold increase in
vascular stiffness with a 10-year follow-up period in adolescent
childhood cancer survivors, indicating that alterations in
vascular integrity persist years to decades following anthracycline
chemotherapy (31). Anthracycline-induced endothelial toxicity
and hypertension can be caused by several mechanisms. The
first one is an oxidative stress-mediated process (32). Indeed,
doxorubicin binds to endothelial (eNOS) and decreases NO
levels, leading to the production of superoxide. Reduced
concentration of NO shifts endothelium to a pro-coagulant
status and impairs vasodilatation (33). Recently, doxorubicin

has been shown to stabilize NRF2 in the cytoplasm thereby
reducing detoxification pathway in mice heart (6). Doxorubicin
also induces mitochondrial DNA damage in an RNS/ROS-
independent manner, along with a possible decrease in B-cell
lymphoma (Bcl)-2, that leads to apoptosis of the ECs. The EC
death further reduces the availability of NO, ET-1, PGI2, and
neuregulin (NRG)-1 to cardiomyocytes. Indeed, accumulation
of ROS and oxidative stress reduces NO bioavailability
and consequently results in development of hypertension
(34). The second mechanism is apoptosis due to DNA
interference (35). Doxorubicin -mediated topoisomerase II-
β inhibition and DNA-binding directly induce DNA damage
and apoptosis in ECs (36). Doxorubicin also reduces the
tight junction protein zona occludens (ZO)-1 in ECs, thereby,
increasingmicrovascular permeability (37). Anthracyclines at the
accumulative dosage dysregulate renin-angiotensin-aldosterone
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FIGURE 2 | Anticancer drug-mediated endothelial dysfunction. Oxidative

stress, ROS accumulation, alteration of PGI2/ET-1 ratio, and low NO levels in

ECs impair EC survival and migration, increase fenestration and blood cell

infiltration into vascular smooth muscles (SMC), trigger inflammation, and

promote vasoconstriction. EC dysfunction and vascular rarefaction reduce

myocardial perfusion, leading ischemia, and cardiomyopathy. Anticancer

drug-mediated cardiomyocyte (CM) damage together with EC dysfunction

leads to heart failure.

(RAA) system (38), that play significant role in the development
of hypertension (39).

Alkylating Agents
Cyclophosphamide or its metabolites reduce vasoactive
substance NO, increase ET-1 and inducible (i) NOS (40). They
activate the toll-like receptor 4 (TLR-4) and causes subsequent
activation of mitogen-activated protein kinase (MAPK) and
c-Jun N-terminal kinases (JNK) (41). Once activated, these
signaling pathways increase the expression of tissue necrosis
factor alpha (TNFα), cyclooxygenase-2 (cox-2), prostaglandins
(PGs), and interleukins (ILs). Cyclophosphamide also decreases
fatty acid binding protein (H-FABP) and carnitine palmitoyl
transferase-I (CPT-1) levels, resulting in the accumulation of
free fatty acids and reduction of ATP production (42). Reduced
ATP levels lead to the accumulation of intracellular calcium,
which activates transforming growth factor beta (TGF-β) and the
production of pro-inflammatory cytokines. Cyclophosphamide
is associated with development of interstitial pneumonia and
pulmonary fibrosis, leading to vascular sclerosis, and pulmonary
hypertension (40).

Patients treated with cisplatin-based chemotherapy also
develop persistent hypertension due to endothelial cell activation,
damage, and subsequent endothelial dysfunction (43). Cisplatin
induces release of inflammatory substances such as IL-1 and
IL-6 from ECs to produce hydrogen peroxide that provoke

oxidative stress, and mitochondrial DNA lesions, orchestrating
cell death (44).

Antimetabolites
5-Fluorouracil (5-FU) induces ultrastructural changes in the
endothelium of the heart, as well as in various organs by
promoting both accumulation of ROS and autophagy process
in ECs (45). Its vascular adverse effects include angina with
coronary artery spasm and rarely hypertension (46).

In general, anticancer therapies increases blood pressure,
therefore, an antihypertensive therapy can be required in case
of diastolic blood pressure (DBP) increase >20 mmHg after
initiation of anticancer therapy, yet DBP remains within normal
limits (47).

Anticancer Therapy-Mediated
Microvascular Rarefaction
Anticancer drugs induce capillary rarefaction that is described
as a reduction of the density of arterioles and capillaries.
One of the causes of microvascular rarefaction is a decrease
of survival rate of microvascular EC. The second mechanism
involve endothelial dysfunction that participates to thrombosis,
leading to a further reduction in vascular perfusion, and micro
vessel destruction (48). The molecular mechanisms of capillary
rarefaction associated with the loss of pericytes due to inhibition
of platelet derived growth factor (PDGF) receptor (PDGFR), and
inhibition of angiogenesis by blocking VEGF signaling pathway.

VEGFi and TKIs
Prolonged TKI treatments lead to capillary rarefaction, due
to endothelial dysfunction (25). In addition, disruption of
both endothelium-dependent and -independent vasodilatation
can also promote intense vasoconstriction and microvascular
rarefaction. The vascular rarefaction may also be a consequence
of VEGFi-associated hypertension (49). Bevacizumab promotes
retinal microvascular dysfunction in humans (50). On the other
hand,microvascular rarefaction increases peripheral resistance in
the microcirculation, thereby, reducing blood flow and further
elevating blood pressure.

Anthracyclines
A recent preclinical study has shown that chronic treatment
with doxorubicin promotes vessel rarefaction in the heart (6).
Moreover, a low dose of doxorubicin inhibits EC motility in
vitro without causing apoptosis. However, whether doxorubicin
provoke hypertension in these mice has not been studied.

Alkylating Agents
Cyclophosphamide causes extravasation of proteins, toxic
metabolites, and erythrocytes, which breaks-down ECs, promotes
hemorrhage, blocks the small arteries, and induces displacement
of vascular ECs that directly damages the blood vessels and
cardiac cells (51). Cyclophosphamide may reduce VEGF levels
that is associated with microvascular rarefaction.

Cisplatin inhibits EC proliferation and motility in vitro
and causes apoptosis (52). Cisplatin also inhibits angiogenesis
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(53). Thus, both EC dysfunction and anti-angiogenic effects of
platinum derivatives promote vascular rarefaction.

Anticancer Therapy-Mediated
Hypercoagulation, Thrombosis, and
Atherosclerosis
Cancer patients exhibit an increased risk of arterial and venous
thrombotic events. Approximately cancer patients develop the
risk of arterial (2–5%) and venous (4–20%) thromboembolism
during the anti-angiogenic therapies (54). The mechanisms that
underline the chemotherapeutic–associated thrombosis is not
fully understood. It appears that targeted therapies-mediated
thromboembolism is associated with on-target effects. However,
conventional chemotherapies-mediated thromboembolism
attributed to off-target effects. Based on the preclinical and
clinical studies, the proposed mechanisms include; (1) the
activation or disruption of the endothelium, (2) decrease in
anticoagulants and increase in procoagulants, such as TF (tissue
factor), cytokine-controlled defective anticoagulant pathways,
and changes in the fibrinolytic pathways, and (3) the activation
of platelets (55).

VEGFis and TKIs
They impair the VEGF-mediated tissue-type plasminogen
activator (t-PA) release (56), and elevate platelets and
coagulation factors to induce thrombosis (57). Additionally,
TKIs increase hematocrit and reduce NO- and PGI2-mediated
anti-platelet activity (58). Accordingly, a meta-analysis in
patients receiving TKIs demonstrated that the risk of myocardial
infarction increased by 3.5-fold, and the development of
arterial thrombosis by 1.8-fold, in the treated group (59).
VEGFR inhibitors accelerate atherosclerosis and increase the
risk of cholesterol embolization syndrome, leading to acute
cardiovascular complications (60).

Anthracyclines
Doxorubicin has been shown to a significantly increase a risk of
venous thrombosis by 16.0% (47). Several preclinical and clinical
studies have showed that doxorubicin-mediated thrombogenic
effects are resulted from an elevated prothrombotic state induced
by (1) endothelial injury, (2) the down-regulation of the
endothelium-based protein C anticoagulant pathway due to
the reduced levels of endothelial protein C receptor in ECs,
(3) an increased TF procoagulant activity, and (4) activated
platelets (61). In patients with breast cancer, doxorubicin
increases levels of thrombin-antithrombin complexes, protein
C, and activated protein C (62). Its prothrombotic effects
are also due to phosphatidylserine-bearing microparticle (MP)
generation, promoting intracellular Ca2+ increase and ATP
depletion in platelets (63). A dysfunction of the NADP-
dependent mitochondrial enzyme aldehyde dehydrogenase-2
(ALDH2) in ECs is also involved in the development of
doxorubicin-mediated vascular damage and thrombosis (64).
Altered levels of endothelium-derived NRG-1, PGI2, and ET-
1 from ECs can also contribute to anti-platelet activity of
doxorubicin (65).

Alkylating Agents
Cyclophosphamide and its toxic metabolites stimulate activation
and release of platelet factor 4 (PF-4) that initiates the cascade of
thrombosis and the binding of oxidized low-density lipoprotein
(LDL) to ECs, and aggravates monocyte adhesion to endothelium
(41). Cyclophosphamide-induced intrapapillary micro emboli is
prominent cause of the ischemic myocardial damage (41). It also
fosters acute pericarditis, myocardial hemorrhage, and atrophic
and focal necrosis with interstitial edema (66).

Cisplatin facilities endothelial damage, hypercoagulation
measured by increased levels of thrombin-antithrombin
complexes and D-dimer, and platelet aggregation via activation
of the arachidonic acid pathway that forms several inflammatory
and thrombogenic molecules (67). However, the absolute
risk of venous thrombosis associated with this class of agent
remains low.

Antimetabolites
5-FU damages ECs and provokes severe vessel leakage and
subsequent thrombus formation (68, 69). Patients receiving
a cisplatin-based regimen with epirubicin and 5-FU or
capecitabine exhibited an incidence of venous thrombosis of
15.1% (70).

In general, anticancer agents have more pronounced effect of
the incidence of venous thrombosis than arterial thrombosis. An
anticoagulation therapy may be required.

ANTICANCER THERAPY-MEDIATED
IMPAIRED VASCULATURE AND DRUG
DELIVERY

Anti-angiogenic agents alone or in combination with other
chemotherapeutics are widely used to inhibit tumor growth
by targeting vascular network (71). Some types of cancers are
sensitive to anti-angiogenic therapy, while other types of cancers
are completely insensitive. Adaptation to microenvironment,
such as metabolic changes (72) or autophagy (73), can determine
whether a tumor is sensitive to anti-cancer treatments. Some
tumors can initially respond, but then develop acquired
resistance during the anti-angiogenic treatment due to activation
of alternative pathways, such as vessel co-option and vessel
mimicry (74). Development of hypoxia in tumors reduces the
activity of the prolyl hydroxylase domain proteins (PHD1–3),
and prevents the degradation of HIF-1α and HIF-2α (75). High
levels of HIFs in turn increases the transcription of HIF-driven
hypoxia-related genes, including the potent angiogenic factors,
VEGF to form a neovascular network to further increase tumor
growth. Indeed, long-term anti-angiogenic therapy promotes
genetic instability in tumor ECs, and causes vascular permeability
andmetastasis (76). Additionally, tumor-associatedmacrophages
can trans-differentiate into ECs (77). In this case, tumors become
highly vascularized and also resistant to chemotherapies. Tumor
cells including infiltrated immature myeloid cells (78), fibroblasts
(79), and endothelial progenitor cells (80) integrate into vessels
or release pro-angiogenic growth factors, such as prokineticin-2
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FIGURE 3 | Development of angiogenesis and anti-angiogenic therapy-mediated development of tumor resistance due to abnormal tumor vasculatures.

FIGURE 4 | Protective role of the SH-containing ACi, Zofenoprilat, against anticancer-mediated vascular toxicity. Zofenoprilat is the most effective clinically used

vascular protectant. It increases survival of ECs and promotes angiogenesis, inhibits apoptosis. The mechanism involves activation of NOS, ERK1/2, cGMP and Akt

kinases and increases in the expression levels of fibroblast growth factor (FGF-2) and telomerase reverse transcriptase (TERT). These effects appear to be the

off-target effects of zofenoprilat via increasing production of H2S, independent of ACEi properties.

(3) or PDGF-C (79), leading to worse outcomes of drug delivery,
invasion, and metastasis (Figure 3).

DETECTION OF ENDOTHELIAL DAMAGE
AND THROMBOSIS

Endothelial damages alter the expression of adhesion molecules
and increase levels of pro-inflammatory cytokines (81). Thus,
expression of adhesion molecules such as E-selectin, endothelin-
1, and vascular cell adhesion molecule-1 (VCAM-1) are
biomarkers of endothelial damage (82). The elevated levels
of pro-inflammatory cytokines such as C-reactive protein
(CRP) and IL-6 are also indicators of EC damage (83).
Because asymmetric dimethylarginine (ADMA) synthesized via
arginine methylation inhibits eNOS and promotes superoxide
generation (84), ADMA is a marker of ROS generation.
Indeed, activated ECs initiates procoagulant activity by releasing
endothelium-derived glycoproteins such as von Willebrand
factor (vWF), NRG-1, soluble thrombomodulin (sTM), and

tissue plasminogen factor (t-PA) (85). Thus, increase levels
of vWF, NRG-1 sTM, and t-PA are also the indicators of
procoagulant activity and thrombosis.

The detection of micro vessel architectural parameters by
Magnetic Resonance Imaging (MRI), Vessel Architectural
Imaging (VAI), Microvascular Density (MVD), Positron
Emission Tomography (PET), 3D ultrasonography, and CT
is necessary in the clinic to asses vascular damage and select
a proper timing window for tumor vascular normalization by
anti-angiogenic therapies (86).

DRUGS PROTECTING ENDOTHELIAL
CELL DAMAGE INDUCED BY
CHEMOTHERAPEUTIC AGENTS

Angiotensin converting enzyme inhibitors (ACEi), NO
donors, antioxidants, and statins have direct effects on
ECs, while angiotensin receptor blockers (ARBs), renin
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FIGURE 5 | The cardioprotective role of VEGFB and prokineticin against

anti-cancer drugs-mediated cardiovascular toxicity. (A) Anti-angiogenic

therapy reduces tumor size and increases cardiovascular toxicity. (B) VEGFB

and Prokineticin receptor agonist protects cardiovascular system without

altering anti-tumor effect of chemotherapeutics.

inhibitors, beta blockers, and estrogens indirectly affect EC
function. Beta blockers, thiazide diuretics, mineralocorticoid
receptor antagonists are used as additional antihypertensive
agents. Here we focus on the first group of the EC
protective drugs.

ACEis
ACEis ameliorates the left ventricular ejection fraction
(LVEF) decline, when they are administered together or
after anthracyclines. However, the vascular protective effects
of ACEi, zofenoprilat, but not other ACEi (i.e., captopril or
enalaprilat) are related with activation of survival pathways in
cardiac cells, and its antioxidant and ROS scavenger properties.
More specifically, zofenoprilat up-regulates the expression of
eNOS, FGF-2, and telomerase (TERT) transcripts, thereby,
promoting cell survival, rescuing damaged ECs, and inducing
physiological angiogenesis without altering vascularization
at tumors (87). Thus, zofenoprilat exerts its EC protective
effects through off-target mechanisms, and may even maximize
cytotoxic drug delivery to tumor cells (8).

Nitric Oxide Donors, Antioxidants, and
Statin
Novel NO donor drugs metal-nonoates (88) and the
mitochondrial aldehyde dehydrogenase (ALDH2) activator,

called Alda-1 may restore eNOS functioning, and FGF-2
production and release, thereby, protecting ECs against
anticancer drug-mediated damages (89). ALDH2 plays a
central role in the vasodilator actions of nitroglycerin, restores
mitochondrial functions, and promotes vascular recovery of
ischemic myocardium (90). However, high ALDH2 metabolic
activities have been observed in tumor ECs as well. Thus,
whether ALDH2 mitigates anti-cancer drug efficacy in tumor
should be tested.

Many animal models showed that vitamin E, vitamin
C, vitamin A, coenzyme Q, and flavonoids can reduce
the anthracycline-mediated cardiovascular toxicity. However,
clinical use of antioxidants to protect the heart during
anthracycline chemotherapy is paved away due to reduce
cytotoxic efficacy toward cancer cells (91).

All FDA-approved statins are effective in lowering serum
cholesterol by inhibiting activity of 3-hydroxy-3-methyl-
glutaryl-coenzyme A reductase (HMGCR), a rate-limiting
enzyme of the mevalonate pathway, in the liver. Therefore,
they are integrated into cancer patient care to protect against
atherosclerosis development during anticancer therapies.
However, epidemiologic studies demonstrated that statin type,
dose, and treatment duration, statin sensitivity, and toxicity are

all important variables to evaluate statins beneficial effects in
adverse effects of anticancer drugs (92).

NEW HORIZONS IN THERAPEUTIC
STRATEGIES: PRO-ANGIOGENIC
THERAPY TO PREVENT VASCULAR
TOXICITY WITHOUT ALTERING
ANTI-NEOPLASTIC PROPERTIES OF
CHEMOTHERAPEUTICS

VEGF-B-Mediated Endothelial Protection
Against Doxorubicin-Mediated
Cardiotoxicity
Vascular endothelial growth factor-B (VEGF-B) promotes
coronary arteriogenesis, physiological cardiac hypertrophy,
and ischemia resistance. It also prevents doxorubicin-induced
cardiotoxicity and congestive heart failure. A recent preclinical
study has shown that pretreatment of tumor-bearing mice
with an adeno-associated viral vector expressing VEGF-B
completely inhibits the doxorubicin-induced cardiac atrophy
and whole-body wasting (93). VEGF-B also alleviates capillary
rarefaction in the heart and improves cardiac function in
doxorubicin-treated mice. Indeed, VEGF-B protects EC
from apoptosis and restores tube-formation capacity of ECs
without altering anti-tumor role of doxorubicin. Importantly,
VEGF-B does not affect serum or tissue concentrations of
doxorubicin. By inhibiting doxorubicin-induced endothelial
damage, VEGF-B could provide a novel therapeutic possibility
for the prevention of chemotherapy-associated cardiotoxicity in
cancer patients.
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TABLE 1 | Vascular damages and diseases induced by the widely prescribed anticancer drugs.

Anti-cancer drugs and their use

in type of cancers

Vascular toxicity Mechanism Ref.

Anthracyclines (Doxorubicin)

Leukemia, lymphoma, melanoma,

uterine, breast, and gastric cancers

* Vascular injury

* Microvascular rarefaction

* Endothelial dysfunction and hypertension

* Hypercoagulation, thrombosis, &

atherosclerosis

* Oxidative stress-mediated ROS accumulation

* Apoptosis due to DNA interference

* Disruption of the tight junction protein ZO-1

in ECs

* Anti-angiogenesis

* Mitochondrial DNA damage

* The endothelium-based protein C

anticoagulant pathway interruption

(18)

(21)

(22)

(5)

(49)

(59)

Tyrosine kinase inhibitors (TKI)

and VEGF inhibitors (VEGFis)

Renal cell cancer, gastro-intestinal

stromal tumors, hepatocellular

cancer

* Microvascular rarefaction

* Hypertension

* Anti-platelet activity

* Hypercoagulation & thrombosis, &

atherosclerosis

* NRF2 downregulation

* Anti-VEGF effect, ROS accumulation and

disruption of NO levels and PI3K/Akt survival

pathway.

* Increased vasoconstriction due to disruption

of both endothelium-dependent and

-independent vasodilatation

* Loss of pericytes due to inhibition of PDGF

* Increased hematocrit and thrombogenesis

activity by reducing NO- and PGI2-mediated

anti-platelet activity

* Atherosclerosis and increase in the risk of

cholesterol embolization syndrome

(26)

(28)

(31)

(40)

(30)

(56)

(60)

Cyclophosphamide

Breast cancer, lymphoid, and

pediatric malignancies

* Vascular injury

* Microvascular rarefaction

* Hypercoagulation, thrombosis, &

atherosclerosis

* Increased levels of the expression of tissue

necrosis factor

* Reduced levels of VEGFs

* Activation of platelet factor 4 (PF-4)

(24)

(33)

(24)

Cisplatin

Ovaries, testis cancers, solid

tumors of the head and neck

* Vascular injury

* Microvascular rarefaction

* Endothelial dysfunction and hypertension

* Hypercoagulation, thrombosis, &

atherosclerosis

* Increased levels of EC- inflammatory

substances to produce hydrogen peroxide

* Increased platelet aggregation levels via the

arachidonic acid pathway

(26)

(34, 35)

(51)

5-Fluorouracil (5-FU)

Breast cancer, head and neck

cancers, anal, stomach, colon

cancers some skin cancers

* Vascular injury

* Hypercoagulation, thrombosis, &

atherosclerosis

* Ultrastructural changes in the endothelium of

the heart

* EC damage

* Direct prothrombotic effect

(27)

(65, 66)

Taxanes

Breast, ovarian, lung, bladder,

prostate, melanoma, esophageal,

other types of solid tumor cancers

* Microvascular rarefaction * Endothelial damage and impaired

angiogenesis

(37)

Prokineticin Receptor-1 Signaling Inhibits
Dose- and Time-Dependent
Anthracycline-Induced Cardiovascular
Toxicity via Myocardial and Vascular
Protection
Prokineticins (PROK1 and PROK2) are

neuropeptides/hormones that are mainly released by
macrophages and reproduction organs in the peripheral system
(94). They utilize two G-protein–coupled receptors (GPCRs)
namely prokineticin receptors (PKR1 and PKR2). Expression of
PROK2 and PKR1 levels are altered in patients with abdominal
aortic rupture (8), during end-stage cardiac failure (95) after
acute myocardial infarction (96), and in adipose tissues from
obese patients (97). Interestingly, PKR1 gene transfer improves
survival and heart function in a mouse model of myocardial
infarction (95) and promotes coronary arteriogenesis (98).

However, PKR2 overexpression in cardiomyocytes promotes
pathological cardiac hypertrophy and causes vascular leakage
(99, 100). These receptors have also divergent effects on ECs
(101). Thus, a non-peptide agonist specific for PKR1, called IS20,
was developed to mimic the cardioprotective effects of PROK2
against heart failure developed by myocardial infarction (102)
and anthracyclines (6) in mice.

A recent preclinical study has demonstrated that prolonged
exposure to low-dose doxorubicin does not induce apoptosis in
ECs, but impairs angiogenesis (6). Importantly, IS20 restores
doxorubicin-mediated cardiovascular toxicity by activating Akt
or MAPK pathways. Genetic or pharmacological inactivation
of PKR1 abolishes these effects of IS20. Mice exposed to
chronic doxorubicin treatment exhibit apoptosis in cardiac
cells, vascular rarefaction and fibrosis, consequently impaired
systolic and diastolic cardiac function, and reduced survival
rate. IS20 reverses these detrimental effects of doxorubicin.
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IS20 also does not alter the cytotoxicity or antitumor effects of
doxorubicin in breast cancer lines or in a mouse model of breast
cancer. Altogether, this study provides evidence that PKR-1 is
a promising target to combat cardiovascular toxicity of cancer
treatments (6).

CONCLUSION AND PERSPECTIVES

Anticancer treatments induce vascular damage, hypertension,
and thrombosis, which affect survival and quality of life of the
patient (Table 1). Therefore, pre-existing hypertension and a
thrombosis risk assessment should be conducted before starting
any type of chemotherapies (103). A continued characterization
of changes of microvessel network patterns and blood pressure
by anticancer drugs is necessary to prevent development of
hypertension and organ damages, especially during the 1st cycle
of therapy when the patients experience a secondary elevation in
blood pressure.

Several mechanisms for anticancer drug-mediated vascular
toxicity have been identified (104), however, there are still many
unknown molecular processes that need to be unraveled to better
understand exactly how anticancer treatments provoke vascular
damages. Endothelial metabolism and new signaling pathways
could be novel targets of the vascular protectant.

Identification of underlying pathological mechanisms
of development of vascular toxicity is a key element to
optimize benefits in tumor development and drug delivery
of chemotherapies.

The improvement in cancer therapy of the past two decades is
due to the development of numerous novel targeted therapies.
These drugs are also used in combination with other new
anti-cancer drugs including inhibitors of immune check points,
poly (ADP-ribose) polymerase (PARP), and histone deacetylase
(HDAC). However, most of these treatments also induce
vascular toxicity, leading to hypertension, thromboembolism,

vasculitis, development of atherosclerotic plaques, and fibrotic
heart disease. More clinical trials of cancer therapies are
needed to be better document the vascular complications of
the chemotherapeutics.

Some of the new cardiovascular protectants including GPCR-
targeted compounds are potential drug candidates to improve
management and prevention of the cardio vascular toxicity of
anti-cancer therapy (105). Whether, these potential vascular
protective agents minimize thrombotic risk associated with
chemotherapies should also be examined. Further, studies are
also necessary to examine their effects on the efficacy of anti-
tumor drugs.
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