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ABSTRACT: The scope of three-dimensional printing is expanding rapidly,
with innovative approaches resulting in the evolution of state-of-the-art 3D
bioprinting (3DbioP) techniques for solving issues in bioengineering and
biopharmaceutical research. The methods and tools in 3DbioP emphasize the
extrusion process, bioink formulation, and stability of the bioprinted scaffold.
Thus, 3DbioP technology augments 3DP in the biological world by providing
technical support to regenerative therapy, drug delivery, bioengineering of
prosthetics, and drug kinetics research. Besides the above, drug delivery and
dosage control have been achieved using 3D bioprinted microcarriers and
capsules. Developing a stable, biocompatible, and versatile bioink is a primary
requisite in biofabrication. The 3DbioP research is breaking the technical barriers
at a breakneck speed. Numerous techniques and biomaterial advancements have
helped to overcome current 3DbioP issues related to printability, stability, and
bioink formulation. Therefore, this Review aims to provide an insight into the technical challenges of bioprinting, novel biomaterials
for bioink formulation, and recently developed 3D bioprinting methods driving future applications in biofabrication research.

1. INTRODUCTION
The worldwide requirement for grafts and transplants has
significantly increased in past years, as indicated by the number
of transplants performed in the United States during January −
April 2022, i.e. 13 567. Moreover, the problem does not end
there, as 106 132 patients are waiting for their donors for either
single or multiple organs. In this regard, three-dimensional
bioprinting (3DbioP) technology is ready to deliver the global
demand for bioengineered tissue grafts, prosthetics, and ready-
to-print (RTP) bioink formulations for cardiac, liver, hepatic,
and corneal tissue regenerative therapy. Furthermore, the
above number emphasizes the importance of developing
artificially prepared natural biomimics of human organs,
which is possible through 3DbioP technology.9

3DbioP is a sophisticated, sensitive, and labile technique
relying heavily upon the availability and compatibility of live
cells derived from humans and animals.1,2 The stem cells show
pluripotency, the ability to differentiate into various types of
live cells that attain a structure in a specific pattern to form a
functional unit of live cells. Thus, the primary challenge in
tissue engineering is to replicate tissue complexity in
arrangement and networking to create a functional live tissue,
i.e., ready-to-be-transplanted or grafted.3,4 Initially, the stem
cells are cultured in vitro and later added to a matrix, forming a
biomaterial such as a hydrogel to form a biologically active ink,
also known as a bioink. This bioink is the key to developing
and augmenting 3D bioprinted products from laboratories to
medical facilities worldwide. The developments in the

technique of 3D printing, the easy availability of raw material,
and the ever-broadening application spectrum have allowed a
conglomeration of researchers and clinicians to work together
and develop 3D bioprinted products.5−7

The advancements in techniques, tools, and biomaterials
forming the bioprinted products have taken a giant leap in past
years. Research in this area provides a unique opportunity to
improve tissue and regenerative medicine procedures.8 The
cutting-edge bioink formulations, biomaterials, and scaffolds
have accelerated the growth of tissue engineering-based
services and research. Thus, the entire 3D bioprinting industry
now thrives upon improvements in bioink formulation to
recreate organs and prosthetics to replace them in patients
whenever and wherever required by the clinicians.

3DbioP has vast applications in every sphere of life and is
evolving at an exponential pace. The current Review, in
principle, summarizes the requirements and advances in bioink
formulations and recent advances in the techniques associated
with 3DbioP and artificially prepared natural biomimics of
human organs. A brief introduction to the utility of 3DbioP in
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plant biology is also incorporated in the manuscript to widen
the horizons of the researchers and clinicians. Lastly, we have
discussed the key challenges and Authors’ outlook on the
current concepts and understanding. We have also attempted
to concise the existing literature on 3DbioP in tabular form to
comprehend recent advances quickly.
1.1. Biofabrication. 3DbioP technology is an additive

manufacturing (AM) technique used to assemble live-cell-
laden printing materials to produce a functional structure.10,11

This process involves the generation of a biologically and
functionally active structural organization, containing a mixture
of living cells, bioactive molecules, biomaterials, and growth
factors, to produce cellular aggregates, microtissues, or hybrid
assemblies, which can be collectively termed “biofabrication”.12

The living cells, bioactive molecules, biomaterials, and cell
aggregates form a biologically functional unit through assembly
and subsequent tissue maturation processes. When mixed as a
suspension, biomaterials and living cells are often referred to as
a “bioink” in 3DbioP.13,14 The “bioink” differs from
“biomaterial inks” due to the presence of living cells and
requires more stringency in its physicochemical parameters,
thus not allowing complete experimental flexibility. This means
that the biomaterial inks can be used with more flexibility
related to temperature and pressure and provide a suitable
organic/inorganic environment for stability and maintaining
structural integrity.15−17

The biofabrication process involves the in silico design of a
biological scaffold, followed by selecting a suitable biomaterial
to prepare a supporting matrix/scaffold for the live cells to
adhere to and, subsequently, for their growth, regeneration,
and proliferation. The formulation is then tested for
compatibility with the bioprinting technique employed for
deposition and the biological and physicochemical properties.
After that, the live cells are cultured, mixed with the prepared
bioprinting formulation, and then tested for cell viability,
proliferation and growth kinetics.8,17 Once the formulation
passes all tests, the bioink is subjected to final bioprinting and
later examined for the functionality and stability of the
bioscaffold (Figure 1).

Diverse 3D printing technologies have evolved in past years,
with many variations in the working principle and the materials
employed.16,18 However, due to extreme temperature and
energy radiation, conventional 3D printing (3DP) cannot be
implemented in bioprinting cell-laden constructs. Hence, many
live-cell-friendly versions of 3DbioP have been developed to
overcome the past limitations and efficiently print the cell-
laden constructs under physiological conditions. Extrusion-
based bioprinting technology has emerged as the approach-to-
go in 3DbioP, followed by stereolithography (SLA)-based
technologies. Inkjet-based bioprinting is the earliest technique
used for the 3D deposition of biomaterials as a continuous

Figure 1. Illustration of various stages in 3D bioprinting. Phase 1 starts with (A) a cell culture of required cell lines in (B) flasks incubated in a CO2
incubator. The cells are then sorted and collected using (C) a cell sorter and (D) centrifugation. The cells are mixed with (E) a suitable matrix and
(F) formulated as a bioink. The bioink is then (G) characterized using microscopy and other suitable techniques. (H) The validated bioink is then
appropriately packaged into a ready-to-use bioink. Phase II starts with (I) the preparation of a 3D design and a bioprinting environment, followed
by (J) optimization of bioprinting in a 3D scaffold (hydrogel) and (K) obtaining a finished product stabilized inside a matrix/hydrogel. This
illustration has been partially adapted from “Bioengineering and Biomaterials” by BioRender.com (2022). Retrieved from https://
app.biorender.com/biorender-templates.
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droplet or on a droplet-on-demand basis using thermal and
piezoelectric actuators.5,6

Further, the droplet-based technique can be classified into
acoustic and microvalve-based bioprinting, where the bioink
droplets are forced onto the surface using acoustic waves or a
pneumatic pressure over the electromechanical valve, respec-
tively.7,16 Recently, microfluidic devices have been introduced
for the bioprinting of low-viscosity, finely organized 3D tubular
and vascularized structures.19 The in-depth description of each
technique is beyond the scope of this Review; hence, the
readers are referred to other commanding contributions to the
literature in this field.
1.2. Bioinks. Bioinks are essential modules of the 3DbioP

technique that offer growth and function support to the live
cells for proper association and function. Besides, bioinks help
minimize the influence of printing on the viability of cells
without conceding the resolution shape and firmness of the
construct.20 Moreover, they allow the distribution of different
types of cells and biomaterials at other locations within the
bioprinted scaffolds.15,21 The significant challenges in devel-
oping a successful bioink are to enhance the physicochemical
properties, i.e., the printability,20 biocompatibility,18 biode-
gradability, and sterilization stability22 of the biomaterials. The
ability to print accurately into a defined design and structure
within a specified time requires rapid cross-linking for
precision layering.16,23 Additionally, the coexistence of the
live cell and biomaterials is essential in providing solutions for
biological problems such as regenerative therapy, where stem
cells are supplied at the site of interest in the case of
implantable prostheses, scaffolds, and organ and tissue
reconstruction.8,13 In such cases, the properties such as
chemical composition, structural morphology, mechanical
strength, surface charge, and surface characteristics become
imperative in the determination of biocompatibility.16,20,24 The
biocompatibility of a biologically functional scaffold thus refers
to a substrate capable of supporting the critical cellular activity,
i.e., regulation of mechanomolecular signaling pathways for
optimal tissue regeneration, without eliciting adverse effects
over the cellular machinery structure and functioning. In this
regard, surface modification, compositing of natural and
synthetic biomaterials, and biomimicry approaches have
successfully developed biotechnologically and pharmaceutically
compatible bioink.13

The mechanical strength conferred by the bioink is
necessary for various biofabrication applications.21 It could
be derived from the cross-linking ability25,26 or by adding
sacrificial materials.27−29 The sacrificial material provides
additional support to the scaffold, as it can be deposited
along with the bioink during printing and later could be
removed through temperature or UV treatment. Biodegrad-
ability becomes an important parameter when designing
implants, as the nontoxic degradation process should maintain
an equilibrium between the rate of production of cells and the
rate of degradation of the biomaterial used for providing the
substrate/matrix.7,24 Thus, selecting an appropriate bioink/
biomaterial requires careful experimental and physical
examination of the contents and their cumulative response
during deposition using various techniques. In particular, the
following parameters need to be considered for any type of
bioink formulation, with special emphasis on extrusion
bioprinting.

1.2.1. Rheology. Among all of the parameters, the
rheological characteristics control the printability of the

biomaterials. The rheology describes the flow perturbations
due to the resistance offered by the force applied for extrusion/
printing, e.g., shear stress, viscosity, viscoelastic shear moduli,
and elastic recovery post-printing.30 The shear thinning is the
most commonly observed non-Newtonian fluid property,
which is inversely proportional to the viscosity.14 Many
partially cross-linked hydrogels, colloidal suspensions, polymer
melts, and polymeric solutions used in extrusion bioprinting
undergo shear-thinning above their critical concentrations.31

These biomaterials can exhibit a time-dependent viscosity, i.e.,
for thixotropic materials.32 The viscosity decreases at a
constant shear rate, whereas the opposite is demonstrated by
the rheopectic materials.33 Thus, the time dependency of the
shear-stress profile could increase the complexity of extrusion-
based bioprinting techniques.34 Therefore, the strategy for
designing such bioinks should be carefully monitored. The
biomaterials such as carrageenan,35 gellan, hyaluronan and
gums typically increase the yield stress when added into a
bioink, resulting in increased stiffness and improved filament
formation.36,37 Additionally, rheology might inhibit cell
encapsulation during bioprinting. The higher yield stress
results in the bioprinting of filaments that can only be
deformed if the acting force is above a yield threshold value
such as gravity, the weight of the filaments, capillary forces,
surface tension, and the weight of all the layers above them.30

1.2.2. Cell Density. Cell density is another parameter that
significantly affects the bioprintability of the 3D tissue
construct.24,38 It has been observed that the increase in cell
density results in a higher-viscosity bioink, whereas in some
other biomaterials it may decrease viscosity.16 Living cells have
their volume, size, and density inside bioinks, potentially
modifying the interspatial interactions in the biomaterial.
Hence they might impact cross-linking and the overall
rheological behavior of the bioinks. The extent of this impact
is greatly influenced by the metabolic state, encapsulation
density, aggregate formation, and subtype of cells employed in
bioprinting.21,38,39

1.2.3. Printability. Printability can be referred to as the
degree of dimensionally faithful extrudability of the filaments,
such as the printed structure mimicking the designed system
exhibiting high shape fidelity or printing accuracy.20,30 The
shape fidelity is an important parameter governed by the
biomaterials’ rheological properties, i.e., the shear-thinning
kinetics of the elastic recovery and yield stress.40,41 Various
techniques have evolved to assess shape fidelity; in particular,
the damping factor (δ) provides information on the balance
between the viscous and elastic deformation properties.41

Further, the angle of deflection (θ), a measure of the filament
deformation due to its weight, gravitational forces and inertia,
is measured by yield stress and storage modulus of the ink.40

Another value, i.e., the integrity index, could be defined as the
calculated ratio of the postprinted structure compared to the
designed one, which could be used to assess the shape fidelity
through 3D computed tomography (CT scan) and optical
coherence tomography (OCT).42−45 The feed rate/print
speed/flow rate is detrimental in determining the successful
deposition and the time required to print a bioink. Flow rate is
an essential parameter in extrusion bioprinting and micro-
extrusion bioprinting. In contrast, the print speed and droplet
deposition rate govern the quality of 3D bioprinted constructs
in stereolithography and inkjet-based bioprinting.30

The above-mentioned parameters can substantially alleviate
the 3D bioprinting enigma and help refine the present bioinks.
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Further, biomaterial design and engineering could be
automated based upon expanding our knowledge and under-
standing of the “good”, the “bad”, and the “ugly” bioink
formulations.

2. PROMISING STRATEGIES FOR 3D
BIOFABRICATION
2.1. Microfluidic Extruder-Assisted Bioprinting: A

Remedy for Efficient Control over the Printed Object’S
Morphology, Direction and Dimension. Extrusion-based
bioprinting is by far the most popular and promising approach
for 3DbioP technology due to its simplicity, cost-effectiveness,
flexibility, robustness, and durability.46 The extruder-depend-
ent technique employs layer-by-layer deposition of the bionks
extruded through a nozzle/needle having an optimal geometry
using either a pneumatic, mechanical piston, or screw-driven
displacement technique. Extrusion-based bioprinting is further
divided into direct ink writing (DIW), coaxial printing,
coagulation bath printing, and free-form reversible embed-
ding.16 DIW is suitable for bioprinting highly viscous ink with
shear thinning upon extrusion, forming struts upon recovering
the initial viscosity. Besides, due to the simplicity of the
extrusion system employed in DIW, the rheological behavior
can be tuned by adjusting the concentration or increasing the
complexity of the bioink/biomaterial components.20,30,47

Contrary to the simple nozzle-based extrusion technique, the
coaxial nozzles can be used for bioprinting perfusable hollow
vascular structures where the wall thickness, diameter, and
geometry can be controlled using tunable bioinks.48−50 The
mechanical strength in this type of hollow microfibers can be
provided by increasing the cross-linker flow rate and adding
vasculature-related cultured cells, i.e., smooth muscle cells
(SMCs) and endothelial cells (ECs), and GelMA (∼7%),
Alginate (∼3%), and PEGDA (∼2%) as wall biomaterials.51,52

The vascular structures with hollow microchannels were
bioprinted with the help of EC, and fibroblasts embedded in
fibrin gel were reported to have ∼67% cell viability after 7 days
(cell viability using solid fibers is ∼50% after 7 days).49,53,54

Therefore, the coaxial extrusion strategy could be employed in
bioprinting blood vessels and capillaries requiring an enhanced
oxygen and nutrient supply through perfusion for their cellular
viability.

Recently, the amalgamation of extrusion bioprinting with
microfluidics-based bioprinting technology allowed control,
switching, and mixing of bionks/biomaterials within micro-
channels in a precise manner.19,24 Microfluidic mixing allows
efficient control over the printed object’s morphology,
direction, and dimension, thus resulting in better stability
and resolution of the 3D bioprinted product. Additionally,
implementing microfluidic channels for extrusion reduces
material wastage, manufacturing cost, and printing and analysis
time and allows biologically safe disposal of waste biomate-
rials,55,56 thus allowing mixing,57 on-the-fly cross-linking,58−60

coaxial filament formation,56 tunable multilayer hollow fiber
formation,61,62 and cell-laden microsphere generation for the
bioprinting of biological constructs. Constantini et al.
fabricated a microfluidic chip head coupled to a coaxial
syringe for the biofabrication of muscle precursor cells, i.e.,
C3Cl2 cells, encapsulated in alginate hydrogel fibers, and
PEG/Fibrinogen, a photocurable semisynthetic biopolymer,
was used as a bioink.63 They showed successful migration and
fusion, forming multinucleated myotubes offering a high
degree of alignment along the direction of hydrogel deposition.

Besides, the in vivo grafting of this multicellular construct
allowed the generation of organized artificial muscle tissue.
Therefore, it can be used to fabricate macroscopic artificial
muscle for human clinical applications, such as drug testing
and burn therapy. A similar type of system was used to
generate a 3 mm thick synchronously beating cardiac tissue
formed by stacking porous alginate/GelMA fibers laden with
ECs that were cross-linked using CaCl2 under UV light
exposure.64 Zhang et al. used a similar system and bioink
formulation, except that they used induced pluripotent stem
cells−cardiomyocytes (iPSC-CMs) to generate uniformly
beating endothelialized myocardium and a two-step cross-
linking using Irgacure 2959 and CaCl2.65 The alginate
dissolved in 5 days leaving a porous membrane behind that
facilitated cell growth and proliferation. This 3D bioprinted
construct was purposed to find widespread application in
regenerative medicine, drug screening, and disease modeling
studies.
2.2. Biofabrication of Multiscale Heterogeneous

Bioscaffolds. 2.2.1. Preset Extrusion Technique. The multi-
cellular, multiscale, and heterogeneous nature of human organs
require a set of complex bioprinting system that should involve
the incorporation of extrusion, inkjet, DLS, and SLS
technologies and the usage of multiple bioink formulations
with various properties and printing requirements.29 This
makes whole-organ printing tricky, complex, expensive, and
time-consuming. One possible solution to the above problem
could be the preset extrusion bioprinting of the heterogeneous
tissue constructs using preset precursor cartridges designed
separately depending on the application of biofabrication.66

The miniaturized parallel printing design allows multimaterial
bioprinting to be achieved by extrustion through the preset
nozzles without substantial deformation.

The authors could bioprint an artificial heterogeneous spinal
cord, capillaries, blood vessels, hepatic lobule, and an S-shaped
object. The bioprinting of NIH/3T3 cell-laden bioink with
precursor nozzles was performed to compare cell viability with
the conventional extrusion-based bioprinting. The cell viability
was indeed high in preset extrusion, i.e. ∼90% compared to
∼70% in conventional bioprinting. Additionally, the time taken
in conventional bioprinting was far more than that in preset
bioprinting. The hepatic lobules bioprinted using precursor
cartridges also showed ∼90% cell viability until the fifth day,
with a similar cell viability and proliferation rate compared to
the conventional 3DbioP construct. However, the cellular
connectivity formation was better in the case of preset 3DbioP
due to ECs covering the collagen bioink compared to the
mixing of ECs in the case of conventional 3DbioP. Therefore,
the preset 3DbioP technique holds promise in future
bioprinting of functionally better multiscale heterogeneous
tissue constructs with high cell viability and cell connections
and requiring lesser time and labor.

2.2.2. Fast Hydrogel Stereolighography (FLOAT). The
FLOAT67 technique can print multiscale solid hydrogel-based
centimeter-sized call-laden structures within a few minutes. It
is based on the phenomenon of photopolymerization-based
curing, occurring in the presence of a low-suction-driven high-
velocity flow of hydrogel. This enables a constant supply of
fresh hydrogel prepolymer during the ongoing curing process
to allow scaling of the 3D printed structures. This technique
allows rapid, multiscale 3DbioP without structure deformation,
strain, or depletion in the physical design of the engineered
tissue model. Using the FLOAT method, a 2.6 × 1.7 × 5.6 cm
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hydrogel-hand model was bioprinted in ∼20 min compared to
the SLA method that took ∼2 and 6.5 h for the 150 and 50 μm
layer thick models of the same dimension, respectively.67 This
method has been adopted for application in the meat industry
for bioprinting multiscale cultured meat in the hydrogel using
muscle and fat cells cultured using differentiating fibroblasts.68

Here, the mechanical strength of the bioprinted meat was ∼6×
less than that of the actual raw beef steak; however, there was
no significant difference between the stiffness in the pan-fried
meat samples, with a marked decline in texture and rigidity of
the cultured hydrogel meat. Thus, the lab-grown and
bioprinted engineered meat may be a big boon for regions
experiencing subzero and extremely high temperatures where
food cultivation is nearly impossible.

2.2.3. Intravital 3D Bioprinting (i3D). The photo-cross-
linking techniques in 3DbioP have helped transition
bioprinting applications from in vitro to in vivo environ-
ments.25 Intravital three-dimensional bioprinting (i3D) is
capable of performing biofabrication both in in vitro
environments (Matrigel) and across various organ tissues in
live organisms with augmented support through live-cell
monitoring.69 Urciuolo et al.69 demonstrated the above
concept by fabricating a spatially controlled 3D construct in
live mice using photo-cross-linking polymers and donor-
muscle-derived stem cells. This technique made in vivo
3DbioP possible by overcoming hurdles related to biofabrica-
tion across tissues, i.e., without causing physical damage to the
surrounding tissues and without hindering the physiological
functions and their efficiency, achieving the accurate
orientation and positioning required for precision 3DbioP.
They exploited the near-infrared laser light for photo-cross-
linking of the modified hydrophilic biopolymer with a
hydrophobic photoactive cross-linking functional group, i.e.,
a coumarin derivative. This photoactive biopolymer undergoes
cycloaddition when the two photons get excited at wavelengths
greater than 850 nm. This wavelength range allows deeper
tissue penetration of the laser light to allow efficient photo-
cross-linking. The best coumarin derivative, i.e., 7-hydrox-
ycoumarin-3-hydrocarboxylic acid (HCCA), results in the
formation of photo-cross-linking products with linear and
branched (4- and 8-arm) PEG (HCC-PEG polymer) and
gelatin formulations that avoid possible cellular toxicity and
cellular damage. The comparison between single- and two-
photon-irradiated cells resulted in 90−99% cell viability when
compared to unirradiated controls (at 1 mW laser power). The
stiffness of the bioprinted scaffolds was thus fine-tuned in the
biologically viable range, i.e., 1−20 kPa, by modulating the
laser power. Using the i3D printing, the bioink containing
HCC-PEG polymer and fibroblasts, MuSCs, and NPS (neural
progenitor cells), was introduced into the mice skin, muscle,
and brain through injection, respectively, followed by two-
photon irradiation.69 Thus, direct bioprinting of cells with
regenerative properties shall provide us with more insights into
the regulation of self-organization, morphogenesis, mainte-
nance of cell functionality, mechanotransduction, and any
mechanism underpinning the specific responses in a three-
dimensional environment.
2.3. Nanoparticle-Based “Smart” Bioink Formulation

Techniques for Various Biological Applications. The
bioink/biomaterial formulation techniques used for 3DbioP
are essential for a 3D organization with biological function. In
this regard, live cells such as stem cells, primary cells, and
organoids require growth factors, adhesion signaling molecules,

and other additives to maintain average cellular growth and
metabolism.70−72 Recently, “smart” bioinks have been referred
to as biologically active formulations that contain multiple
materials and respond to environmental stimuli by releasing
the appropriate growth factors and adhesion signaling
molecules.73 Nanomaterials (NMs) have emerged as a popular
and biologically compatible additive for “smart” bioinks.74

NMs can be one-, two-, three-, or four-dimensional and possess
different physicochemical properties as their dimensionality
changes.75−77 NMs can be synthesized into various 3D forms,
i.e., rods, cages, cubes, and stars. These 3D NMs have been
used to fabricate biosensors and drug delivery carriers.74

Besides, they can also be functionalized through various surface
treatments and chemical modifications.15 Therefore, NMs have
been used as bioreactive inorganic fillers (BIFs) to form
hybrid/composite bioinks/hydrogels for 3DbioP live con-
structs.78,79 Recently, bioink formulations based on nano-
engineered ionic−covalent entanglement (NICE) have been
used in 3DbioP of advanced cell-laden 3D structures with
superior printability, high elasticity, and mechanical strength.
In brief, the NICE bioink formulation uses nanosilicates to
form an ionic−covalent entanglement (ICE) hydrogel
containing GelMA and κ-carrageenan (κ-CA).80 The resulting
3D bioprinted constructs showed high structural fidelity and
mechanical stiffness when printed as a ten-layered 3 cm tall
elastic structure, which maintains its shape and geometry for
more than 120 days while efficiently proliferating and forming
interconnections. In another study, an anticancer, 3DbioP-
compatible, thermosensitive injectable bioink formulation was
prepared with a β-glycerophosphate-bound chitosan (CGP)
and dopamine-modified alginate containing polydopamine
gold nanorods (AuNRs) (AuNR-PDA).81 This bioink
supported high biocompatibility to normal cells and mouse
fibroblast cells but inhibited HepG2 (hepatocellular carcino-
ma) cells during photothermal therapy (PTT). The property
of electrical conductivity in GNRs was exploited in a GelMA-
based bioink used for 3DbioP of a cardiac tissue construct.82

Additionally, the GNRs promote the high-cell-density
organization of the cardiac construct apart from bridging the
electrically neutral polymer surface, improving cell adhesion,
intercellular coupling, and last but not least, they promote
synchronous cardiac impulse in the bioprinted constructs.77

Boularaoui et al. added AuNPs and MXene nanosheets (2D
transitional metal carbides) to the GelMA to enhance human
skeletal muscle cells, i.e. C2Cl2 cross-linking at low temper-
ature, printability, and electrical conductance, leading to a
better differentiation of encapsulated myoblasts with high
viability, i.e., > 90%.83 The MXene nanosheets help improve
electrical conductivity, increase the hydrophilicity, and are
generally stable at varying temperatures, thus finding
application in water desalination, photocatalysis, and bio-
sensors.83 Adding MXene and AuNPs enhanced the sheer
thinning property, thereby enhancing the extrudability, shape
recovery, and printability of the GelMA bioink formulation
without affecting its mechanical stiffness. In a study on
hepatocellular proliferation for liver regeneration and drug-
induced hepatotoxicity, the addition of cerium oxide NPs has
been shown to enhance the proliferative nature of the cells.84

Bai et al. developed a single-walled carbon nanotube
(SWCNT) containing dECM for 3DbioP of the conductive
neural cells that promoted differentiation, thus allowing its
application in neurodegenerative disease modeling.85 Apart
from the above, the nanoparticles derived from hyaluronic acid
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(HA),86 bioceramics,87 nanoclays,88,89 bioactive glasses,90 and
silica91 nanoparticles have been extensively used in bioink
formulations for 3DbioP of osteogenic cells, chondrogenic
cells, adipogenic cells, and neurogenic cells.16

Further, microsphere technology has also emerged as a
promising technique that allows the controlled release of
encapsulated growth factors when placed appropriately in a
bioink formulation along with the live cells. In particular,
Banche-Nicolet et al. developed pH-triggered large mesopo-
rous silica (LPMS) using 1,3,5-trimethylbenzene as a swelling
agent.92 LPMS can release large biomolecules in the 3DbioP
scaffolds, i.e., mimicking a bone matrix. The LPMS was coated
with PEG as a pH-responsive polymer that undergoes
protonation in a low-pH environment. The PEG-coated
LPMS carrier released horseradish peroxidase, an enzyme
that initiates the polymer hydrolysis reaction, in an acidic
environment. The same technology can be used in pH-
responsive osteogenic and osteoconductive patches, wound
healing patches,93 and drug delivery and dosage control.94

Therefore, adding NPs and microspheres is a promising avenue
in 3DbioP of biomimetic constructs and drug delivery through
3D printed scaffolds.
2.4. Enhance Viability Using Oxygen-Releasing

Biomaterials for Vascular Tissue Bioprinting. The
purpose of biofabrication of vascular tissue is squandered if it
does not harbor the ability to foster gaseous exchange through

micro- or macroporous tissue walls.95 The gaseous exchange
plays a crucial role in many diseases, especially the oxygen
tension in various pathological diseases, e.g., coronavirus
infectious disease (COVID) mediated hypoxia in lungs.96

We know how the COVID-19 disease damages the alveoli and
reduces the lungs’ gaseous exchange efficiency. In this regard,
oxygen-releasing biomaterials (ORBs) are promising for
developing clinically viable trachea, alveoli, and other alveolar
origin tissues using 3D bioprinting.97 Additionally, the
biofabrication of large constructs requires efficient oxygen
transfer through tissue layers to maintain various metabolic
processes and signaling cascades. Oxygen plays a vital role in
maintaining physiological function and an adequately oxidizing
environment.98,99 Under the hypoxic condition, the tissue
undergoes immense stress due to nutritional deprivation and
the accumulation of reactive oxygen species (ROS); it fails to
maintain cellular activity and undergoes necrosis.100,101

In tissue engineering, various solid and liquid peroxides,
fluorides, and percarbonates have been used as popular bioink
additives to initiate cellular gaseous exchange through
bioscaffold layers.98,99,102 These oxygen-generating substances
(OGSs) produce hydrogen peroxide (H2O2) when exposed to
water; subsequently, the H2O2 dissociates into water and
oxygen.103 Among the solid peroxides, calcium and magnesium
peroxide have been used in their encapsulated form, i.e.,
hydrophobic materials such as polydimethylsiloxane (PDMS)

Figure 2. Illustration of bioengineering and biopharmaceutical applications of 3D bioprinting. (A) Illustration of the oxygen-generating substances
(OGSs) containing bioinks and nanoparticle (NP)-based bioink and the fabrication of wound healing bandages. The OGSs/NP containing
hydrogels are printed as sheets and applied directly on the wounded/burnt areas. (B) 3D spheroid/organoid-based bioprinting of primary tissue
and induced pluripotent stem cells (iPSCs) as an organ-on-a-chip (OOC) for diagnostics and drug screening. (C) “Multipill” formulation
containing multiple compartments for the sustained and immediate release of drugs for a personalized drug formulation and drug release profile in a
biopharmaceutical. This illustration has been partially adapted from “Bioengineering and Biomaterials”, “Nanotechnology”, “Cancer Cell” and
“Anatomy and Clinical” by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates.
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and PLGA. The oxygen is then released into the surrounding
tissue through diffusion, as the hydrophobic layers act as a
barrier in reducing the rate of hydrolysis of water molecules.
Therefore, the availability of water, solubility of peroxides, pH,
temperature and peroxide-to-water ratio affect the release rate
of oxygen.102 In contrast, the catalase enzyme is chemically
bound to the alginate and surrounded by a hydrophobic layer
of PDMS or PLGA used for the controlled release of
oxygen.104 The fluorinated compounds such as perfluorodeca-
lin, perfluorooctanoic acid (PFOA), perfluorooctanesulfanoic
acid (PFOS), perfluoroalkylated amine oxides, perfluorometh-
yl-cyclohexylpiperidin (C12F23N), and fluorocarbon/hydro-
carbon amphiphile FnHm (C6F13C10H21) have been used in
emulsion form to treat the hypoxic environment in various
tissue engineering applications.98,105

PLGA-H2O2/poly(vinylpyrrolidone) shell−core oxygen-car-
rying microparticles were synthesized and coimplanted into
pancreatic islets, resulting in the improvement of graft function
through the reduction of hypoxia-induced cell dysfunction and
inactivation of the HIF-1α pathway.106 Similarly, CaO2 (CPO)
was incorporated into a collagen-based cryogel and was applied
in diabetic mice, resulting in improved glycaemic control with
enhanced cellular viability.107

The CPO/PLGA matrices were employed in the vascular-
ized bone to stimulate the migration of host cells toward the
OGB matrix, resulting in better regeneration and cell survival
for more than 8 weeks.108 The OGBs have been extensively
used in wound healing therapy (Figure 2A) in the form of
exosome-laden oxygen-releasing cryogels, CPO-containing
thiolated gelatin implants, and CPO in combination with
sodium peroxide encapsulated in PCL-poly(vinyl alcohol)
wound patches that showed better vascular endothelial cell
infiltration, forming structures mimicking capillaries and large
vessels (in pigs after 8 weeks). Thus, the OGBs, when used in a
suitable formulation, can support angiogenesis, an essential
requirement in the wound and burn rehabilitation patients
requiring tissue therapy. Although the development of OGSs-
based hydrogel formulations has succeeded in alleviating
hypoxia-induced necrosis and cell damage, long-term con-
trolled oxygen release is the current limitation of this
technology. However, this technology holds promise for
developing short-term regenerative medicine and 3D bioprint-
ing.
2.5. Organ-on-a-Chip (OOC) Technology and Organ

Building Blocks (OBBs): a “New Hope” For Organ
Transplant and Therapeutics Research. Another exciting
application of microfluidics-based technology is the develop-
ment of organs-on-a-chip (OOC) systems.109 The resulting
OOCs are promising tools for both biomedical engineering
and biopharmaceuticals. They have been used for exploring
various mechanisms involved in human diseases,110,111 the
functioning of organs,112,113 and drug efficacy and toxicity
screening114 procedures. The advantages of using 3D printed
microchips and integrated microfluidics-based extruders could
be attributed to the ability to the control gas permeability,
perfusion properties, precise positioning of cells, pore size, and
morphology required for conducting the above experiments
and screening procedures. These OOCs have been used to
mimic organ systems such as the kidney, liver, heart/
vasculature, brain−blood barrier (BBB), gut, cancerous tissue
like tumors, bone/cartilage, and placenta.115−119

Multiscale, multicellular, and complex 3DbioP requires
multidimensional support differentiation and maturation into

functional tissue constructs of multicellular spheroids, organo-
ids, embryoid bodies, and scaffold biomaterial.120,121 The
advent of iPSCs and recent progress in developing advanced
hydrogels has made the 3DbioP of these complex tissue forms
possible within the structured organ building blocks
(OBBs).122 The conventional 3DbioP approach involves
directly printing cell-laden bioinks into the required shape
and geometry to form a functional tissue construct (Figure
2B). However, bioprinting of functional organoids is somewhat
complex and requires a build-up scale that is unachievable with
the conventional approach.17,123,124 The direct printing of
multicellular organs in an OBB is, however, possible if the
suitable growth environment and signaling molecules are
provided to the iPSCs that differentiate and organize
themselves into cardiac, hepatic, lung, capillary, and cartilage
tissue patterns, achieving macroscale constructs, i.e., “mini
organs”.125 Although there are many approaches to 3DbioP of
organs in OBBs, the embedded and sacrificial writing into
functional tissue (SWIFT) techniques have been popular
choices as they support both bulk and vascularized tissue
bioprinting.126 The embedded organ bioprinting involved an
“ink-in-matrix” approach where a viscoelastic, self-healing
matrix formulation is molded as a block, with the extrusion
of viscoelastic bioink directly into it. The extrusion needle/
nozzle can freely translate inside building blocks without
causing wear and tear to the structure. The bioprinted
structures/scaffolds remain suspended in the 3D space with a
degree of freedom to migrate and grow without steric
inhibition, sagging, or sinking.

Conversely, the sacrificial bioink formulation can be
removed after tissue construct/scaffold bioprinting. The
remaining construct could be a vascularized network or an
organ-building bioink that raises the structured construct from
multicellular organoids and spheroids within the sacrificial
matrix. The SWIFT approach has been used to bioprint a
branched vascularized network within the sacrificial bioink
embedded within the iPSC-enriched OBBs; further, the
vascularized tissue construct generated synchronously beating
cardiac tissue after 1 week of perfusion. Using the FRESH
(freeform reversible embedding of suspension hydrogels)
approach,127 a miniaturized human heart containing 0.5 mm
thick walled dual chambers and in- and out-vessels was allowed
to form for 2 weeks after the fabrication of iPSCs within OBB.
Postformation, this miniaturized heart showed synchronous
beating with the electrical impulse for up to 6 weeks. Thus,
direct embedded writing of vascularized network tissue128−132

in OBB holds future promise in developing functional,
upscaled, and biostable 3Dbioprinted organs for human
transplantation.

3. INNOVATIONS IN 3D PRINTING DRIVING THE
FUTURE OF BIOENGINEERING RESEARCH
3.1. 3DbioP in Plant Biology. 3DbioP in plants is an

upcoming and very promising avenue for exploration. The
3DbioP technology involves plants and associated organisms
like algae, and the process is also called “green bioprinting”.133

Plants are an essential source of food, fuel, fiber, and oxygen to
human beings. Therefore, plants hold the key to the future
sustainability of food and the environment. It has been
reported that plants possess totipotent and differentiating cells
like animal stem cells, called plant stem cells (PSCs).134 These
PSCs can provide specialized functionally differentiating cells
that allow for plant growth and development in four
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dimensions.135 It is also imperative that these PSCs retain their
proliferation, differentiation, and self-renewal functionality for
hundreds of years when their surrounding niche is maintained
under normal physiological conditions.136,137 These PSC
niches are present in shoot apical meristem (SAM) and root
apical meristem (RAM) and are under transcriptional and
post-transcriptional control of cell molecular machinery.136

The stem cells generate differentiated cells that push
surrounding cells in different directions according to
anatomical programming in plants. Therefore, the bioink
formulation containing PSCs with suitable growth factors and
supporting matrix has the potential to provide experimental
scaffolds and self-assembling scaffolds that could be employed
to form root/shoot model systems for a deeper understanding
of the molecular mechanisms as well as the fibrous tissues for
food and engineering applications.138,139

Varma et al. reported 3D bioprinting of transgenic Oryza
sativa (rice), which produces recombinant butyrylcholinester-
ase (BChE)140 as a prophylactic/therapeutic against organo-
phosphate nerve agent poisoning, cocaine toxicity, and
neurodegenerative diseases like Alzheimer’s, and cells were
immobilized in a polyethylene glycol-based hydrogel.141 The
cells maintained viability similar to those in suspension
cultures. They displayed similar sugar consumption trends
for 14 days in the semisolid matrix, undergoing a growth phase
from days 0−6, a BChE production phase in a sugar-free
medium from days 6−12, and a growth/recovery phase from
days 12−14. The rice cells in the bioprintable hydrogel also
produced a significant amount of active BChE, comparable to
the levels produced in liquid cultures. A considerable fraction
of this BChE was secreted into the culture medium, allowing
for easier product separation. Recently, the researchers
reported the development of tunable, lab-grown plant materials
generated from a Zinnia elegans cell culture,142 which respond
to various concentrations of hormones in the growth
medium.143 The 3DbioP and casting of this bioink resulted
in net-shaped structures with varying hardnesses at scales and
forms that do not occur naturally in plants. The PSCs have
found widespread application in the cosmetic industry due to
their ability to provide the tissues of plant origin (TPOs) with
antioxidant, antibacterial, and antifungal properties.144 Besides,
the application of TPOs has already shown potential in human
stem cell regeneration and UV protection, apart from
stimulating the antioxidant system in mammalian cell lines.
PSCs from apple, argan, samphire, and tomato have
significantly reduced transepidermal water loss (TEWL),
thereby reducing the wrinkles in the human volunteers in
the clinical trial on skin.145

Additionally, the 3DbioP technology can potentially provide
bioprinted wood, root/shoot architecture models, and artificial
plant environments for plant−microbe interaction-based
studies, as well as eco-toxicological studies.146

3.2. 4D and 5D Biofabrication/Bioprinting. The four-
dimensional (4D) printing (4DP) technologies are shifting
self-assembling architectures toward the new paradigms of
environment-responsive architectures.147 The 4D biofabrica-
tion technology is based upon the principle that exposing the
bioinks to a specific external stimulus, i.e., temperature, light,
pH, electrical impulse, or any other energetically critical stimuli
that could trigger a physio-chemical response, results in the
attainment of functional and dynamic 3D structures.148,149

Most 4D bioprinted products undergo geometrical changes
under thermal, electrical, magnetic, or light stimulus by the

congruent incorporation of multiple materials. Therefore, the
primary application of 4DP is in the fabrication of precise
“programmed” geometrical structures that can transform/
recover their shape in response to external stimuli.150−152 Such
materials capable of geometrical morphogenesis can be termed
“smart” materials. Zhang et al. classified the “smart” materials
as thermo-, moisture-, photo-, electro-, and magneto-
responsive according to environmental or temporal stimu-
li.153−155 Thermoresponsive materials are primarily driven by
the shape memory effect (SME) and shape change effect
(SCE).31 Shape memory polymers (SMPs) are the most
researched because of their ease of printability. The glass
transition temperatures of SMPs are usually higher than their
operating temperatures. They are programmed under specific
temperatures and mechanical conditions above the transition
temperature ,followed by cooling to maintain the temporary
shape. They regain their shape upon heating above the
transition temperature.156,157 Moisture-responsive materials
primarily include hydrogels, which uniformly swell up in an
aqueous solution until their moisture saturation point.148,158

Biocompatibility and enhanced printability are the two main
advantages that make them a first choice for a broad range of
applications. Bioengineering of the hydrogels through aniso-
tropic swelling, controlling the temperature of water in which
hydrogels are immersed, and unique hinge designs is
contemplated by various researchers to program them
according to the requirements.147,149 Both photo- and
electroresponsive materials exert their stimuli indirectly
through heat. The heat produced following the light and
electrical impulse stimulates the deformation of the struc-
tures.31

The concept of a “multisome”,159 a smart material with pH
and temperature-dependent release bilayer structure, has the
potential to be applied to drug delivery and studies related to
synthetic biology. A similar “programmed deposition”
approach resulted in the fabrication of cohesive, communicat-
ing synthetic cells by a single lipid bilayer.160 This approach
can potentially fabricate rapid communicating structures with
patterns and light-activated gene/protein-controlled switching
in synthetic biology research.161,162 The injectable conductive
cryogel fabricated with glycidyl methacrylate and CNTs
showed blood-triggered shape recovery and high blood uptake
capacity for hemorrhagic wound healing and hemostasis.163

The electroactive “smart” biopolymers were developed to
facilitate the regeneration process and physiological activities
through the SME mechanism, i.e., due to high shape
recoverability and shape fixation ratio under physiological
conditions.73,164

Recently, different chromophores were incorporated into
various positions in the polymer gel block so that only these
parts swell up after getting the suitable light wavelength.165,166

Okuzaki et al. used polypyrrole films to control water
absorption or desorption. The electroresponsive materials
may include volatile compounds such as ethanol, whose
evaporation upon the application of the electrical current
initiates the expansion of the matrix.167 The Ferric-oxide
nanosized particles incorporated into the bioinks respond to
the magnetic field changes by modulating the shape of the
bioprinted structure.154 The magnetoresponsive material has
the potential for polymer printing and metal printing as
well.168,169

Adding another dimension to the 3DP structure has
enhanced the adaptability and placement of the medical
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devices/stents inside the human body with minimal access. Ge
et al. fabricated a 4D stent using high-resolution micro-
stereolithography with SMPs and demonstrated its applic-
ability and efficiency.170 Similarly, Wei et al. used a
magnetoresponsive material to fabricate a 4D stent with the
remote-controlled placement using a magnetic field.171,172

Moreover, targeted drug therapy in the intended body part and
at specific times could be achieved more precisely using 4DP.
Khaled et al. fabricated a 3D printed “polypill” containing five
drugs for cardiac patients.173 This polypill formulation was
designed for three sustained-release drugs, i.e., pravastatin,
atenolol, and Ramipril, containing a compartment separated by
cellulose acetate shell and covered with an immediate release
compartment containing aspirin and hydrochlorothiazide. Such
a 3D printed formulation has the potential to provide the
convenience of optimized and personalized drug dosage with a
controlled and tunable drug release profile (Figure 2C).
Malachowski et al. fabricated “theragrippers”, multifingered
grippers174 that are activated under thermal conditions and
release a controlled drug dosage in the gastrointestinal
cavity.175

Owing to the wide-spectrum applications of dynamic smart
bioinks, the need for the development of 4D-based fabricated
structures must promise morphogenic dynamic implants to
mimic the natural systems and their environment.176

5D printing (5DP) technology involves a fabrication process
where the printing head rotates in three planes and the stage
rotates in two planes, thus resulting in the fabrication of
nonplanar structures, i.e., convex/concave shaped structures.
The technology can print curvilinear, complex structures with
improved inherent characteristics.177 The curved structures
printed by 5DP eliminate the weak points at the edges of flat
surfaces, thus improving the strength of the resultant structure
as much as five times.178,179 Moreover, the technology is
efficient in material management, with approximately 25% less
material consumption. On the other hand, researchers have
added dimensions in the form of “artificial intelligence-based
algorithms”180 that control the robotic extrusion mechanism by
continuously monitoring the printing procedure in the active
mode.10,181 Thus, future bioprinting technologies may be a
hybrid of five-axis printing along with “smart” bioinks capable
of stimulating geometric change with time.

4. KEY CHALLENGES AND OUTLOOK
The 3DbioP technology is revolutionary and evolving with
time. It has enormous potential to provide plausible solutions
in tissue bioengineering and the pharmaceutical industry.
However, the technical hurdles associated with printability,
biocompatibility, stability, cost, and ethical considerations have
taken it a step back.

Printability is essential, as it controls the morphology of the
3D scaffold and the growth of live cells of a bioengineered
structure after printing.20 Biomaterial compatibility is another
issue, as different bioprinting techniques demand materials
with different characteristics.46,73 For example, inkjet technol-
ogy requires materials capable of rapidly cross-linking to ensure
the layered formation of complex structures.14,182 On the other
hand, extrusion bioprinting requires highly viscous bioink
where the initial layer maintains the 3D structure, and cross-
linking occurs after printing.16,30 Therefore, the “one-bioink-
fits-all” concept is hard to apply to different bioprinting
techniques.

Conversely, biocompatibility is necessary to avoid the
immune system response or any adverse reaction locally or
systemically.183 The requirement of biocompatibility is low
when 3D bioprinted devices are used externally, as in the case
of surgical/guiding stents, prostheses, and rehabilitation aids.
However, the issue cannot be overlooked when the bioprinted
implants are placed intrinsically.87,184 The biocompatibility
studies of such implants are lacking and pose a significant
challenge to the success of tissue-engineered organs. The
biodegradability rate of the implanted bioprinted organ is an
essential aspect in the tissue regenerative process, where the
implanted tissue should biodegrade at a similar pace as new
tissue formation and promote the proliferation of cells along
with the production of the extracellular matrix.92,185 At the
same time, the residue of biodegradation should be nontoxic.
This aspect requires further exploration and research. The
sterility of the bioprinted model is another critical challenge
where the technique should not alter the mechanical and
biological properties of the 3DbioP organ.22

The tissue engineering industry faces the most challenging
task of generating clinical-grade human iPSCs due to the cost
of manufacturing the iPSC cell lines and the conditions
required to initiate and maintain these cell lines.186,187

Although the discovery of low-cost precursor molecules like
CHIR-99021 has partially reduced the cost,188,189 the main
challenge is adopting good manufacturing practices (GMPs) at
a large scale. For this, the suspension culture-based bioreactors
with appropriate biosensors and real-time monitoring could be
a plausible solution for maintaining optimal GMP standards
while culturing organ-grade iPSCs.190−192 Further, the cost
could be reduced by culturing patient-specific derived ECMs
instead of relying on iPSCs and other synthetic sources.193−196

The tumorigenicity is another “shot in the eye” for iPSC-based
therapeutics and organ culturing due to the genomic instability
introduced in iPSC as a reprogramming mechanism.122 The
possible solution to the above approach could be to employ
engineered drug-sensitive kill switches in the iPSCs to
eliminate undifferentiated cells during the selection proce-
dure.197,198 The OOCs were developed as an alternative for
animal drug trials; however, the use of iPSCs and their
susceptibility to the flow, shear stress, and flow pressure restrict
their reproducibility and robustness, requiring higher opti-
mization GMP standards and regulations. The optimization
could be achieved by integrating the OOCs with machine
learning (ML) and artificial intelligence (AI), giving rise to the
next generation of OOC platforms for the acceleration of drug
discovery and cost reduction. The ML approach can
potentially simplify the task of representing complex biological
tissue images in 3D tissue models with optimal cellular
resolution, and the biocompatibility of the biomaterial could
also be predicted a priori.180,181,199 The amalgamation of big
data with ML/AI could help reduce multiscale and multi-
parameter complexities that are difficult for manual operators
to handle, including postprocessing operations.200 To date,
small-scale organ fabrication involves delineating an appro-
priate balance between maturation before and after bio-
fabrication. Thus, OBB maturation is a tough challenge in
large-scale human tissue bioassembly.123,187

The 3DbioP skin models have been attractive alternatives for
animal substitution; however, the absence of immunogenic
components has been a critical challenge.73,201 The addition of
the immunogenicity aspect to the skin models could help in
the treatment of infections, inflammasome research, and the
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development of novel skin therapeutics.202,203 Another critical
challenge in tissue engineering is to manufacture biofabricated
constructs with a good shelf life, i.e., the storage life and shelf
availability. In this regard, a cryobioprinting technology was
developed to allow direct fabrication and in situ freezing of
tissue scaffolds to allow their shelf availability.204 The advent of
in situ mobile bioprinting devices is a plausible solution to this
problem. However, the sterility and stability of fabricated
constructs are daunting challenges in this approach.205

The present nozzle technologies have evolved with
tremendous modifications and improvements due to the
addition of multiaxial tips and microfluidic-based extruders in
FDM-based bioprinting technology.48,60,64 The above advances
have resulted in spatial improvements in the fabrication
techniques. However, this comes with the loss of temporal
advantage, i.e., printing time increases. However, simultaneous
printing with multiple extruder units (micromixers and
gradient formation devices) and automated valves could
allow the formation of variable hollow fibers and the
deposition of variable biomaterials to increase the temporal
resolution of bioprinting.58,61,121 Alternatively, computed axial
lithography could be employed in the biofabrication photo-
cross-linking bioink, which is fast and accurate.206

The bioprinting of time-scale-dependent flexible structures
and vascular networks with irregular concave/convex geometry
is a critical limitation in the success of tissue engineering.
However, the advent of SMEs and 5DP technology could be
employed with the incorporation of “smart” bioinks that can
adapt to their environment and space.179

5. CONCLUSION
3DbioP are a novel, versatile, robust, and revolutionary
technology that can potentially solve existing problems. This
Review envisages the ideal parameters for bioinks and
promising technologies to fabricate tissue-engineered struc-
tures. Notably, developing novel “smart” bioinks to support
high precision, rapid prototyping, and functional compatibility
with various bioprinters and bioprinting techniques has
become an inevitable trend. Incorporating microfluidic
technology with OOC, OBB, organoid, in situ, 4D, and 5D
bioprinting techniques can take tissue fabrication to another
level. These 4D bioprinting technologies could provide great
potential for personalized treatment and precision medicine,
regarded as an important trend in tissue engineering.
Additionally, the newer role of 3DbioP in plants, 4D and 5D
printing, was discussed to appreciate the extent of the range of
its applications for humankind. No doubt, the technology has
the potential to serve humanity; however, the challenges
pertaining to printability, biocompatibility, biodegradability,
and sterilization should be adequately addressed through a
series of high-quality research studies. Additionally, the ethical
and regulatory aspects of bioprinted tissue/organs not
discussed in the paper should be considered before their
introduction for service.
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